The document describes an approach for automatically generating summaries of text documents. It involves preprocessing the input text by tokenizing, removing stop words, and stemming words. It then extracts features from the preprocessed text, such as term frequency-inverse document frequency (tf-idf) values. Sentences are scored based on these features and sentences with higher scores are selected to form the summary. Keywords from the text are also identified using WordNet to help select the most relevant sentences for the summary. The proposed approach aims to generate concise yet meaningful summaries using natural language processing techniques.