This document summarizes several research papers on using support vector machines (SVMs) and other machine learning techniques for fault detection in induction motors. Specifically:
1. It discusses using an artificial immune system-optimized SVM for detecting broken rotor bars and stator faults in induction motors based on motor current data.
2. It describes using wavelet analysis, principal component analysis, and SVM classification to detect faults like frequency variations, unbalanced voltages, and interturn shorts based on motor current spectra.
3. It proposes using dq0 voltage components analyzed with fast Fourier transforms as features for an SVM classifier to detect stator winding shorts, achieving over 98% accuracy.