SlideShare a Scribd company logo
1 of 11
Download to read offline
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
1
ON SOME K- ORESME HYBRID NUMBERS
Serpil HALICI1, Elifcan SAYIN2
1,2
Pamukkale Uni., Science Fac., Depart. of Math., Denizli, Turkey
shalici@pau.edu.tr1
, elifcan7898@gmail.com2
Abstract
The main aim of this study is to define k- Oresme Hybrid numbers by using Oresme numbers and
to investigate some of their algebraic properties and applications. For this purpose, many
formulas and relations have been created for these new numbers, including some implicit
summation formulas, and links with the other numbers. Moreover, the fundamental properties in
terms of integer sequences are also given.
Keywords: Oresme numbers, Hybrid numbers, Recurrence relations.
1. Introduction
Sequences with the recurence relations have an increasing interest and usage in number theory.
Such sequences are used not only in number theory, but also in important fields such as physics,
biology, cryptography and computers, and nowadays the interest in these sequences is increasing.
The most widely used of these sequences is the Horadam sequence. The Horadam sequence with
arbitrary initial values 𝑀0 and 𝑀1 is defined with the help of the second-order linear recurrence
relation { 𝑀𝑛 = 𝑀𝑛(π‘Ž, 𝑏; 𝑝, π‘ž)} 𝑛β‰₯0
𝑀𝑛 = π‘π‘€π‘›βˆ’1 βˆ’ π‘žπ‘€π‘›βˆ’2. (1.1)
Based on the initial values, the parameters 𝑝 and π‘ž it is possible to obtain a large number of
different sequences from this sequence. Information about these sequences can be found in the
references [1, 6, 7, 10]. Oresme is known as the first person to define and investigate the topic of
fractional powers [11]. While examining rational number sequences and their sums, Oresme
inadvertently encountered a special case of the Horadam sequence, but this work was not
published then was later reworked by Horadam. To put it briefly, Horadam first discussed the
extension of arbitrary parameters 𝑝 and π‘ž to rational numbers in 1974[8]. In his study, the author
obtained the relationship between these numbers and Fibonacci numbers by giving the number e
which characterizes the Oresme numbers. This character number𝑒 = π‘π‘Žπ‘ βˆ’ π‘žπ‘Ž2
βˆ’ 𝑏2
obtained
by Horadam has been observed and used in many important identities involving Oresme
numbers, such as the Cassini identity. The distinguishing properties of Oresme numbers stem
from the roots of the characteristic equation of these numbers, and therefore they are considered
as a degenerate subsequence of the Horadam sequence.
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
2
Oresme sequence, which are obtained by taking the values π‘Ž, 𝑏, 𝑝, π‘ž in the Horadam sequence as
0,
1
2
, 1,
1
4
, respectively, are found by the second order linear recurrence relation.
𝑂𝑛+2 = 𝑂𝑛+1 βˆ’
1
4
𝑂𝑛 (1.2)
Some elements of this sequence are
{… , βˆ’64, βˆ’24, βˆ’8, βˆ’2, 0,
1
2
,
1
2
,
3
8
,
4
16
, β‹― }.
In [2], Morales investigated Oresme polynomials and their derivatives. He defined the π‘˜- Oresme
sequence {𝑂𝑛
π‘˜} π‘˜β‰₯2, which is a type of generalization of Oresme numbers by
𝑂𝑛
(π‘˜)
= π‘‚π‘›βˆ’1
(π‘˜)
βˆ’
1
π‘˜2
π‘‚π‘›βˆ’2
(π‘˜)
(1.3)
with 𝑂1
π‘˜
=
1
π‘˜
, 𝑂0
π‘˜
= 0. For π‘˜ = 2, this sequence is reduced to the classical Oresme sequence.
For π‘˜2
βˆ’ 4 > 0, the Binet's formula, which gives these numbers, can be given by using the
recurrence relation .
𝑂𝑛
(π‘˜)
=
1
βˆšπ‘˜2βˆ’4
[(
π‘˜+βˆšπ‘˜2βˆ’4
2π‘˜
)
𝑛
βˆ’ (
π‘˜βˆ’βˆšπ‘˜2βˆ’4
2π‘˜
)
𝑛
] (1.4)
Also, Morales discussed the matrix forms of Oresme polynomials by extending the k- Oresme
sequence to rational functions and investigated the relationships between Oresme polynomials
and their derivatives. Recently, there are some studies on Oresme numbers and their applications.
For these studies, the references can be examined in [2, 3, 4, 5, 8, 13, 17]. In [4], Halici et al.
examined k- Oresme numbers involving negative indices. Recursive relation of this sequence is
denoted by {π‘‚βˆ’π‘›
(π‘˜)
}
𝑛β‰₯0
and defined by
π‘‚βˆ’π‘›
(π‘˜)
= π‘˜2
(π‘‚βˆ’π‘›+1
(π‘˜)
βˆ’ π‘‚βˆ’π‘›+2
(π‘˜)
). (1.5)
The 𝑛 π‘‘β„Ž term of this sequence is
π‘‚βˆ’π‘›
(π‘˜)
= βˆ’π‘˜2𝑛 (π›Όπ‘›βˆ’π›½π‘›)
βˆšπ‘˜2βˆ’4
(1.6)
with initial conditions π‘‚βˆ’1
(π‘˜)
= βˆ’π‘˜ , 𝑂0
(π‘˜)
= 0. The values 𝛼 and 𝛽 are as in equation (1.4).
2. π‘˜ -ORESME HYBRID NUMBERS
Ozdemir defined a non-commutative number system in 2018 and called it hybrid numbers. The
author examined in detail the algebraic and geometrical properties of this new number system,
which he described in this study[12]. In 2018, Szynal-Liana introduced Horadam Hybrid
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
3
numbers and examined their special cases[14]. In 2019, Szynal-Liana considered Fibonacci
Hybrid numbers and examined them[15]. In 2019, Szynal-Liana examined Jacobsthal and
Jacobsthal-Lucas hybrid numbers[16]. In 2021, Işbilir Z. and Gurses N. examined Pentanacci
and Pentanacci Lucas hybrid numbers[9].
Hybrid numbers and Horadam Hybrid numbers, respectively, are defined by
𝕂 = {𝑧 = π‘Ž + 𝑏𝐒 + 𝑐𝛆 + 𝑑𝐑 ∢ π‘Ž, 𝑏, 𝑐, 𝑑 ∈ ℝ}
and
𝐻𝑛 = π‘Š
𝑛 + π‘Šπ‘›+1𝐒 + π‘Šπ‘›+2𝛆 + π‘Šπ‘›+3𝐑
The relations provided between the three different base elements used in the set 𝕂 are
π’Š 𝟐
= βˆ’1, 𝜺2
= 0, 𝒉2
= 1 , π’Šπ’‰ = βˆ’π’‰π’Š = 𝜺 + π’Š
The conjugate of any hybrid number 𝑧 in the 𝕂 set is defined by
𝑧̅ = π‘Ž βˆ’ 𝑏𝐒 βˆ’ 𝑐𝛆 βˆ’ 𝑑𝐑 ,
The character value of element 𝑧 of 𝕂 is
𝔖(𝑧) = 𝑧𝑧̅ = 𝑧̅𝑧 = π‘Ž2
+ (𝑏 βˆ’ 𝑐)2
βˆ’ 𝑐2
βˆ’ 𝑑2
This character number is commonly used to determine the generalized norm of a hybrid number.
We suggest you look at Ozdemir's work to get detailed and useful information about hybrid
numbers [12]. This work has inspired many studies and applications involving these numbers.
One of these studies, Oresme Hybrid numbers, was discussed by Syznal et al.(See, [17]). In [17],
the authors defined the Oresme Hybrid number for positive number 𝑛 as follows.
𝑂𝐻𝑛 = 𝑂𝑛 + 𝑂𝑛+1𝐒 + 𝑂𝑛+2𝛆 + 𝑂𝑛+3𝐑 (1.7)
In addition, the authors introduced the π‘˜-Oresme Hybrid number.
𝑂𝐻𝑛
(π‘˜)
= 𝑂𝑛
(π‘˜)
+ 𝑂𝑛+1
(π‘˜)
𝐒 + 𝑂𝑛+2
(π‘˜)
𝛆 + 𝑂𝑛+3
(π‘˜)
𝐑 (1.8)
Also, in the same study some basic identities including π‘˜- Oresme Hybrid numbers are given
with the help of iterative relation, but other important identities are not given (see, [17]. Thr. 2.4).
They also defined Oresme Hybrationals for a nonzero real variable π‘₯ .
𝑂𝐻𝑛(π‘₯) = 𝑂𝑛(π‘₯) + 𝑂𝑛+1(π‘₯)𝐒 + 𝑂𝑛+2(π‘₯)𝛆 + 𝑂𝑛+3(π‘₯)𝐑 (1.9)
with 𝑛 β‰₯ 0.
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
4
In this current study, we introduced and investigated π‘˜- Oresme Hybrid numbers 𝑂𝐻𝑛
(π‘˜)
in detail
by making use of all the studies on rational functions. For π‘˜ β‰₯ 2, we consider some fundamental
and important identities involving the numbers 𝑂𝐻𝑛
(π‘˜)
and having applications in the literature.
Firstly, we give the Binet formula which provides the derivation of many important equations.
Theorem 1. Binet formula for π‘˜-Oresme Hybrid numbers is
𝑂𝐻𝑛
(π‘˜)
=
1
βˆšπ‘˜2βˆ’4
(𝛼𝑛
𝛼
Μƒ βˆ’ 𝛽𝑛
𝛽
Μƒ) (1.10)
where,
𝛼
Μƒ = 1 + 𝛼𝐒 + 𝛼2
𝛆 + π›ΌπŸ‘
𝐑, 𝛽
Μƒ = 1 + 𝛽𝐒 + 𝛽2
𝛆 + π›½πŸ‘
𝐑. (1.11)
Proof. We use the equality 𝑂𝐻𝑛
(π‘˜)
= 𝑂𝑛
(π‘˜)
+ 𝑂𝑛+1
(π‘˜)
𝐒 + 𝑂𝑛+2
(π‘˜)
𝛆 + 𝑂𝑛+3
(π‘˜)
𝐑. Let's substitute every
term in this equation. Then, we get
𝑂𝐻𝑛
(π‘˜)
=
1
βˆšπ‘˜2 βˆ’ 4
[𝛼𝑛(1 + 𝛼𝐒 + 𝛼2
𝛆 + π›ΌπŸ‘
𝐑) + 𝛽𝑛(1 + 𝛽𝐒 + 𝛽2
𝛆 + π›½πŸ‘
𝐑)].
If we also use the equations (1.11), then we obtain
𝑂𝐻𝑛
(π‘˜)
=
1
βˆšπ‘˜2 βˆ’ 4
(𝛼𝑛
𝛼
Μƒ βˆ’ 𝛽𝑛
𝛽
Μƒ)
which indicates that the proof is complete.
Recurrence relation giving the π‘˜- Oresme Hybrid numbers is
𝑂𝐻𝑛+2
(π‘˜)
= 𝑂𝐻𝑛+1
(π‘˜)
βˆ’
1
π‘˜2
𝑂𝐻𝑛
(π‘˜)
(1.12)
with 𝑂𝐻0
(π‘˜)
=
1
π‘˜
(𝐒 + 𝛆 +
π‘˜2βˆ’1
π‘˜2
𝐑) and 𝑂𝐻1
(π‘˜)
=
1
π‘˜
(1 + 𝐒 +
π‘˜2βˆ’1
π‘˜2
𝛆 +
π‘˜2βˆ’2
π‘˜2
𝐑). The correctness
of this relation can be seen using the π‘›π‘‘β„Ž term of the sequence and induction.
In the following theorem, we give the generating function of the sequence involving numbers
𝑂𝐻𝑛
(π‘˜)
.
Theorem 2. For the numbers 𝑂𝐻𝑛
(π‘˜)
, the following equation is satisfied.
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
5
βˆ‘ 𝑂𝐻𝑛
(π‘˜)
𝑧𝑛
𝑛β‰₯0 =
𝑂𝐻0
(π‘˜)
(1βˆ’π‘§)+𝑧𝑂𝐻1
(π‘˜)
1βˆ’π‘§+
𝑧2
π‘˜2
(1.13)
Proof. From the definition of the generating function,
𝑓(𝑧) = 𝑂𝐻0
(π‘˜)
+ 𝑂𝐻1
(π‘˜)
𝑧 + 𝑂𝐻2
(π‘˜)
𝑧2
+ 𝑂𝐻3
(π‘˜)
𝑧3
…
βˆ’π‘§π‘“(𝑧) = βˆ’π‘§π‘‚π»0
(π‘˜)
βˆ’ 𝑧2
𝑂𝐻1
(π‘˜)
βˆ’ 𝑧3
𝑂𝐻2
(π‘˜)
βˆ’ 𝑧4
𝑂𝐻3
(π‘˜)
+ β‹―
𝑧2
π‘˜2
𝑓(𝑧) =
𝑧2
π‘˜2
𝑂𝐻0
(π‘˜)
+
𝑧3
π‘˜2
𝑂𝐻1
(π‘˜)
+
𝑧4
π‘˜2
𝑂𝐻2
(π‘˜)
+
𝑧5
π‘˜2
𝑂𝐻3
(π‘˜)
+ β‹―
can be written. If necessary operations are made on the last three equations, then the function
𝑓(𝑧) (1 βˆ’ 𝑧 +
𝑧2
π‘˜2
) is
𝑂𝐻0
(π‘˜)
+ 𝑧(𝑂𝐻1
(π‘˜)
βˆ’ 𝑂𝐻0
(π‘˜)
) + 𝑧2
(𝑂𝐻2
(π‘˜)
βˆ’ 𝑂𝐻1
(π‘˜)
+
1
π‘˜2
𝑂𝐻0
(π‘˜)
) + 𝑧3
(𝑂𝐻3
(π‘˜)
βˆ’ 𝑂𝐻2
(π‘˜)
+
1
π‘˜2
𝑂𝐻1
(π‘˜)
) + β‹―.
So, by making necessary simplifications and calculations on the last equation, the following
equation is obtained
𝑓(𝑧) =
𝑂𝐻0
(π‘˜)
(1 βˆ’ 𝑧) + 𝑧𝑂𝐻1
(π‘˜)
1 βˆ’ 𝑧 +
𝑧2
π‘˜2
which indicates that the desired equality is true. Thus, the proof is completed.
In the following theorem, we give the Cassini identity containing π‘˜- Oresme Hybrid numbers.
Theorem 3. The elements of the sequence {𝑂𝐻𝑛
(π‘˜)
}
𝑛β‰₯0
satisfy the following identity.
𝑂𝐻𝑛+1
(π‘˜)
π‘‚π»π‘›βˆ’1
(π‘˜)
βˆ’ (𝑂𝐻𝑛
(π‘˜)
)
2
= βˆ’ (
1
π‘˜
)
2𝑛
𝛼
̃𝛽
Μƒ . (1.14)
Proof. Using 𝑂𝐻𝑛+1
(π‘˜)
=
1
βˆšπ‘˜2βˆ’4
(𝛼𝑛+1
𝛼
Μƒ βˆ’ 𝛽𝑛+1
𝛽
Μƒ), π‘‚π»π‘›βˆ’1
(π‘˜)
=
1
βˆšπ‘˜2βˆ’4
(π›Όπ‘›βˆ’1
𝛼
Μƒ βˆ’ π›½π‘›βˆ’1
𝛽
Μƒ) and
(𝑂𝐻𝑛
(π‘˜)
)
2
=
1
π‘˜2βˆ’4
[(𝛼𝑛
𝛼
Μƒ)2
βˆ’ 2(𝛼𝛽)𝑛
𝛼
̃𝛽
Μƒ + (𝛽𝑛
𝛽
Μƒ)
2
], then the left-hand side of (1.14) will be
as follows.
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
6
𝐿𝐻𝑆 =
1
π‘˜2 βˆ’ 4
[(𝛼𝑛+1
𝛼
Μƒ βˆ’ 𝛽𝑛+1
𝛽
Μƒ)(π›Όπ‘›βˆ’1
𝛼
Μƒ βˆ’ π›½π‘›βˆ’1
𝛽
Μƒ) βˆ’ ((𝛼𝑛
𝛼
Μƒ)2
βˆ’ 2(𝛼𝛽)𝑛
𝛼
̃𝛽
Μƒ + (𝛽𝑛
𝛽
Μƒ)
2
)]
and
𝑂𝐻𝑛+1
(π‘˜)
π‘‚π»π‘›βˆ’1
(π‘˜)
βˆ’ (𝑂𝐻𝑛
(π‘˜)
)
2
= βˆ’
1
π‘˜2βˆ’4
(𝛼𝛽)𝑛
𝛼
̃𝛽
Μƒ [
𝛼2+𝛽2
𝛼𝛽
βˆ’ 2].
Here, if we also use the relations between the roots, then we get the desired result. That is, we
have
𝑂𝐻𝑛+1
(π‘˜)
π‘‚π»π‘›βˆ’1
(π‘˜)
βˆ’ (𝑂𝐻𝑛
(π‘˜)
)
2
= βˆ’ (
1
π‘˜
)
2𝑛
𝛼
̃𝛽
Μƒ .
Thus, the theorem is completed.
In the following theorem, we give the Catalan identity provided by the π‘˜- Oresme Hybrid
numbers.
Theorem 4. For 𝑛 β‰₯ π‘Ÿ and π‘˜ β‰₯ 2, the following equality is true.
𝑂𝐻𝑛+π‘Ÿ
(π‘˜)
π‘‚π»π‘›βˆ’π‘Ÿ
(π‘˜)
βˆ’ (𝑂𝐻𝑛
(π‘˜)
)
2
= βˆ’(π‘˜)βˆ’2𝑛+π‘Ÿ
𝛼
̃𝛽
Μƒ(π‘‚π‘Ÿ
(π‘˜)
)
2
. (1.15)
Proof. If we use the Binet formula to write the numbers 𝑂𝐻𝑛+π‘Ÿ
(π‘˜)
, π‘‚π»π‘›βˆ’π‘Ÿ
(π‘˜)
and 𝑂𝐻𝑛
(π‘˜)
, then left-
hand side of the equation to be proved is
[(𝛼𝑛
𝛼
Μƒ)2
+ 2(𝛼𝛽)𝑛
𝛼
̃𝛽
Μƒ + (𝛽𝑛
𝛽
Μƒ)
2
βˆ’ (𝛼𝛽)𝑛
𝛼
̃𝛽
Μƒ (
𝛼
𝛽
)
π‘Ÿ
βˆ’ (𝛼𝛽)𝑛
𝛼
̃𝛽
Μƒ (
𝛽
𝛼
)
π‘Ÿ
βˆ’ (𝛼𝑛
𝛼
Μƒ)2
βˆ’ (𝛽𝑛
𝛽
Μƒ)
2
].
On the last equation, if necessary simplifications and algebraic operations are completed, then
𝑂𝐻𝑛+π‘Ÿ
(π‘˜)
π‘‚π»π‘›βˆ’π‘Ÿ
(π‘˜)
βˆ’ (𝑂𝐻𝑛
(π‘˜)
)
2
= βˆ’(π‘˜)βˆ’2𝑛+π‘Ÿ
𝛼
̃𝛽
Μƒ(π‘‚π‘Ÿ
(π‘˜)
)
2
is obtained that the claim is proven.
If we pay attention here, in the situation π‘Ÿ = 1 this equation is reduced to the Cassini identity for
the π‘˜- Oresme Hybrid numbers.
In the following theorem, we give the d'Ocagne identity, which includes π‘˜- Oresme Hybrid
numbers.
Theorem 5. For positive integers π‘š, 𝑛 the following equation is true.
𝑂𝐻𝑛+1
(π‘˜)
π‘‚π»π‘š
(π‘˜)
βˆ’ 𝑂𝐻𝑛
(π‘˜)
π‘‚π»π‘š+1
(π‘˜)
= (
1
π‘˜
)
2π‘›βˆ’1
𝛼
̃𝛽
Μƒπ‘‚π‘šβˆ’π‘›
(π‘˜)
. (1.16)
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
7
Proof. Let's take the values on the left side of the equation that needs to be proven separately.
𝑂𝐻𝑛+1
(π‘˜)
π‘‚π»π‘š
(π‘˜)
=
1
π‘˜2 βˆ’ 4
[𝛼𝑛+π‘š+1(𝛼
Μƒ)2
βˆ’ 𝛼𝑛+1
π›½π‘š
𝛼
̃𝛽
Μƒ βˆ’ 𝛽𝑛+1
π›Όπ‘š
𝛼
̃𝛽
Μƒ + 𝛽𝑛+π‘š+1
(𝛽
Μƒ)
2
].
𝑂𝐻𝑛
(π‘˜)
π‘‚π»π‘š+1
(π‘˜)
=
1
π‘˜2 βˆ’ 4
[𝛼𝑛+π‘š+1(𝛼
Μƒ)2
+ 𝛽𝑛+π‘š+1
(𝛽
Μƒ)
2
βˆ’ π›Όπ‘š+1
𝛽𝑛
𝛼
̃𝛽
Μƒ βˆ’ π›½π‘š+1
𝛼𝑛
𝛼
̃𝛽
Μƒ].
From the last two equations, we get
𝑂𝐻𝑛+1
(π‘˜)
π‘‚π»π‘š
(π‘˜)
βˆ’ 𝑂𝐻𝑛
(π‘˜)
π‘‚π»π‘š+1
(π‘˜)
=
1
π‘˜2βˆ’4
(𝛼
̃𝛽
Μƒ)[π›Όπ‘š
𝛽𝑛(𝛼 βˆ’ 𝛽) + 𝛼𝑛
π›½π‘š(𝛽 βˆ’ 𝛼)],
𝑂𝐻𝑛+1
(π‘˜)
π‘‚π»π‘š
(π‘˜)
βˆ’ 𝑂𝐻𝑛
(π‘˜)
π‘‚π»π‘š+1
(π‘˜)
=
1
π‘˜2βˆ’4
(𝛼
̃𝛽
Μƒ) (
βˆšπ‘˜2βˆ’4
π‘˜
) (
1
π‘˜
)
2𝑛
(π›Όπ‘šβˆ’π‘›
βˆ’ π›½π‘šβˆ’π‘›),
𝑂𝐻𝑛+1
(π‘˜)
π‘‚π»π‘š
(π‘˜)
βˆ’ 𝑂𝐻𝑛
(π‘˜)
π‘‚π»π‘š+1
(π‘˜)
=
(𝛼
̃𝛽
Μƒ)(
βˆšπ‘˜2βˆ’4
π‘˜
)(
1
π‘˜
)
2𝑛
βˆšπ‘˜2βˆ’4
(π›Όπ‘šβˆ’π‘›βˆ’π›½π‘šβˆ’π‘›)
βˆšπ‘˜2βˆ’4
,
𝑂𝐻𝑛+1
(π‘˜)
π‘‚π»π‘š
(π‘˜)
βˆ’ 𝑂𝐻𝑛
(π‘˜)
π‘‚π»π‘š+1
(π‘˜)
= (
1
π‘˜
)
2π‘›βˆ’1
𝛼
̃𝛽
Μƒπ‘‚π‘šβˆ’π‘›
(π‘˜)
.
Thus, the claim is true.
In the following theorem we give the Honsberger's identity which includes the π‘˜- Oresme Hybrid
numbers.
Theorem 6. For positive integers π‘š, 𝑛 the following equation is satisfied.
𝑂𝐻𝑛+π‘š
(π‘˜)
= π‘˜π‘‚π‘›
(π‘˜)
π‘‚π»π‘š+1
(π‘˜)
βˆ’
1
π‘˜
π‘‚π‘›βˆ’1
(π‘˜)
π‘‚π»π‘š
(π‘˜)
. (1.17)
Proof. To see that the equation in (1.17) is true, we write the value 𝑂𝐻𝑛+π‘š
(π‘˜)
as follows.
𝑂𝐻𝑛+π‘š
(π‘˜)
= π‘˜1𝑂𝑛
(π‘˜)
+ π‘˜2π‘‚π‘›βˆ’1
(π‘˜)
(1.18)
Let's see that the values π‘˜1 and π‘˜2 are π‘˜1 = π‘˜π‘‚π»π‘š+1
(π‘˜)
and π‘˜2 = βˆ’
1
π‘˜
π‘‚π»π‘š
(π‘˜)
.
If we substitute the Binet formula in equation (1.18) and do the necessary operations, then we get
the following equation.
π›Όπ‘š+𝑛
𝛼
Μƒ βˆ’ π›½π‘š+𝑛
𝛽
Μƒ = π‘˜1𝛼𝑛
βˆ’ π‘˜1𝛽𝑛
+ π‘˜2π›Όπ‘›βˆ’1
βˆ’ π‘˜2π›½π‘›βˆ’1
= π›Όπ‘›βˆ’1(π‘˜1𝛼 + π‘˜2) βˆ’ π‘˜2π›½π‘›βˆ’1(π‘˜1𝛽 +
π‘˜2).
From the last equality, we can write
𝛼
Μƒπ›Όπ‘š+1
= π‘˜1𝛼 + π‘˜2 (1.19)
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
8
𝛽
Μƒπ›½π‘š+1
= π‘˜1𝛽 + π‘˜2 (1.20)
By the aid of (1.19) and (1.20) equations, we obtain
π‘˜1 =
𝛼
Μƒπ›Όπ‘š+1βˆ’π›½
Μƒπ›½π‘š+1
π›Όβˆ’π›½
= π‘˜π‘‚π»π‘š+1
(π‘˜)
(1.21)
π‘˜2 =
𝛼
Μƒπ›Όπ‘šβˆ’π›½
Μƒπ›½π‘š
π›Όβˆ’π›½
= βˆ’
1
π‘˜
π‘‚π»π‘š
(π‘˜)
(1.22)
If we substitute these values π‘˜1 and π‘˜2 in the equation (1.18), then we get
𝑂𝐻𝑛+π‘š
(π‘˜)
= π‘˜π‘‚π‘›
(π‘˜)
π‘‚π»π‘š+1
(π‘˜)
βˆ’
1
π‘˜
π‘‚π‘›βˆ’1
(π‘˜)
π‘‚π»π‘š
(π‘˜)
which is desired result. Thus, the proof is completed.
Now, we give a formula that gives the sum of the first 𝑛 of the π‘˜- Oresme Hybrid numbers in the
theorem below.
Theorem 7. For the π‘˜-Oresme Hybrid numbers, the following equation is satisfied.
βˆ‘ 𝑂𝐻𝑛
(π‘˜)
= π‘˜2
(𝑂𝐻1
(π‘˜)
βˆ’ 𝑂𝐻𝑛+2
(π‘˜)
).
𝑛
π‘˜=1 (1.23)
Proof. By using Binet's formula,
βˆ‘ 𝑂𝐻𝑛
(π‘˜)
=
𝑛
π‘˜=1
1
βˆšπ‘˜2 βˆ’ 4
[𝛼
Μƒ (
1 βˆ’ 𝛼𝑛+1
1 βˆ’ 𝛼
) βˆ’ 𝛽
Μƒ (
1 βˆ’ 𝛽𝑛+1
1 βˆ’ 𝛽
)]
can be written. Also, if the relations between 𝛼 and 𝛽 are used, then
βˆ‘ 𝑂𝐻𝑛
(π‘˜)
𝑛
π‘˜=1
=
1
βˆšπ‘˜2 βˆ’ 4
[𝛼
Μƒ βˆ’ 𝛼
̃𝛽
Μƒ βˆ’ 𝛼
̃𝛼𝑛+1
+ 𝛼
̃𝛽𝛼𝑛+1
βˆ’ 𝛽
Μƒ + 𝛽
̃𝛼 + 𝛽
̃𝛽𝑛+1
βˆ’ 𝛼𝛽
̃𝛽𝑛+1
],
βˆ‘ 𝑂𝐻𝑛
(π‘˜)
𝑛
π‘˜=1
=
1
βˆšπ‘˜2 βˆ’ 4
[
βˆ’π›Ό
̃𝛼𝑛+2
+ 𝛽
̃𝛽𝑛+2
+ 𝛼𝛼
Μƒ βˆ’ 𝛽𝛽
Μƒ
𝛼𝛽
],
βˆ‘ 𝑂𝐻𝑛
(π‘˜)
= π‘˜2
(𝑂𝐻1
(π‘˜)
βˆ’ 𝑂𝐻𝑛+2
(π‘˜)
) ,
𝑛
π‘˜=1
is obtained. Thus, the proof is completed.
In the following theorem, we obtained the formula gives the sum of squares of the π‘˜- Oresme
Hybrid numbers.
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
9
Theorem 8. The sum of squares of the π‘˜- Oresme Hybrid numbers is
βˆ‘ (𝑂𝐻𝑛
(π‘˜)
)
2
=
βˆ’π‘˜4(𝑂𝐻1
(π‘˜)
+(𝑂𝐻𝑑+1
(π‘˜)
)
2
)+𝑂𝐻0
(π‘˜)
βˆ’(𝑂𝐻𝑑
(π‘˜)
)
2
βˆ’2(
1βˆ’π‘₯𝑑
1βˆ’π‘₯
)𝛼
̃𝛽
Μƒ
βˆ’1βˆ’2π‘˜2
𝑑
𝑛=1 . (1.24)
Proof. Let's denote the sum of the squares with the letter T.
(𝑂𝐻1
(π‘˜)
)
2
+ (𝑂𝐻2
(π‘˜)
)
2
+ (𝑂𝐻3
(π‘˜)
)
2
+ β‹― = 𝑇
For each term, the recurrence relation of the π‘˜- Oresme Hybrid numbers is written and the
necessary calculations are made for each, and the following equation is obtained.
𝑂𝐻𝑛
(π‘˜)
= 𝑂𝐻𝑛+1
(π‘˜)
+
1
π‘˜2
π‘‚π»π‘›βˆ’1
(π‘˜)
𝑇 = βˆ‘(𝑂𝐻𝑛
(π‘˜)
)
2
= βˆ‘ [
π‘˜2
𝑂𝐻𝑛+1
(π‘˜)
+ π‘‚π»π‘›βˆ’1
(π‘˜)
π‘˜2
]
2
,
𝑑
𝑛=1
𝑑
𝑛=1
π‘˜4
𝑇 = π‘˜4
βˆ‘(𝑂𝐻𝑛+1
(π‘˜)
)
2
+ βˆ‘(π‘‚π»π‘›βˆ’1
(π‘˜)
)
2
+ 2π‘˜2
βˆ‘ 𝑂𝐻𝑛+1
(π‘˜)
π‘‚π»π‘›βˆ’1
(π‘˜)
𝑑
𝑛=1
𝑑
𝑛=1
𝑑
𝑛=1
.
Here, let's also use the Cassini identity, that is, 𝑂𝐻𝑛+1
(π‘˜)
π‘‚π»π‘›βˆ’1
(π‘˜)
= (𝑂𝐻𝑛
(π‘˜)
)
2
βˆ’ (
1
π‘˜
)
2𝑛
𝛼
̃𝛽
Μƒ.
Then, we get
π‘˜4
𝑇 = π‘˜4
(𝑇 βˆ’ (𝑂𝐻1
(π‘˜)
)
2
+ (𝑂𝐻𝑑+1
(π‘˜)
)
2
) + (𝑇 + (𝑂𝐻0
(π‘˜)
)
2
βˆ’ (𝑂𝐻𝑑
(π‘˜)
)
2
) +
2π‘˜2 βˆ‘ (𝑂𝐻𝑛
(π‘˜)
)
2
βˆ’ (
1
π‘˜
)
2𝑛
𝛼
̃𝛽
Μƒ
𝑑
𝑛=1 ,
π‘˜4
𝑇 = π‘˜4
(𝑇 βˆ’ (𝑂𝐻1
(π‘˜)
)
2
+ (𝑂𝐻𝑑+1
(π‘˜)
)
2
) + (𝑇 + (𝑂𝐻0
(π‘˜)
)
2
βˆ’ (𝑂𝐻𝑑
(π‘˜)
)
2
) + 2π‘˜2
𝑇 βˆ’
2 βˆ‘ (π‘˜)βˆ’2𝑛+2
𝛼
̃𝛽
Μƒ
𝑑
𝑛=1 ,
π‘˜4
𝑇 = 𝑇(π‘˜4
+ 2π‘˜2
+ 1) βˆ’ π‘˜4
(𝑂𝐻1
(π‘˜)
)
2
+ π‘˜4
(𝑂𝐻𝑑+1
(π‘˜)
)
2
+ (𝑂𝐻0
(π‘˜)
)
2
βˆ’ (𝑂𝐻𝑑
(π‘˜)
)
2
βˆ’ 2
1βˆ’π‘₯𝑑
1βˆ’π‘₯
𝛼
̃𝛽
Μƒ.
Thus, we obtain
𝑇 = βˆ‘ (𝑂𝐻𝑛
(π‘˜)
)
2
=
βˆ’π‘˜4(𝑂𝐻1
(π‘˜)
+(𝑂𝐻𝑑+1
(π‘˜)
)
2
)+𝑂𝐻0
(π‘˜)
βˆ’(𝑂𝐻𝑑
(π‘˜)
)
2
βˆ’2(
1βˆ’π‘₯𝑑
1βˆ’π‘₯
)𝛼
̃𝛽
Μƒ
βˆ’1βˆ’2π‘˜2
𝑑
𝑛=1 .
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
10
In the following theorem, we give the formula of sums of π‘˜- Oresme Hybrid numbers with even
and odd indices terms.
Theorem 9. The sums of π‘˜- Oresme Hybrid numbers with even and odd indices terms are
𝑖) βˆ‘ 𝑂𝐻2𝑛
(π‘˜)
π‘˜
𝑛=1 = π‘˜2(𝑂𝐻0 βˆ’ 𝑂𝐻2𝑛+2) βˆ’ (π‘‚π»βˆ’1 βˆ’ 𝑂𝐻2𝑛+1). (1.25)
𝑖𝑖) βˆ‘ 𝑂𝐻2𝑛+1
(π‘˜)
π‘˜
𝑛=1 = π‘˜2(𝑂𝐻0 βˆ’ 𝑂𝐻2𝑛+1) βˆ’ (π‘‚π»βˆ’1 βˆ’ 𝑂𝐻2𝑛). (1.26)
Proof. i) From the Binet formula of π‘˜- Oresme Hybrid numbers,
βˆ‘ 𝑂𝐻2𝑛
(π‘˜)
π‘˜
𝑛=1
=
1
βˆšπ‘˜2 βˆ’ 4
[𝛼
Μƒ βˆ‘ 𝛼2𝑛
βˆ’
π‘˜
𝑛=1
𝛽
Μƒ βˆ‘ 𝛽2𝑛
π‘˜
𝑛=1
],
βˆ‘ 𝑂𝐻2𝑛
(π‘˜)
π‘˜
𝑛=1
=
1
βˆšπ‘˜2 βˆ’ 4
[𝛼
Μƒ (
1 βˆ’ 𝛼2𝑛+2
1 βˆ’ 𝛼
) βˆ’ 𝛽
Μƒ (
1 βˆ’ 𝛽2𝑛+2
1 βˆ’ 𝛽
)],
is written. By using the relationships 𝛼 + 𝛽 = 1, 𝛼 βˆ’ 𝛽 =
βˆšπ‘˜2βˆ’4
π‘˜
, 𝛼𝛽 =
1
π‘˜2
βˆ‘ 𝑂𝐻2𝑛
(π‘˜)
π‘˜
𝑛=1
=
1
βˆšπ‘˜2 βˆ’ 4
[
𝛼
Μƒ βˆ’ 𝛽
Μƒ βˆ’ (𝛼
̃𝛽 βˆ’ 𝛽
̃𝛼) βˆ’ (𝛼
̃𝛽𝛼2𝑛+2
βˆ’ 𝛽
̃𝛼𝛽2𝑛+2
) βˆ’ (𝛼
̃𝛼2𝑛+2
βˆ’ 𝛽
̃𝛽2𝑛+2
)
𝛼𝛽
],
βˆ‘ 𝑂𝐻2𝑛
(π‘˜)
π‘˜
𝑛=1
=
π‘˜2
(𝛼
Μƒ βˆ’ 𝛽
Μƒ)
βˆšπ‘˜2 βˆ’ 4
βˆ’
(𝛼
Μƒπ›Όβˆ’1
βˆ’ 𝛽
Μƒπ›½βˆ’1
)
βˆšπ‘˜2 βˆ’ 4
βˆ’
(𝛼
̃𝛼2𝑛+1
βˆ’ 𝛽
̃𝛽2𝑛+1
)
βˆšπ‘˜2 βˆ’ 4
βˆ’
π‘˜2
(𝛼
̃𝛼2𝑛+2
βˆ’ 𝛽
̃𝛽2𝑛+2
)
βˆšπ‘˜2 βˆ’ 4
,
βˆ‘ 𝑂𝐻2𝑛
(π‘˜)
π‘˜
𝑛=1
= π‘˜2
(𝑂𝐻0
(π‘˜)
βˆ’ 𝑂𝐻2𝑛+2
(π‘˜)
) βˆ’ (π‘‚π»βˆ’1
(π‘˜)
βˆ’ 𝑂𝐻2𝑛+1
(π‘˜)
),
is obtained. The sum of odd terms of π‘˜- Oresme Hybrid numbers can also be calculated as in the
proof of even terms.
Thus, the proof is completed.
3. Conclusion
In this study, k- Oresme Hybrid numbers are defined and examined. Some of their algebraic
properties and applications are introduced. Some useful sum formulas for these newly defined
UtilitasMathematica
ISSN 0315-3681 Volume 120, 2023
11
numbers are given. In addition, many basic and important identities and equations are obtained
by considering the relations between the numbers studied here and Horadam numbers.
References
[1] Cerda, G. (2012). Matrix methods in Horadam sequences.BoletΓ­n de MatemΓ‘ticas, 19(2), 97-
106.
[2] Cerda-Morales,G. (2019). Oresme polynomials and their derivatives. arxiv preprint
arXiv:1904.01165.
[3] Cook, C.K.: Some sums related to sums of Oresme numbers, in: Applications of Fibonacci
Numbers, vol.9, Proceedings of the Tenth International Research Conference on Fibonacci
Numbers and their Applications, Kluwer Academic Publishers, 2004, pp.87–99.
[4] HalΔ±cΔ±, S., SayΔ±n, E., Gur, Z. B. (2022). On k-Oresme Numbers with Negative Indices.
Engineering (ICMASE 2022), 4-7 July 2022, Technical University of Civil Engineering
Bucharest, Romania, 56.
[5] HalΔ±cΔ±, S., Gur, Z. B. On Some Derivatives of k- Oresme Polynomials, Bulletin of
International Mathematical Virtual Institute, (accepted).
[6] Horadam, A. F. (1965). Basic properties of a certain generalized sequence of numbers. The
Fibonacci Quarterly, 3(3), 161-176.
[7] Horadam, A. F. (1967). Special properties of the sequence γ€– wγ€—_n=w_n (a,b;p,q).
Fibonacci Quarterly, 5(5), 424-434.
[8] Horadam, A. F. (1974). Oresme numbers. Fibonacci Quarterly, 12(3), 267-271.
[9] Işbilir, Z., Gürses, N. (2021). Pentanacci and Pentanacci-Lucas hybrid numbers. Journal of
Discrete Mathematical Sciences and Cryptography, 1-20.
[10] Larcombe, P. J. (2017).Horadam sequences: A surve update and extension. Bulletin of the
Institute of Combinatorics and its Applications, Volume 80, pp.99-118.
[11] Oresme, N. (1961). Quaestiones super geometriam Euclidis (Vol. 3). Brill Archive.
[12] Ozdemir, M. (2018). Introduction to hybrid numbers. Advances in applied Clifford algebras,
28(1), 1-32.
[13] Senturk, G. Y., Yuce, N. G. S. (2021). A New Look on Oresme Numbers: Dual-Generalized
Complex Component Extension. In Conference Proceedings of Science and (Vol. 4, No. 2,
pp. 206-214).
[14] Szynal-Liana, A. (2018). The Horadam Hybrid Numbers. Discussiones Mathematicae
General Algebra and Applications 38 (2018), 91–98.
[15] Szynal-Liana, A., Wioch, I. (2019). The Fibonacci hybrid numbers. Utilitas Mathematica,
Vol. 110 (2019).
[16] Szynal-Liana, A., WΕ‚och, I. (2019). On Jacobsthal and Jacobsthal-Lucas hybrid numbers. In
Annales Mathematicae Silesianae (Vol. 33, pp. 276-283).
[17] Szynal-Liana, A., Wloch, I. (2024). Oresme Hybrid Numbers and Hybrationals. Kragujevac
Journal of Mathematics, 48(5), 747-753.

More Related Content

Similar to journalism journals

DIGITAL TEXT BOOK
DIGITAL TEXT BOOKDIGITAL TEXT BOOK
DIGITAL TEXT BOOK
bintu55
Β 
FERMAT’S LAST THEOREM PROVED BY INDUCTION (accompanied by a philosophical com...
FERMAT’S LAST THEOREM PROVED BY INDUCTION (accompanied by a philosophical com...FERMAT’S LAST THEOREM PROVED BY INDUCTION (accompanied by a philosophical com...
FERMAT’S LAST THEOREM PROVED BY INDUCTION (accompanied by a philosophical com...
Vasil Penchev
Β 

Similar to journalism journals (20)

Sequences, Series, and the Binomial Theorem
Sequences, Series, and the Binomial TheoremSequences, Series, and the Binomial Theorem
Sequences, Series, and the Binomial Theorem
Β 
A0280106
A0280106A0280106
A0280106
Β 
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
Β 
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptxPOTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
POTENCIAS Y RAÍCES DE NÚMEROS COMPLEJOS-LAPTOP-3AN2F8N2.pptx
Β 
New classes of Adomian polynomials for the Adomian decomposition method
New classes of Adomian polynomials for the Adomian decomposition method New classes of Adomian polynomials for the Adomian decomposition method
New classes of Adomian polynomials for the Adomian decomposition method
Β 
Lecture 1.2 quadratic functions
Lecture 1.2 quadratic functionsLecture 1.2 quadratic functions
Lecture 1.2 quadratic functions
Β 
lec14.ppt
lec14.pptlec14.ppt
lec14.ppt
Β 
New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation
Β 
Some Remarks and Propositions on Riemann Hypothesis
Some Remarks and Propositions on Riemann HypothesisSome Remarks and Propositions on Riemann Hypothesis
Some Remarks and Propositions on Riemann Hypothesis
Β 
G023073077
G023073077G023073077
G023073077
Β 
lec13.ppt
lec13.pptlec13.ppt
lec13.ppt
Β 
The Generalized Difference Operator of the 퐧 퐭퐑 Kind
The Generalized Difference Operator of the 퐧 퐭퐑 KindThe Generalized Difference Operator of the 퐧 퐭퐑 Kind
The Generalized Difference Operator of the 퐧 퐭퐑 Kind
Β 
DIGITAL TEXT BOOK
DIGITAL TEXT BOOKDIGITAL TEXT BOOK
DIGITAL TEXT BOOK
Β 
E0561719
E0561719E0561719
E0561719
Β 
NJD_87.pdf
NJD_87.pdfNJD_87.pdf
NJD_87.pdf
Β 
sequence and series.docx
sequence and series.docxsequence and series.docx
sequence and series.docx
Β 
A Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionA Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary Condition
Β 
FERMAT’S LAST THEOREM PROVED BY INDUCTION (accompanied by a philosophical com...
FERMAT’S LAST THEOREM PROVED BY INDUCTION (accompanied by a philosophical com...FERMAT’S LAST THEOREM PROVED BY INDUCTION (accompanied by a philosophical com...
FERMAT’S LAST THEOREM PROVED BY INDUCTION (accompanied by a philosophical com...
Β 
J0744851
J0744851J0744851
J0744851
Β 
AGGREGATION OF OPINIONS FOR SYSTEM SELECTION USING APPROXIMATIONS OF FUZZY NU...
AGGREGATION OF OPINIONS FOR SYSTEM SELECTION USING APPROXIMATIONS OF FUZZY NU...AGGREGATION OF OPINIONS FOR SYSTEM SELECTION USING APPROXIMATIONS OF FUZZY NU...
AGGREGATION OF OPINIONS FOR SYSTEM SELECTION USING APPROXIMATIONS OF FUZZY NU...
Β 

More from rikaseorika

More from rikaseorika (20)

journalism research
journalism researchjournalism research
journalism research
Β 
science research journal
science research journalscience research journal
science research journal
Β 
scopus publications
scopus publicationsscopus publications
scopus publications
Β 
research publish journal
research publish journalresearch publish journal
research publish journal
Β 
ugc journal
ugc journalugc journal
ugc journal
Β 
journalism research
journalism researchjournalism research
journalism research
Β 
publishable paper
publishable paperpublishable paper
publishable paper
Β 
journal publication
journal publicationjournal publication
journal publication
Β 
published journals
published journalspublished journals
published journals
Β 
journal for research
journal for researchjournal for research
journal for research
Β 
research publish journal
research publish journalresearch publish journal
research publish journal
Β 
mathematica journal
mathematica journalmathematica journal
mathematica journal
Β 
research paper publication journals
research paper publication journalsresearch paper publication journals
research paper publication journals
Β 
journal for research
journal for researchjournal for research
journal for research
Β 
ugc journal
ugc journalugc journal
ugc journal
Β 
ugc care list
ugc care listugc care list
ugc care list
Β 
research paper publication
research paper publicationresearch paper publication
research paper publication
Β 
published journals
published journalspublished journals
published journals
Β 
journalism research paper
journalism research paperjournalism research paper
journalism research paper
Β 
research on journaling
research on journalingresearch on journaling
research on journaling
Β 

Recently uploaded

Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
Β 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
Β 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
Β 

Recently uploaded (20)

Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
Β 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Β 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
Β 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
Β 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
Β 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
Β 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
Β 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
Β 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
Β 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
Β 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
Β 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
Β 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
Β 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
Β 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
Β 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
Β 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
Β 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
Β 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
Β 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
Β 

journalism journals

  • 1. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 1 ON SOME K- ORESME HYBRID NUMBERS Serpil HALICI1, Elifcan SAYIN2 1,2 Pamukkale Uni., Science Fac., Depart. of Math., Denizli, Turkey shalici@pau.edu.tr1 , elifcan7898@gmail.com2 Abstract The main aim of this study is to define k- Oresme Hybrid numbers by using Oresme numbers and to investigate some of their algebraic properties and applications. For this purpose, many formulas and relations have been created for these new numbers, including some implicit summation formulas, and links with the other numbers. Moreover, the fundamental properties in terms of integer sequences are also given. Keywords: Oresme numbers, Hybrid numbers, Recurrence relations. 1. Introduction Sequences with the recurence relations have an increasing interest and usage in number theory. Such sequences are used not only in number theory, but also in important fields such as physics, biology, cryptography and computers, and nowadays the interest in these sequences is increasing. The most widely used of these sequences is the Horadam sequence. The Horadam sequence with arbitrary initial values 𝑀0 and 𝑀1 is defined with the help of the second-order linear recurrence relation { 𝑀𝑛 = 𝑀𝑛(π‘Ž, 𝑏; 𝑝, π‘ž)} 𝑛β‰₯0 𝑀𝑛 = π‘π‘€π‘›βˆ’1 βˆ’ π‘žπ‘€π‘›βˆ’2. (1.1) Based on the initial values, the parameters 𝑝 and π‘ž it is possible to obtain a large number of different sequences from this sequence. Information about these sequences can be found in the references [1, 6, 7, 10]. Oresme is known as the first person to define and investigate the topic of fractional powers [11]. While examining rational number sequences and their sums, Oresme inadvertently encountered a special case of the Horadam sequence, but this work was not published then was later reworked by Horadam. To put it briefly, Horadam first discussed the extension of arbitrary parameters 𝑝 and π‘ž to rational numbers in 1974[8]. In his study, the author obtained the relationship between these numbers and Fibonacci numbers by giving the number e which characterizes the Oresme numbers. This character number𝑒 = π‘π‘Žπ‘ βˆ’ π‘žπ‘Ž2 βˆ’ 𝑏2 obtained by Horadam has been observed and used in many important identities involving Oresme numbers, such as the Cassini identity. The distinguishing properties of Oresme numbers stem from the roots of the characteristic equation of these numbers, and therefore they are considered as a degenerate subsequence of the Horadam sequence.
  • 2. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 2 Oresme sequence, which are obtained by taking the values π‘Ž, 𝑏, 𝑝, π‘ž in the Horadam sequence as 0, 1 2 , 1, 1 4 , respectively, are found by the second order linear recurrence relation. 𝑂𝑛+2 = 𝑂𝑛+1 βˆ’ 1 4 𝑂𝑛 (1.2) Some elements of this sequence are {… , βˆ’64, βˆ’24, βˆ’8, βˆ’2, 0, 1 2 , 1 2 , 3 8 , 4 16 , β‹― }. In [2], Morales investigated Oresme polynomials and their derivatives. He defined the π‘˜- Oresme sequence {𝑂𝑛 π‘˜} π‘˜β‰₯2, which is a type of generalization of Oresme numbers by 𝑂𝑛 (π‘˜) = π‘‚π‘›βˆ’1 (π‘˜) βˆ’ 1 π‘˜2 π‘‚π‘›βˆ’2 (π‘˜) (1.3) with 𝑂1 π‘˜ = 1 π‘˜ , 𝑂0 π‘˜ = 0. For π‘˜ = 2, this sequence is reduced to the classical Oresme sequence. For π‘˜2 βˆ’ 4 > 0, the Binet's formula, which gives these numbers, can be given by using the recurrence relation . 𝑂𝑛 (π‘˜) = 1 βˆšπ‘˜2βˆ’4 [( π‘˜+βˆšπ‘˜2βˆ’4 2π‘˜ ) 𝑛 βˆ’ ( π‘˜βˆ’βˆšπ‘˜2βˆ’4 2π‘˜ ) 𝑛 ] (1.4) Also, Morales discussed the matrix forms of Oresme polynomials by extending the k- Oresme sequence to rational functions and investigated the relationships between Oresme polynomials and their derivatives. Recently, there are some studies on Oresme numbers and their applications. For these studies, the references can be examined in [2, 3, 4, 5, 8, 13, 17]. In [4], Halici et al. examined k- Oresme numbers involving negative indices. Recursive relation of this sequence is denoted by {π‘‚βˆ’π‘› (π‘˜) } 𝑛β‰₯0 and defined by π‘‚βˆ’π‘› (π‘˜) = π‘˜2 (π‘‚βˆ’π‘›+1 (π‘˜) βˆ’ π‘‚βˆ’π‘›+2 (π‘˜) ). (1.5) The 𝑛 π‘‘β„Ž term of this sequence is π‘‚βˆ’π‘› (π‘˜) = βˆ’π‘˜2𝑛 (π›Όπ‘›βˆ’π›½π‘›) βˆšπ‘˜2βˆ’4 (1.6) with initial conditions π‘‚βˆ’1 (π‘˜) = βˆ’π‘˜ , 𝑂0 (π‘˜) = 0. The values 𝛼 and 𝛽 are as in equation (1.4). 2. π‘˜ -ORESME HYBRID NUMBERS Ozdemir defined a non-commutative number system in 2018 and called it hybrid numbers. The author examined in detail the algebraic and geometrical properties of this new number system, which he described in this study[12]. In 2018, Szynal-Liana introduced Horadam Hybrid
  • 3. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 3 numbers and examined their special cases[14]. In 2019, Szynal-Liana considered Fibonacci Hybrid numbers and examined them[15]. In 2019, Szynal-Liana examined Jacobsthal and Jacobsthal-Lucas hybrid numbers[16]. In 2021, Işbilir Z. and Gurses N. examined Pentanacci and Pentanacci Lucas hybrid numbers[9]. Hybrid numbers and Horadam Hybrid numbers, respectively, are defined by 𝕂 = {𝑧 = π‘Ž + 𝑏𝐒 + 𝑐𝛆 + 𝑑𝐑 ∢ π‘Ž, 𝑏, 𝑐, 𝑑 ∈ ℝ} and 𝐻𝑛 = π‘Š 𝑛 + π‘Šπ‘›+1𝐒 + π‘Šπ‘›+2𝛆 + π‘Šπ‘›+3𝐑 The relations provided between the three different base elements used in the set 𝕂 are π’Š 𝟐 = βˆ’1, 𝜺2 = 0, 𝒉2 = 1 , π’Šπ’‰ = βˆ’π’‰π’Š = 𝜺 + π’Š The conjugate of any hybrid number 𝑧 in the 𝕂 set is defined by 𝑧̅ = π‘Ž βˆ’ 𝑏𝐒 βˆ’ 𝑐𝛆 βˆ’ 𝑑𝐑 , The character value of element 𝑧 of 𝕂 is 𝔖(𝑧) = 𝑧𝑧̅ = 𝑧̅𝑧 = π‘Ž2 + (𝑏 βˆ’ 𝑐)2 βˆ’ 𝑐2 βˆ’ 𝑑2 This character number is commonly used to determine the generalized norm of a hybrid number. We suggest you look at Ozdemir's work to get detailed and useful information about hybrid numbers [12]. This work has inspired many studies and applications involving these numbers. One of these studies, Oresme Hybrid numbers, was discussed by Syznal et al.(See, [17]). In [17], the authors defined the Oresme Hybrid number for positive number 𝑛 as follows. 𝑂𝐻𝑛 = 𝑂𝑛 + 𝑂𝑛+1𝐒 + 𝑂𝑛+2𝛆 + 𝑂𝑛+3𝐑 (1.7) In addition, the authors introduced the π‘˜-Oresme Hybrid number. 𝑂𝐻𝑛 (π‘˜) = 𝑂𝑛 (π‘˜) + 𝑂𝑛+1 (π‘˜) 𝐒 + 𝑂𝑛+2 (π‘˜) 𝛆 + 𝑂𝑛+3 (π‘˜) 𝐑 (1.8) Also, in the same study some basic identities including π‘˜- Oresme Hybrid numbers are given with the help of iterative relation, but other important identities are not given (see, [17]. Thr. 2.4). They also defined Oresme Hybrationals for a nonzero real variable π‘₯ . 𝑂𝐻𝑛(π‘₯) = 𝑂𝑛(π‘₯) + 𝑂𝑛+1(π‘₯)𝐒 + 𝑂𝑛+2(π‘₯)𝛆 + 𝑂𝑛+3(π‘₯)𝐑 (1.9) with 𝑛 β‰₯ 0.
  • 4. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 4 In this current study, we introduced and investigated π‘˜- Oresme Hybrid numbers 𝑂𝐻𝑛 (π‘˜) in detail by making use of all the studies on rational functions. For π‘˜ β‰₯ 2, we consider some fundamental and important identities involving the numbers 𝑂𝐻𝑛 (π‘˜) and having applications in the literature. Firstly, we give the Binet formula which provides the derivation of many important equations. Theorem 1. Binet formula for π‘˜-Oresme Hybrid numbers is 𝑂𝐻𝑛 (π‘˜) = 1 βˆšπ‘˜2βˆ’4 (𝛼𝑛 𝛼 Μƒ βˆ’ 𝛽𝑛 𝛽 Μƒ) (1.10) where, 𝛼 Μƒ = 1 + 𝛼𝐒 + 𝛼2 𝛆 + π›ΌπŸ‘ 𝐑, 𝛽 Μƒ = 1 + 𝛽𝐒 + 𝛽2 𝛆 + π›½πŸ‘ 𝐑. (1.11) Proof. We use the equality 𝑂𝐻𝑛 (π‘˜) = 𝑂𝑛 (π‘˜) + 𝑂𝑛+1 (π‘˜) 𝐒 + 𝑂𝑛+2 (π‘˜) 𝛆 + 𝑂𝑛+3 (π‘˜) 𝐑. Let's substitute every term in this equation. Then, we get 𝑂𝐻𝑛 (π‘˜) = 1 βˆšπ‘˜2 βˆ’ 4 [𝛼𝑛(1 + 𝛼𝐒 + 𝛼2 𝛆 + π›ΌπŸ‘ 𝐑) + 𝛽𝑛(1 + 𝛽𝐒 + 𝛽2 𝛆 + π›½πŸ‘ 𝐑)]. If we also use the equations (1.11), then we obtain 𝑂𝐻𝑛 (π‘˜) = 1 βˆšπ‘˜2 βˆ’ 4 (𝛼𝑛 𝛼 Μƒ βˆ’ 𝛽𝑛 𝛽 Μƒ) which indicates that the proof is complete. Recurrence relation giving the π‘˜- Oresme Hybrid numbers is 𝑂𝐻𝑛+2 (π‘˜) = 𝑂𝐻𝑛+1 (π‘˜) βˆ’ 1 π‘˜2 𝑂𝐻𝑛 (π‘˜) (1.12) with 𝑂𝐻0 (π‘˜) = 1 π‘˜ (𝐒 + 𝛆 + π‘˜2βˆ’1 π‘˜2 𝐑) and 𝑂𝐻1 (π‘˜) = 1 π‘˜ (1 + 𝐒 + π‘˜2βˆ’1 π‘˜2 𝛆 + π‘˜2βˆ’2 π‘˜2 𝐑). The correctness of this relation can be seen using the π‘›π‘‘β„Ž term of the sequence and induction. In the following theorem, we give the generating function of the sequence involving numbers 𝑂𝐻𝑛 (π‘˜) . Theorem 2. For the numbers 𝑂𝐻𝑛 (π‘˜) , the following equation is satisfied.
  • 5. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 5 βˆ‘ 𝑂𝐻𝑛 (π‘˜) 𝑧𝑛 𝑛β‰₯0 = 𝑂𝐻0 (π‘˜) (1βˆ’π‘§)+𝑧𝑂𝐻1 (π‘˜) 1βˆ’π‘§+ 𝑧2 π‘˜2 (1.13) Proof. From the definition of the generating function, 𝑓(𝑧) = 𝑂𝐻0 (π‘˜) + 𝑂𝐻1 (π‘˜) 𝑧 + 𝑂𝐻2 (π‘˜) 𝑧2 + 𝑂𝐻3 (π‘˜) 𝑧3 … βˆ’π‘§π‘“(𝑧) = βˆ’π‘§π‘‚π»0 (π‘˜) βˆ’ 𝑧2 𝑂𝐻1 (π‘˜) βˆ’ 𝑧3 𝑂𝐻2 (π‘˜) βˆ’ 𝑧4 𝑂𝐻3 (π‘˜) + β‹― 𝑧2 π‘˜2 𝑓(𝑧) = 𝑧2 π‘˜2 𝑂𝐻0 (π‘˜) + 𝑧3 π‘˜2 𝑂𝐻1 (π‘˜) + 𝑧4 π‘˜2 𝑂𝐻2 (π‘˜) + 𝑧5 π‘˜2 𝑂𝐻3 (π‘˜) + β‹― can be written. If necessary operations are made on the last three equations, then the function 𝑓(𝑧) (1 βˆ’ 𝑧 + 𝑧2 π‘˜2 ) is 𝑂𝐻0 (π‘˜) + 𝑧(𝑂𝐻1 (π‘˜) βˆ’ 𝑂𝐻0 (π‘˜) ) + 𝑧2 (𝑂𝐻2 (π‘˜) βˆ’ 𝑂𝐻1 (π‘˜) + 1 π‘˜2 𝑂𝐻0 (π‘˜) ) + 𝑧3 (𝑂𝐻3 (π‘˜) βˆ’ 𝑂𝐻2 (π‘˜) + 1 π‘˜2 𝑂𝐻1 (π‘˜) ) + β‹―. So, by making necessary simplifications and calculations on the last equation, the following equation is obtained 𝑓(𝑧) = 𝑂𝐻0 (π‘˜) (1 βˆ’ 𝑧) + 𝑧𝑂𝐻1 (π‘˜) 1 βˆ’ 𝑧 + 𝑧2 π‘˜2 which indicates that the desired equality is true. Thus, the proof is completed. In the following theorem, we give the Cassini identity containing π‘˜- Oresme Hybrid numbers. Theorem 3. The elements of the sequence {𝑂𝐻𝑛 (π‘˜) } 𝑛β‰₯0 satisfy the following identity. 𝑂𝐻𝑛+1 (π‘˜) π‘‚π»π‘›βˆ’1 (π‘˜) βˆ’ (𝑂𝐻𝑛 (π‘˜) ) 2 = βˆ’ ( 1 π‘˜ ) 2𝑛 𝛼 ̃𝛽 Μƒ . (1.14) Proof. Using 𝑂𝐻𝑛+1 (π‘˜) = 1 βˆšπ‘˜2βˆ’4 (𝛼𝑛+1 𝛼 Μƒ βˆ’ 𝛽𝑛+1 𝛽 Μƒ), π‘‚π»π‘›βˆ’1 (π‘˜) = 1 βˆšπ‘˜2βˆ’4 (π›Όπ‘›βˆ’1 𝛼 Μƒ βˆ’ π›½π‘›βˆ’1 𝛽 Μƒ) and (𝑂𝐻𝑛 (π‘˜) ) 2 = 1 π‘˜2βˆ’4 [(𝛼𝑛 𝛼 Μƒ)2 βˆ’ 2(𝛼𝛽)𝑛 𝛼 ̃𝛽 Μƒ + (𝛽𝑛 𝛽 Μƒ) 2 ], then the left-hand side of (1.14) will be as follows.
  • 6. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 6 𝐿𝐻𝑆 = 1 π‘˜2 βˆ’ 4 [(𝛼𝑛+1 𝛼 Μƒ βˆ’ 𝛽𝑛+1 𝛽 Μƒ)(π›Όπ‘›βˆ’1 𝛼 Μƒ βˆ’ π›½π‘›βˆ’1 𝛽 Μƒ) βˆ’ ((𝛼𝑛 𝛼 Μƒ)2 βˆ’ 2(𝛼𝛽)𝑛 𝛼 ̃𝛽 Μƒ + (𝛽𝑛 𝛽 Μƒ) 2 )] and 𝑂𝐻𝑛+1 (π‘˜) π‘‚π»π‘›βˆ’1 (π‘˜) βˆ’ (𝑂𝐻𝑛 (π‘˜) ) 2 = βˆ’ 1 π‘˜2βˆ’4 (𝛼𝛽)𝑛 𝛼 ̃𝛽 Μƒ [ 𝛼2+𝛽2 𝛼𝛽 βˆ’ 2]. Here, if we also use the relations between the roots, then we get the desired result. That is, we have 𝑂𝐻𝑛+1 (π‘˜) π‘‚π»π‘›βˆ’1 (π‘˜) βˆ’ (𝑂𝐻𝑛 (π‘˜) ) 2 = βˆ’ ( 1 π‘˜ ) 2𝑛 𝛼 ̃𝛽 Μƒ . Thus, the theorem is completed. In the following theorem, we give the Catalan identity provided by the π‘˜- Oresme Hybrid numbers. Theorem 4. For 𝑛 β‰₯ π‘Ÿ and π‘˜ β‰₯ 2, the following equality is true. 𝑂𝐻𝑛+π‘Ÿ (π‘˜) π‘‚π»π‘›βˆ’π‘Ÿ (π‘˜) βˆ’ (𝑂𝐻𝑛 (π‘˜) ) 2 = βˆ’(π‘˜)βˆ’2𝑛+π‘Ÿ 𝛼 ̃𝛽 Μƒ(π‘‚π‘Ÿ (π‘˜) ) 2 . (1.15) Proof. If we use the Binet formula to write the numbers 𝑂𝐻𝑛+π‘Ÿ (π‘˜) , π‘‚π»π‘›βˆ’π‘Ÿ (π‘˜) and 𝑂𝐻𝑛 (π‘˜) , then left- hand side of the equation to be proved is [(𝛼𝑛 𝛼 Μƒ)2 + 2(𝛼𝛽)𝑛 𝛼 ̃𝛽 Μƒ + (𝛽𝑛 𝛽 Μƒ) 2 βˆ’ (𝛼𝛽)𝑛 𝛼 ̃𝛽 Μƒ ( 𝛼 𝛽 ) π‘Ÿ βˆ’ (𝛼𝛽)𝑛 𝛼 ̃𝛽 Μƒ ( 𝛽 𝛼 ) π‘Ÿ βˆ’ (𝛼𝑛 𝛼 Μƒ)2 βˆ’ (𝛽𝑛 𝛽 Μƒ) 2 ]. On the last equation, if necessary simplifications and algebraic operations are completed, then 𝑂𝐻𝑛+π‘Ÿ (π‘˜) π‘‚π»π‘›βˆ’π‘Ÿ (π‘˜) βˆ’ (𝑂𝐻𝑛 (π‘˜) ) 2 = βˆ’(π‘˜)βˆ’2𝑛+π‘Ÿ 𝛼 ̃𝛽 Μƒ(π‘‚π‘Ÿ (π‘˜) ) 2 is obtained that the claim is proven. If we pay attention here, in the situation π‘Ÿ = 1 this equation is reduced to the Cassini identity for the π‘˜- Oresme Hybrid numbers. In the following theorem, we give the d'Ocagne identity, which includes π‘˜- Oresme Hybrid numbers. Theorem 5. For positive integers π‘š, 𝑛 the following equation is true. 𝑂𝐻𝑛+1 (π‘˜) π‘‚π»π‘š (π‘˜) βˆ’ 𝑂𝐻𝑛 (π‘˜) π‘‚π»π‘š+1 (π‘˜) = ( 1 π‘˜ ) 2π‘›βˆ’1 𝛼 ̃𝛽 Μƒπ‘‚π‘šβˆ’π‘› (π‘˜) . (1.16)
  • 7. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 7 Proof. Let's take the values on the left side of the equation that needs to be proven separately. 𝑂𝐻𝑛+1 (π‘˜) π‘‚π»π‘š (π‘˜) = 1 π‘˜2 βˆ’ 4 [𝛼𝑛+π‘š+1(𝛼 Μƒ)2 βˆ’ 𝛼𝑛+1 π›½π‘š 𝛼 ̃𝛽 Μƒ βˆ’ 𝛽𝑛+1 π›Όπ‘š 𝛼 ̃𝛽 Μƒ + 𝛽𝑛+π‘š+1 (𝛽 Μƒ) 2 ]. 𝑂𝐻𝑛 (π‘˜) π‘‚π»π‘š+1 (π‘˜) = 1 π‘˜2 βˆ’ 4 [𝛼𝑛+π‘š+1(𝛼 Μƒ)2 + 𝛽𝑛+π‘š+1 (𝛽 Μƒ) 2 βˆ’ π›Όπ‘š+1 𝛽𝑛 𝛼 ̃𝛽 Μƒ βˆ’ π›½π‘š+1 𝛼𝑛 𝛼 ̃𝛽 Μƒ]. From the last two equations, we get 𝑂𝐻𝑛+1 (π‘˜) π‘‚π»π‘š (π‘˜) βˆ’ 𝑂𝐻𝑛 (π‘˜) π‘‚π»π‘š+1 (π‘˜) = 1 π‘˜2βˆ’4 (𝛼 ̃𝛽 Μƒ)[π›Όπ‘š 𝛽𝑛(𝛼 βˆ’ 𝛽) + 𝛼𝑛 π›½π‘š(𝛽 βˆ’ 𝛼)], 𝑂𝐻𝑛+1 (π‘˜) π‘‚π»π‘š (π‘˜) βˆ’ 𝑂𝐻𝑛 (π‘˜) π‘‚π»π‘š+1 (π‘˜) = 1 π‘˜2βˆ’4 (𝛼 ̃𝛽 Μƒ) ( βˆšπ‘˜2βˆ’4 π‘˜ ) ( 1 π‘˜ ) 2𝑛 (π›Όπ‘šβˆ’π‘› βˆ’ π›½π‘šβˆ’π‘›), 𝑂𝐻𝑛+1 (π‘˜) π‘‚π»π‘š (π‘˜) βˆ’ 𝑂𝐻𝑛 (π‘˜) π‘‚π»π‘š+1 (π‘˜) = (𝛼 ̃𝛽 Μƒ)( βˆšπ‘˜2βˆ’4 π‘˜ )( 1 π‘˜ ) 2𝑛 βˆšπ‘˜2βˆ’4 (π›Όπ‘šβˆ’π‘›βˆ’π›½π‘šβˆ’π‘›) βˆšπ‘˜2βˆ’4 , 𝑂𝐻𝑛+1 (π‘˜) π‘‚π»π‘š (π‘˜) βˆ’ 𝑂𝐻𝑛 (π‘˜) π‘‚π»π‘š+1 (π‘˜) = ( 1 π‘˜ ) 2π‘›βˆ’1 𝛼 ̃𝛽 Μƒπ‘‚π‘šβˆ’π‘› (π‘˜) . Thus, the claim is true. In the following theorem we give the Honsberger's identity which includes the π‘˜- Oresme Hybrid numbers. Theorem 6. For positive integers π‘š, 𝑛 the following equation is satisfied. 𝑂𝐻𝑛+π‘š (π‘˜) = π‘˜π‘‚π‘› (π‘˜) π‘‚π»π‘š+1 (π‘˜) βˆ’ 1 π‘˜ π‘‚π‘›βˆ’1 (π‘˜) π‘‚π»π‘š (π‘˜) . (1.17) Proof. To see that the equation in (1.17) is true, we write the value 𝑂𝐻𝑛+π‘š (π‘˜) as follows. 𝑂𝐻𝑛+π‘š (π‘˜) = π‘˜1𝑂𝑛 (π‘˜) + π‘˜2π‘‚π‘›βˆ’1 (π‘˜) (1.18) Let's see that the values π‘˜1 and π‘˜2 are π‘˜1 = π‘˜π‘‚π»π‘š+1 (π‘˜) and π‘˜2 = βˆ’ 1 π‘˜ π‘‚π»π‘š (π‘˜) . If we substitute the Binet formula in equation (1.18) and do the necessary operations, then we get the following equation. π›Όπ‘š+𝑛 𝛼 Μƒ βˆ’ π›½π‘š+𝑛 𝛽 Μƒ = π‘˜1𝛼𝑛 βˆ’ π‘˜1𝛽𝑛 + π‘˜2π›Όπ‘›βˆ’1 βˆ’ π‘˜2π›½π‘›βˆ’1 = π›Όπ‘›βˆ’1(π‘˜1𝛼 + π‘˜2) βˆ’ π‘˜2π›½π‘›βˆ’1(π‘˜1𝛽 + π‘˜2). From the last equality, we can write 𝛼 Μƒπ›Όπ‘š+1 = π‘˜1𝛼 + π‘˜2 (1.19)
  • 8. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 8 𝛽 Μƒπ›½π‘š+1 = π‘˜1𝛽 + π‘˜2 (1.20) By the aid of (1.19) and (1.20) equations, we obtain π‘˜1 = 𝛼 Μƒπ›Όπ‘š+1βˆ’π›½ Μƒπ›½π‘š+1 π›Όβˆ’π›½ = π‘˜π‘‚π»π‘š+1 (π‘˜) (1.21) π‘˜2 = 𝛼 Μƒπ›Όπ‘šβˆ’π›½ Μƒπ›½π‘š π›Όβˆ’π›½ = βˆ’ 1 π‘˜ π‘‚π»π‘š (π‘˜) (1.22) If we substitute these values π‘˜1 and π‘˜2 in the equation (1.18), then we get 𝑂𝐻𝑛+π‘š (π‘˜) = π‘˜π‘‚π‘› (π‘˜) π‘‚π»π‘š+1 (π‘˜) βˆ’ 1 π‘˜ π‘‚π‘›βˆ’1 (π‘˜) π‘‚π»π‘š (π‘˜) which is desired result. Thus, the proof is completed. Now, we give a formula that gives the sum of the first 𝑛 of the π‘˜- Oresme Hybrid numbers in the theorem below. Theorem 7. For the π‘˜-Oresme Hybrid numbers, the following equation is satisfied. βˆ‘ 𝑂𝐻𝑛 (π‘˜) = π‘˜2 (𝑂𝐻1 (π‘˜) βˆ’ 𝑂𝐻𝑛+2 (π‘˜) ). 𝑛 π‘˜=1 (1.23) Proof. By using Binet's formula, βˆ‘ 𝑂𝐻𝑛 (π‘˜) = 𝑛 π‘˜=1 1 βˆšπ‘˜2 βˆ’ 4 [𝛼 Μƒ ( 1 βˆ’ 𝛼𝑛+1 1 βˆ’ 𝛼 ) βˆ’ 𝛽 Μƒ ( 1 βˆ’ 𝛽𝑛+1 1 βˆ’ 𝛽 )] can be written. Also, if the relations between 𝛼 and 𝛽 are used, then βˆ‘ 𝑂𝐻𝑛 (π‘˜) 𝑛 π‘˜=1 = 1 βˆšπ‘˜2 βˆ’ 4 [𝛼 Μƒ βˆ’ 𝛼 ̃𝛽 Μƒ βˆ’ 𝛼 ̃𝛼𝑛+1 + 𝛼 ̃𝛽𝛼𝑛+1 βˆ’ 𝛽 Μƒ + 𝛽 ̃𝛼 + 𝛽 ̃𝛽𝑛+1 βˆ’ 𝛼𝛽 ̃𝛽𝑛+1 ], βˆ‘ 𝑂𝐻𝑛 (π‘˜) 𝑛 π‘˜=1 = 1 βˆšπ‘˜2 βˆ’ 4 [ βˆ’π›Ό ̃𝛼𝑛+2 + 𝛽 ̃𝛽𝑛+2 + 𝛼𝛼 Μƒ βˆ’ 𝛽𝛽 Μƒ 𝛼𝛽 ], βˆ‘ 𝑂𝐻𝑛 (π‘˜) = π‘˜2 (𝑂𝐻1 (π‘˜) βˆ’ 𝑂𝐻𝑛+2 (π‘˜) ) , 𝑛 π‘˜=1 is obtained. Thus, the proof is completed. In the following theorem, we obtained the formula gives the sum of squares of the π‘˜- Oresme Hybrid numbers.
  • 9. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 9 Theorem 8. The sum of squares of the π‘˜- Oresme Hybrid numbers is βˆ‘ (𝑂𝐻𝑛 (π‘˜) ) 2 = βˆ’π‘˜4(𝑂𝐻1 (π‘˜) +(𝑂𝐻𝑑+1 (π‘˜) ) 2 )+𝑂𝐻0 (π‘˜) βˆ’(𝑂𝐻𝑑 (π‘˜) ) 2 βˆ’2( 1βˆ’π‘₯𝑑 1βˆ’π‘₯ )𝛼 ̃𝛽 Μƒ βˆ’1βˆ’2π‘˜2 𝑑 𝑛=1 . (1.24) Proof. Let's denote the sum of the squares with the letter T. (𝑂𝐻1 (π‘˜) ) 2 + (𝑂𝐻2 (π‘˜) ) 2 + (𝑂𝐻3 (π‘˜) ) 2 + β‹― = 𝑇 For each term, the recurrence relation of the π‘˜- Oresme Hybrid numbers is written and the necessary calculations are made for each, and the following equation is obtained. 𝑂𝐻𝑛 (π‘˜) = 𝑂𝐻𝑛+1 (π‘˜) + 1 π‘˜2 π‘‚π»π‘›βˆ’1 (π‘˜) 𝑇 = βˆ‘(𝑂𝐻𝑛 (π‘˜) ) 2 = βˆ‘ [ π‘˜2 𝑂𝐻𝑛+1 (π‘˜) + π‘‚π»π‘›βˆ’1 (π‘˜) π‘˜2 ] 2 , 𝑑 𝑛=1 𝑑 𝑛=1 π‘˜4 𝑇 = π‘˜4 βˆ‘(𝑂𝐻𝑛+1 (π‘˜) ) 2 + βˆ‘(π‘‚π»π‘›βˆ’1 (π‘˜) ) 2 + 2π‘˜2 βˆ‘ 𝑂𝐻𝑛+1 (π‘˜) π‘‚π»π‘›βˆ’1 (π‘˜) 𝑑 𝑛=1 𝑑 𝑛=1 𝑑 𝑛=1 . Here, let's also use the Cassini identity, that is, 𝑂𝐻𝑛+1 (π‘˜) π‘‚π»π‘›βˆ’1 (π‘˜) = (𝑂𝐻𝑛 (π‘˜) ) 2 βˆ’ ( 1 π‘˜ ) 2𝑛 𝛼 ̃𝛽 Μƒ. Then, we get π‘˜4 𝑇 = π‘˜4 (𝑇 βˆ’ (𝑂𝐻1 (π‘˜) ) 2 + (𝑂𝐻𝑑+1 (π‘˜) ) 2 ) + (𝑇 + (𝑂𝐻0 (π‘˜) ) 2 βˆ’ (𝑂𝐻𝑑 (π‘˜) ) 2 ) + 2π‘˜2 βˆ‘ (𝑂𝐻𝑛 (π‘˜) ) 2 βˆ’ ( 1 π‘˜ ) 2𝑛 𝛼 ̃𝛽 Μƒ 𝑑 𝑛=1 , π‘˜4 𝑇 = π‘˜4 (𝑇 βˆ’ (𝑂𝐻1 (π‘˜) ) 2 + (𝑂𝐻𝑑+1 (π‘˜) ) 2 ) + (𝑇 + (𝑂𝐻0 (π‘˜) ) 2 βˆ’ (𝑂𝐻𝑑 (π‘˜) ) 2 ) + 2π‘˜2 𝑇 βˆ’ 2 βˆ‘ (π‘˜)βˆ’2𝑛+2 𝛼 ̃𝛽 Μƒ 𝑑 𝑛=1 , π‘˜4 𝑇 = 𝑇(π‘˜4 + 2π‘˜2 + 1) βˆ’ π‘˜4 (𝑂𝐻1 (π‘˜) ) 2 + π‘˜4 (𝑂𝐻𝑑+1 (π‘˜) ) 2 + (𝑂𝐻0 (π‘˜) ) 2 βˆ’ (𝑂𝐻𝑑 (π‘˜) ) 2 βˆ’ 2 1βˆ’π‘₯𝑑 1βˆ’π‘₯ 𝛼 ̃𝛽 Μƒ. Thus, we obtain 𝑇 = βˆ‘ (𝑂𝐻𝑛 (π‘˜) ) 2 = βˆ’π‘˜4(𝑂𝐻1 (π‘˜) +(𝑂𝐻𝑑+1 (π‘˜) ) 2 )+𝑂𝐻0 (π‘˜) βˆ’(𝑂𝐻𝑑 (π‘˜) ) 2 βˆ’2( 1βˆ’π‘₯𝑑 1βˆ’π‘₯ )𝛼 ̃𝛽 Μƒ βˆ’1βˆ’2π‘˜2 𝑑 𝑛=1 .
  • 10. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 10 In the following theorem, we give the formula of sums of π‘˜- Oresme Hybrid numbers with even and odd indices terms. Theorem 9. The sums of π‘˜- Oresme Hybrid numbers with even and odd indices terms are 𝑖) βˆ‘ 𝑂𝐻2𝑛 (π‘˜) π‘˜ 𝑛=1 = π‘˜2(𝑂𝐻0 βˆ’ 𝑂𝐻2𝑛+2) βˆ’ (π‘‚π»βˆ’1 βˆ’ 𝑂𝐻2𝑛+1). (1.25) 𝑖𝑖) βˆ‘ 𝑂𝐻2𝑛+1 (π‘˜) π‘˜ 𝑛=1 = π‘˜2(𝑂𝐻0 βˆ’ 𝑂𝐻2𝑛+1) βˆ’ (π‘‚π»βˆ’1 βˆ’ 𝑂𝐻2𝑛). (1.26) Proof. i) From the Binet formula of π‘˜- Oresme Hybrid numbers, βˆ‘ 𝑂𝐻2𝑛 (π‘˜) π‘˜ 𝑛=1 = 1 βˆšπ‘˜2 βˆ’ 4 [𝛼 Μƒ βˆ‘ 𝛼2𝑛 βˆ’ π‘˜ 𝑛=1 𝛽 Μƒ βˆ‘ 𝛽2𝑛 π‘˜ 𝑛=1 ], βˆ‘ 𝑂𝐻2𝑛 (π‘˜) π‘˜ 𝑛=1 = 1 βˆšπ‘˜2 βˆ’ 4 [𝛼 Μƒ ( 1 βˆ’ 𝛼2𝑛+2 1 βˆ’ 𝛼 ) βˆ’ 𝛽 Μƒ ( 1 βˆ’ 𝛽2𝑛+2 1 βˆ’ 𝛽 )], is written. By using the relationships 𝛼 + 𝛽 = 1, 𝛼 βˆ’ 𝛽 = βˆšπ‘˜2βˆ’4 π‘˜ , 𝛼𝛽 = 1 π‘˜2 βˆ‘ 𝑂𝐻2𝑛 (π‘˜) π‘˜ 𝑛=1 = 1 βˆšπ‘˜2 βˆ’ 4 [ 𝛼 Μƒ βˆ’ 𝛽 Μƒ βˆ’ (𝛼 ̃𝛽 βˆ’ 𝛽 ̃𝛼) βˆ’ (𝛼 ̃𝛽𝛼2𝑛+2 βˆ’ 𝛽 ̃𝛼𝛽2𝑛+2 ) βˆ’ (𝛼 ̃𝛼2𝑛+2 βˆ’ 𝛽 ̃𝛽2𝑛+2 ) 𝛼𝛽 ], βˆ‘ 𝑂𝐻2𝑛 (π‘˜) π‘˜ 𝑛=1 = π‘˜2 (𝛼 Μƒ βˆ’ 𝛽 Μƒ) βˆšπ‘˜2 βˆ’ 4 βˆ’ (𝛼 Μƒπ›Όβˆ’1 βˆ’ 𝛽 Μƒπ›½βˆ’1 ) βˆšπ‘˜2 βˆ’ 4 βˆ’ (𝛼 ̃𝛼2𝑛+1 βˆ’ 𝛽 ̃𝛽2𝑛+1 ) βˆšπ‘˜2 βˆ’ 4 βˆ’ π‘˜2 (𝛼 ̃𝛼2𝑛+2 βˆ’ 𝛽 ̃𝛽2𝑛+2 ) βˆšπ‘˜2 βˆ’ 4 , βˆ‘ 𝑂𝐻2𝑛 (π‘˜) π‘˜ 𝑛=1 = π‘˜2 (𝑂𝐻0 (π‘˜) βˆ’ 𝑂𝐻2𝑛+2 (π‘˜) ) βˆ’ (π‘‚π»βˆ’1 (π‘˜) βˆ’ 𝑂𝐻2𝑛+1 (π‘˜) ), is obtained. The sum of odd terms of π‘˜- Oresme Hybrid numbers can also be calculated as in the proof of even terms. Thus, the proof is completed. 3. Conclusion In this study, k- Oresme Hybrid numbers are defined and examined. Some of their algebraic properties and applications are introduced. Some useful sum formulas for these newly defined
  • 11. UtilitasMathematica ISSN 0315-3681 Volume 120, 2023 11 numbers are given. In addition, many basic and important identities and equations are obtained by considering the relations between the numbers studied here and Horadam numbers. References [1] Cerda, G. (2012). Matrix methods in Horadam sequences.BoletΓ­n de MatemΓ‘ticas, 19(2), 97- 106. [2] Cerda-Morales,G. (2019). Oresme polynomials and their derivatives. arxiv preprint arXiv:1904.01165. [3] Cook, C.K.: Some sums related to sums of Oresme numbers, in: Applications of Fibonacci Numbers, vol.9, Proceedings of the Tenth International Research Conference on Fibonacci Numbers and their Applications, Kluwer Academic Publishers, 2004, pp.87–99. [4] HalΔ±cΔ±, S., SayΔ±n, E., Gur, Z. B. (2022). On k-Oresme Numbers with Negative Indices. Engineering (ICMASE 2022), 4-7 July 2022, Technical University of Civil Engineering Bucharest, Romania, 56. [5] HalΔ±cΔ±, S., Gur, Z. B. On Some Derivatives of k- Oresme Polynomials, Bulletin of International Mathematical Virtual Institute, (accepted). [6] Horadam, A. F. (1965). Basic properties of a certain generalized sequence of numbers. The Fibonacci Quarterly, 3(3), 161-176. [7] Horadam, A. F. (1967). Special properties of the sequence γ€– wγ€—_n=w_n (a,b;p,q). Fibonacci Quarterly, 5(5), 424-434. [8] Horadam, A. F. (1974). Oresme numbers. Fibonacci Quarterly, 12(3), 267-271. [9] Işbilir, Z., GΓΌrses, N. (2021). Pentanacci and Pentanacci-Lucas hybrid numbers. Journal of Discrete Mathematical Sciences and Cryptography, 1-20. [10] Larcombe, P. J. (2017).Horadam sequences: A surve update and extension. Bulletin of the Institute of Combinatorics and its Applications, Volume 80, pp.99-118. [11] Oresme, N. (1961). Quaestiones super geometriam Euclidis (Vol. 3). Brill Archive. [12] Ozdemir, M. (2018). Introduction to hybrid numbers. Advances in applied Clifford algebras, 28(1), 1-32. [13] Senturk, G. Y., Yuce, N. G. S. (2021). A New Look on Oresme Numbers: Dual-Generalized Complex Component Extension. In Conference Proceedings of Science and (Vol. 4, No. 2, pp. 206-214). [14] Szynal-Liana, A. (2018). The Horadam Hybrid Numbers. Discussiones Mathematicae General Algebra and Applications 38 (2018), 91–98. [15] Szynal-Liana, A., Wioch, I. (2019). The Fibonacci hybrid numbers. Utilitas Mathematica, Vol. 110 (2019). [16] Szynal-Liana, A., WΕ‚och, I. (2019). On Jacobsthal and Jacobsthal-Lucas hybrid numbers. In Annales Mathematicae Silesianae (Vol. 33, pp. 276-283). [17] Szynal-Liana, A., Wloch, I. (2024). Oresme Hybrid Numbers and Hybrationals. Kragujevac Journal of Mathematics, 48(5), 747-753.