SlideShare a Scribd company logo
Introduction to antennas
Michel Anciaux / APEX
November 2004
What is an antenna?
• Region of transition between guided and free space propagation
• Concentrates incoming wave onto a sensor (receiving case)
• Launches waves from a guiding structure into space or air
(transmitting case)
• Often part of a signal transmitting system over some distance
• Not limited to electromagnetic waves (e.g. acoustic waves)
Free space electromagnetic wave
Magnetic
field
Electric
field
Direction of
propagation
Magnetic
Field [A/m]
Electric
Field [V/m]
Time [s]
Time [s]
•Disturbance of EM field
•Velocity of light (~300 000 000 m/s)
•E and H fields are orthogonal
•E and H fields are in phase
•Impedance, Z0: 377 ohms
x
y z
EM wave in free space
)
(
0
z
t
j
x e
E
E 
 

2
2
0
0
2
2
1
z
E
t
E x
x







2
2
0
0
2
2
1
z
H
t
H y
y







)
(
0
z
t
j
y e
H
H 
 



2

f



2

f
0
0
1


 
wavelength
Phase constant
frequency
0
0
0



Z
0
0
0
H
E
Z 
Magnetic
field
Electric
field
Direction of
propagation
x
y z
Wave in lossy medium
t
j
z
j
z
t
j
z
x e
e
e
E
e
e
E
E 








 


0
0


 j


Attenuation constant
Phase constant


Propagation constant
Attenuation
increases with z
Phase varies
with z
Periodic time
variation
Power flow
H
E
S





0
2
0
2
2
1
1
2
1
Z
H
Z
E
S y
x
av 

Poynting vector
Average power density
Polarisation of EM wave
Electrical field, E
vertical
horizontal
circular
Reflection, refraction
i
r 
 
)
sin(
)
sin(
2
1
i
t 


 
)
sin(
)
sin( 2
2
1
1
i
t 
 




Reflection
Refraction
if both media are lossless
i
r
E
E


Reflection coefficient: Depends on media, polarisation
of incident wave and angle of incidence.
Reflection and refraction affect polarisation
Guided electromagnetic wave
• Cables
– Used at frequencies below 35 GHz
• Waveguides
– Used between 0.4 GHz to 350 GHz
• Quasi-optical system
– Used above 30 GHz
Guided electromagnetic wave (2)
• TEM wave in cables and quasi-optical systems (same as free space)
• TH,TE and combinations in waveguides
– E or H field component in the direction of propagation
– Wave bounces on the inner walls of the guide
– Lower and upper frequency limits
– Cross section dimensions proportional to wavelength
Rectangular waveguide
Launching of EM wave
Open up the cable and
separate wires
Dipole antenna
Open and flare up
wave guide
Horn
antenna
Transition from guided wave to free space wave
Reciprocity
• Transmission and reception antennas can be used interchangeably
• Medium must be linear, passive and isotropic
• Caveat: Antennas are usually optimised for reception or transmission
not both !
Basic antenna parameters
• Radiation pattern
• Beam area and beam efficiency
• Effective aperture and aperture efficiency
• Directivity and gain
• Radiation resistance
Radiation pattern
•Far field patterns
•Field intensity decreases with increasing distance, as 1/r
•Radiated power density decreases as 1/r2
•Pattern (shape) independent on distance
•Usually shown only in principal planes

2
D
2
r
:
field
Far  D : largest dimension of the antenna
e.g. r > 220 km for APEX at 1.3 mm !
Radiation pattern (2)
)
,
( 


E )
,
( 


E
2
0
2
2
)
,
(
)
,
(
)
,
( r
Z
E
E
P





 
 

Field patterns
max
)
,
(
)
,
(
)
,
(






P
P
Pn 
+ phase patterns
)
,
( 

 )
,
( 


HPBW: half power beam width
Beam area and beam efficiency

  





 







4
2
0 0
)
,
(
)
sin(
)
,
( d
P
d
d
P n
n
A
Main beam area
Minor lobes area


  d
P
beam
Main
n
M )
,
( 



  d
P
lobes
or
n
m
min
)
,
( 

m
M
A 




Beam area
A
M
M




Main beam efficiency
Effective aperture and aperture efficiency
Receiving antenna extracts power from incident wave
e
in
rec A
S
P 

For some antennas, there is a clear physical aperture
and an aperture efficiency can be defined
p
e
ap
A
A


A
e
A


2

Aperture and beam area are linked:
Directivity and gain
average
P
P
D
)
,
(
)
,
( max





A
n d
P
D










4
)
,
(
4
4
Isotropic antenna: 
4

A 1

D
2
4

 e
A
D 
From pattern
From aperture
only
losses
ohmic
to
due
lower than
is
)
1
(0
factor
efficiency
Gain
D
G
k
k
D
k
G
g
g
g




Directivity
Radiation resistance
• Antenna presents an impedance at its terminals
A
A
A jX
R
Z 

•Resistive part is radiation resistance plus loss resistance
L
R
A R
R
R 

The radiation resistance does not correspond to a real resistor
present in the antenna but to the resistance of space coupled
via the beam to the antenna terminals.
Types of Antenna
• Wire
• Aperture
• Arrays
Wire antenna
• Dipole
• Loop
• Folded dipoles
• Helical antenna
• Yagi (array of dipoles)
• Corner reflector
• Many more types
Horizontal dipole
Wire antenna - resonance
• Many wire antennas (but not all) are used at or near resonance
• Some times it is not practical to built the whole resonant length
• The physical length can be shortened using loading techniques
– Inductive load: e.g. center, base or top coil (usually adjustable)
– Capacitive load: e.g. capacitance “hats” (flat top at one or both ends)
Yagi-Uda
Elements Gain
dBi
Gain
dBd
3 7.5 5.5
4 8.5 6.5
5 10 8
6 11.5 9.5
7 12.5 10.5
8 13.5 11.5
Aperture antenna
• Collect power over a well defined aperture
• Large compared to wavelength
• Various types:
– Reflector antenna
– Horn antenna
– Lens
Reflector antenna
• Shaped reflector: parabolic dish, cylindrical antenna …
– Reflector acts as a large collecting area and concentrates power onto
a focal region where the feed is located
• Combined optical systems: Cassegrain, Nasmyth …
– Two (Cassegrain) or three (Nasmyth) mirrors are used to bring the focus
to a location where the feed including the transmitter/receiver can be
installed more easily.
Cassegrain antenna
• Less prone to back scatter than simple parabolic antenna
• Greater beam steering possibility: secondary mirror motion
amplified by optical system
• Much more compact for a given f/D ratio
Cassegrain antenna (2)
• Gain depends on diameter, wavelength, illumination
• Effective aperture is limited by surface accuracy, blockage
• Scale plate depends on equivalent focal length
• Loss in aperture efficiency due to:
– Tapered illumination
– Spillover (illumination does not stop at the edge of the dish)
– Blockage of secondary mirror, support legs
– Surface irregularities (effect depends on wavelength)
deviation
surface
of
rms
4
cos
2







 



g
K
96
.
0
:
efficiency
blockage
94
.
0
:
efficiency
spillover
87
.
0
:
efficiency
taper
b
s
t






At the SEST:
Horn antenna
• Rectangular or circular waveguide flared up
• Spherical wave fronts from phase centre
• Flare angle and aperture determine gain
Short dipole
)
1
1
(
2
)
cos(
3
2
0
)
(
0
r
j
cr
le
I
E
r
t
j
r








)
1
1
(
4
)
sin(
3
2
2
0
)
(
0
r
j
cr
r
c
j
le
I
E
r
t
j






 



)
1
(
4
)
sin(
2
)
(
0
r
cr
j
le
I
H
r
t
j









2
r
1
as
varies
P
r
1
as
vary
H
E
,
2




and
r
for 
•Length much shorter than wavelength
•Current constant along the length
•Near dipole power is mostly reactive
•As r increases Er vanishes, E and H gradually become in phase


 


l
r
e
I
j
E
r
t
j
)
sin(
60 )
(
0


Short dipole pattern
Short dipole power pattern
X Y
 Z

( )
.
0
30
60
90
120
150
180
210
240
270
300
330
0.8
0.6
0.4
0.2
0
PN

.
Short dipole power pattern
X Y
 Z

( )
.
3
8

A
5
.
1

D
2
2
80 








l
Rr
Thin wire antenna
•Wire diameter is small compared to wavelength
•Current distribution along the wire is no longer constant
dipole
fed
-
centre
2
2
sin
)
(
e.g. 0 














 y
L
I
y
I


•Using field equation for short dipole,
replace the constant current with actual distribution
 
 
point
feed
at
current
I
dipole,
fed
-
centre
sin
2
cos
2
cos
cos
60
0
)
(
0



































L
L
r
e
I
j
E
r
t
j
Thin wire pattern
thin wire centre fed dipole power pattern
X Y
 Z

( )
l 1

2

 A 7.735
 D 1.625

thin wire centre fed dipole power pattern
X Y
 Z

( )
l 1.395

 A 5.097
 D 2.466

thin wire centre fed dipole power pattern
X Y
 Z

( )
l 10

 A 1.958
 D 6.417

0
30
60
90
120
150
180
210
240
270
300
330
Power pattern of 2 isotropic sources
Pn

d 1

2
  0deg

0
30
60
90
120
150
180
210
240
270
300
330
Power pattern of 2 isotropic sources
Pn

d 1

2
  90
 deg

0
30
60
90
120
150
180
210
240
270
300
330
1.5
1
0.5
0
Field Pattern of 2 isotropic sources
E i
 
i
0
30
60
90
120
150
180
210
240
270
300
330
Power pattern of 2 isotropic sources
Pn

d 1

2
  45
 deg

0
30
60
90
120
150
180
210
240
270
300
330
1.5
1
0.5
0
Field Pattern of 2 isotropic sources
E i
 
i
0
30
60
90
120
150
180
210
240
270
300
330
Power pattern of 2 isotropic sources
Pn

d 1

2
  135
 deg

Array of isotropic point sources – beam shaping

x
y
d
Array of isotropic point sources – centre-fed array
0
30
60
90
120
150
180
210
240
270
300
330
0.8
0.6
0.4
0.2
0
Field Pattern of n isotropic sources
Efi
i
n 8
  0deg
 d 0.5

0
30
60
90
120
150
180
210
240
270
300
330
0.8
0.6
0.4
0.2
0
Field Pattern of n isotropic sources
Efi
i
n 3
  67.5
 deg
 d 0.5






 
 )
cos(
2
)
(
d
 
2
/
sin
2
sin
1
)
(










n
n
En

x
y
d
 
 
0
Array of isotropic point sources – end-fired
0
30
60
90
120
150
180
210
240
270
300
330
0.8
0.6
0.4
0.2
0
Field End-fired, n isotropic sources
Efi
i
n 10
  108
 deg
 d 1

4

end-fired array,n elements power pattern
X Y
 Z

( )
n 10
 d 0.25

 A 0.713
 D 17.627

 
 
n
d 




 

 1
cos
2
)
(



















2
sin
2
sin
2
sin
)
(




n
n
En

x
y
d

 

0
Pattern multiplication
The total field pattern of an array of non-isotropic but similar point sources
is the product of the individual source pattern and the pattern of an array of
isotropic point sources having the same locations,relative amplitudes and
phases as the non-isotropic point sources.
0
30
60
90
120
150
180
210
240
270
300
330
0.8
0.6
0.4
0.2
0
Primary field pattern
Ef1i
i
n 2
 1 104
 deg
 d1 0.3

0
30
60
90
120
150
180
210
240
270
300
330
0.8
0.6
0.4
0.2
0
Secondary field pattern
Ef2i
i
n 2
 2 180deg
 d2 0.6

0
30
60
90
120
150
180
210
240
270
300
330
0.8
0.6
0.4
0.2
0
Total field pattern
Efi
i
Total pattern of two primary sources
(each an array of two isotropic sources)
replacing two isotropic sources (4
sources in total).
Patterns from line and area distributions
•When the number of discrete elements in an array becomes large,
it may be easier to consider the line or the aperture distribution as
continuous.
• line source:
line
to
normal
anglefrom
length,
l
,
)
sin(
u
)
(
2
)
(
1
1



 





l
dx
e
x
f
l
u
E jux
•2-D aperture source:
       
 
on
distributi
field
aperture
)
,
(
)
,
(
, sin
cos
sin

 

y
x
f
dy
dx
e
y
x
f
E
aperture
y
x
j 





Fourier transform of aperture illumination
Diffraction limit
only
estimate
rough
D
HPBW


10 5 0 5 10
0.6
0.4
0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Ep
xp
300 240 180 120 60 0 60 120 180 240 300
50
45
40
35
30
25
20
15
10
5
0
Far field
angular distance [arcsec]
Power
pattern
[dB]
3

10 5 0 5 10
0.6
0.4
0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Ep
xp
300 240 180 120 60 0 60 120 180 240 300
50
45
40
35
30
25
20
15
10
5
0
Far field
angular distance [arcsec]
Power
pattern
[dB]
3

Predicted power pattern - SEST 1.3 mm- off axis 130 mm
EFN
.
Far field pattern from FFT of Aperture field distribution
Predicted power pattern - flat illumination
EFN
.
Predicted power pattern - SEST 1.3 mm- on axis
EFN
.
Effect of edge taper
Predicted power pattern -16dB taper
EFN
.
Predicted power pattern -8dB taper
EFN
.
dBi versus dBd
•dBi indicates gain vs. isotropic antenna
•Isotropic antenna radiates equally well in all directions,
spherical pattern
•dBd indicates gain vs. reference half-wavelength dipole
•Dipole has a doughnut shaped pattern with a gain of 2.15 dBi
dB
dBd
dBi 15
.
2


Feed and line matching
•The antenna impedance must be matched by the line feeding
it if maximum power transfer is to be achieved
•The line impedance should then be the complex conjugate of
that of the antenna
•Most feed line are essentially resistive
Signal transmission, radar echo
,
,
, 
t
t
et G
P
A
• Receiving antenna
• Transmitting antenna
r
r
er G
P
A ,
,
t
r
t
r
t
t
r P
G
G
r
G
r
P
G
P
2
2
2
4
4
4















 







 4
3
2
2
2
2
4
4
4
4 r
G
G
P
G
r
r
P
G
P r
t
t
r
t
t
r 



Radar return
S, power density Effective receiving area
S, power density Effective receiving area
Reflected
power density
(area)
section
cross
radar


Antenna temperature
• Power received from antenna as from a black body or the radiation
resitance at temperature Ta
The end

More Related Content

Similar to Introduction_to_antennas.ppt

Anten_theor_basics.pptx
Anten_theor_basics.pptxAnten_theor_basics.pptx
Anten_theor_basics.pptx
naveen858031
 
Antenna
AntennaAntenna
Various types of antenna used for transmitting and receiving
Various types of antenna used for transmitting and receivingVarious types of antenna used for transmitting and receiving
Various types of antenna used for transmitting and receiving
Jay Baria
 
Antenna arrays
Antenna arraysAntenna arrays
Antenna arrays
AJAL A J
 
Design of a 600 mhz ddipole antenna
Design of a 600 mhz ddipole antennaDesign of a 600 mhz ddipole antenna
Design of a 600 mhz ddipole antenna
Sabrina Chowdhury
 
Types of microstrip antenna
Types of microstrip antenna Types of microstrip antenna
Types of microstrip antenna
NupurRathi7
 
Antenna efficency lecture course chapter 3.pdf
Antenna  efficency lecture course chapter 3.pdfAntenna  efficency lecture course chapter 3.pdf
Antenna efficency lecture course chapter 3.pdf
AbrahamGadissa
 
Antenna
AntennaAntenna
Antenna
Izah Asmadi
 
Group 5 Wireless Oower
Group 5 Wireless OowerGroup 5 Wireless Oower
Group 5 Wireless OowerLalit Garg
 
Antenna presentation PPT
Antenna presentation PPTAntenna presentation PPT
Antenna presentation PPT
Sachin Kadam
 
antennapresentation-200118165313.pdf
antennapresentation-200118165313.pdfantennapresentation-200118165313.pdf
antennapresentation-200118165313.pdf
FirstknightPhyo
 
Typical Antennas1.ppt
Typical Antennas1.pptTypical Antennas1.ppt
Typical Antennas1.ppt
RVPrasadAssistantPro
 
Dipole antenna
Dipole antennaDipole antenna
Dipole antenna
mahendra v
 
144533007 17314480-antena-theory-basics-2
144533007 17314480-antena-theory-basics-2144533007 17314480-antena-theory-basics-2
144533007 17314480-antena-theory-basics-2
debyrahmat
 
5 anten theor_basics
5 anten theor_basics5 anten theor_basics
5 anten theor_basics
indika withanage
 
Antennas Part I slides.pdf
Antennas Part I slides.pdfAntennas Part I slides.pdf
Antennas Part I slides.pdf
PhumzileMalindi
 
Antenna course sofia_2015_lisi_lesson1_v03
Antenna course sofia_2015_lisi_lesson1_v03Antenna course sofia_2015_lisi_lesson1_v03
Antenna course sofia_2015_lisi_lesson1_v03
Marco Lisi
 

Similar to Introduction_to_antennas.ppt (20)

Presentation
PresentationPresentation
Presentation
 
Anten_theor_basics.pptx
Anten_theor_basics.pptxAnten_theor_basics.pptx
Anten_theor_basics.pptx
 
AWP PPT.pdf
AWP PPT.pdfAWP PPT.pdf
AWP PPT.pdf
 
Antenna
AntennaAntenna
Antenna
 
Various types of antenna used for transmitting and receiving
Various types of antenna used for transmitting and receivingVarious types of antenna used for transmitting and receiving
Various types of antenna used for transmitting and receiving
 
Antenna arrays
Antenna arraysAntenna arrays
Antenna arrays
 
Design of a 600 mhz ddipole antenna
Design of a 600 mhz ddipole antennaDesign of a 600 mhz ddipole antenna
Design of a 600 mhz ddipole antenna
 
Types of microstrip antenna
Types of microstrip antenna Types of microstrip antenna
Types of microstrip antenna
 
Antenna efficency lecture course chapter 3.pdf
Antenna  efficency lecture course chapter 3.pdfAntenna  efficency lecture course chapter 3.pdf
Antenna efficency lecture course chapter 3.pdf
 
Antenna
AntennaAntenna
Antenna
 
Group 5 Wireless Oower
Group 5 Wireless OowerGroup 5 Wireless Oower
Group 5 Wireless Oower
 
Antenna presentation PPT
Antenna presentation PPTAntenna presentation PPT
Antenna presentation PPT
 
antennapresentation-200118165313.pdf
antennapresentation-200118165313.pdfantennapresentation-200118165313.pdf
antennapresentation-200118165313.pdf
 
Typical Antennas1.ppt
Typical Antennas1.pptTypical Antennas1.ppt
Typical Antennas1.ppt
 
Basic antenas
Basic antenasBasic antenas
Basic antenas
 
Dipole antenna
Dipole antennaDipole antenna
Dipole antenna
 
144533007 17314480-antena-theory-basics-2
144533007 17314480-antena-theory-basics-2144533007 17314480-antena-theory-basics-2
144533007 17314480-antena-theory-basics-2
 
5 anten theor_basics
5 anten theor_basics5 anten theor_basics
5 anten theor_basics
 
Antennas Part I slides.pdf
Antennas Part I slides.pdfAntennas Part I slides.pdf
Antennas Part I slides.pdf
 
Antenna course sofia_2015_lisi_lesson1_v03
Antenna course sofia_2015_lisi_lesson1_v03Antenna course sofia_2015_lisi_lesson1_v03
Antenna course sofia_2015_lisi_lesson1_v03
 

More from RAVIKUMAR Digital Signal Processing

1- Main Principles of Radiation_en.pptx
1- Main Principles of Radiation_en.pptx1- Main Principles of Radiation_en.pptx
1- Main Principles of Radiation_en.pptx
RAVIKUMAR Digital Signal Processing
 
Antennas-p-3.ppt
Antennas-p-3.pptAntennas-p-3.ppt
wirelesstech1.ppt
wirelesstech1.pptwirelesstech1.ppt
Antennas-p-3 (1).ppt
Antennas-p-3 (1).pptAntennas-p-3 (1).ppt
SECX1029-UNIT-4.PDF
SECX1029-UNIT-4.PDFSECX1029-UNIT-4.PDF
06-antennachar.pdf
06-antennachar.pdf06-antennachar.pdf
22_LectureOutline.pptx
22_LectureOutline.pptx22_LectureOutline.pptx
22_LectureOutline.pptx
RAVIKUMAR Digital Signal Processing
 
AN102_ANTENNA_DESIGN_FEB_11.pdf
AN102_ANTENNA_DESIGN_FEB_11.pdfAN102_ANTENNA_DESIGN_FEB_11.pdf
AN102_ANTENNA_DESIGN_FEB_11.pdf
RAVIKUMAR Digital Signal Processing
 
LICA Question Bank.pdf
LICA Question Bank.pdfLICA Question Bank.pdf
LICA Question Bank.pdf
RAVIKUMAR Digital Signal Processing
 
II-II ECE_LICA_Assignment-2.pdf
II-II ECE_LICA_Assignment-2.pdfII-II ECE_LICA_Assignment-2.pdf
II-II ECE_LICA_Assignment-2.pdf
RAVIKUMAR Digital Signal Processing
 
P1,2 C,D_CyS_IRAVIKUMAR_28.01.2022.docx
P1,2 C,D_CyS_IRAVIKUMAR_28.01.2022.docxP1,2 C,D_CyS_IRAVIKUMAR_28.01.2022.docx
P1,2 C,D_CyS_IRAVIKUMAR_28.01.2022.docx
RAVIKUMAR Digital Signal Processing
 

More from RAVIKUMAR Digital Signal Processing (20)

III-1ece.pdf
III-1ece.pdfIII-1ece.pdf
III-1ece.pdf
 
1- Main Principles of Radiation_en.pptx
1- Main Principles of Radiation_en.pptx1- Main Principles of Radiation_en.pptx
1- Main Principles of Radiation_en.pptx
 
AWP.pptx
AWP.pptxAWP.pptx
AWP.pptx
 
Antennas-p-3.ppt
Antennas-p-3.pptAntennas-p-3.ppt
Antennas-p-3.ppt
 
wirelesstech1.ppt
wirelesstech1.pptwirelesstech1.ppt
wirelesstech1.ppt
 
Antennas-p-3 (1).ppt
Antennas-p-3 (1).pptAntennas-p-3 (1).ppt
Antennas-p-3 (1).ppt
 
lecture 2.ppt
lecture 2.pptlecture 2.ppt
lecture 2.ppt
 
asa.ppt
asa.pptasa.ppt
asa.ppt
 
SECX1029-UNIT-4.PDF
SECX1029-UNIT-4.PDFSECX1029-UNIT-4.PDF
SECX1029-UNIT-4.PDF
 
06-antennachar.pdf
06-antennachar.pdf06-antennachar.pdf
06-antennachar.pdf
 
antenna.ppt
antenna.pptantenna.ppt
antenna.ppt
 
22_LectureOutline.pptx
22_LectureOutline.pptx22_LectureOutline.pptx
22_LectureOutline.pptx
 
901721_ch1.ppt
901721_ch1.ppt901721_ch1.ppt
901721_ch1.ppt
 
ch3.pdf
ch3.pdfch3.pdf
ch3.pdf
 
Chapt-03.ppt
Chapt-03.pptChapt-03.ppt
Chapt-03.ppt
 
AN102_ANTENNA_DESIGN_FEB_11.pdf
AN102_ANTENNA_DESIGN_FEB_11.pdfAN102_ANTENNA_DESIGN_FEB_11.pdf
AN102_ANTENNA_DESIGN_FEB_11.pdf
 
ACO Ch6.pptx
ACO Ch6.pptxACO Ch6.pptx
ACO Ch6.pptx
 
LICA Question Bank.pdf
LICA Question Bank.pdfLICA Question Bank.pdf
LICA Question Bank.pdf
 
II-II ECE_LICA_Assignment-2.pdf
II-II ECE_LICA_Assignment-2.pdfII-II ECE_LICA_Assignment-2.pdf
II-II ECE_LICA_Assignment-2.pdf
 
P1,2 C,D_CyS_IRAVIKUMAR_28.01.2022.docx
P1,2 C,D_CyS_IRAVIKUMAR_28.01.2022.docxP1,2 C,D_CyS_IRAVIKUMAR_28.01.2022.docx
P1,2 C,D_CyS_IRAVIKUMAR_28.01.2022.docx
 

Recently uploaded

English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
BrazilAccount1
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
gestioneergodomus
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 

Recently uploaded (20)

English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 

Introduction_to_antennas.ppt

  • 1. Introduction to antennas Michel Anciaux / APEX November 2004
  • 2. What is an antenna? • Region of transition between guided and free space propagation • Concentrates incoming wave onto a sensor (receiving case) • Launches waves from a guiding structure into space or air (transmitting case) • Often part of a signal transmitting system over some distance • Not limited to electromagnetic waves (e.g. acoustic waves)
  • 3. Free space electromagnetic wave Magnetic field Electric field Direction of propagation Magnetic Field [A/m] Electric Field [V/m] Time [s] Time [s] •Disturbance of EM field •Velocity of light (~300 000 000 m/s) •E and H fields are orthogonal •E and H fields are in phase •Impedance, Z0: 377 ohms x y z
  • 4. EM wave in free space ) ( 0 z t j x e E E     2 2 0 0 2 2 1 z E t E x x        2 2 0 0 2 2 1 z H t H y y        ) ( 0 z t j y e H H       2  f    2  f 0 0 1     wavelength Phase constant frequency 0 0 0    Z 0 0 0 H E Z  Magnetic field Electric field Direction of propagation x y z
  • 5. Wave in lossy medium t j z j z t j z x e e e E e e E E              0 0    j   Attenuation constant Phase constant   Propagation constant Attenuation increases with z Phase varies with z Periodic time variation
  • 6. Power flow H E S      0 2 0 2 2 1 1 2 1 Z H Z E S y x av   Poynting vector Average power density
  • 7. Polarisation of EM wave Electrical field, E vertical horizontal circular
  • 8. Reflection, refraction i r    ) sin( ) sin( 2 1 i t      ) sin( ) sin( 2 2 1 1 i t        Reflection Refraction if both media are lossless i r E E   Reflection coefficient: Depends on media, polarisation of incident wave and angle of incidence. Reflection and refraction affect polarisation
  • 9. Guided electromagnetic wave • Cables – Used at frequencies below 35 GHz • Waveguides – Used between 0.4 GHz to 350 GHz • Quasi-optical system – Used above 30 GHz
  • 10. Guided electromagnetic wave (2) • TEM wave in cables and quasi-optical systems (same as free space) • TH,TE and combinations in waveguides – E or H field component in the direction of propagation – Wave bounces on the inner walls of the guide – Lower and upper frequency limits – Cross section dimensions proportional to wavelength
  • 12. Launching of EM wave Open up the cable and separate wires Dipole antenna Open and flare up wave guide Horn antenna
  • 13. Transition from guided wave to free space wave
  • 14. Reciprocity • Transmission and reception antennas can be used interchangeably • Medium must be linear, passive and isotropic • Caveat: Antennas are usually optimised for reception or transmission not both !
  • 15. Basic antenna parameters • Radiation pattern • Beam area and beam efficiency • Effective aperture and aperture efficiency • Directivity and gain • Radiation resistance
  • 16. Radiation pattern •Far field patterns •Field intensity decreases with increasing distance, as 1/r •Radiated power density decreases as 1/r2 •Pattern (shape) independent on distance •Usually shown only in principal planes  2 D 2 r : field Far  D : largest dimension of the antenna e.g. r > 220 km for APEX at 1.3 mm !
  • 17. Radiation pattern (2) ) , (    E ) , (    E 2 0 2 2 ) , ( ) , ( ) , ( r Z E E P           Field patterns max ) , ( ) , ( ) , (       P P Pn  + phase patterns ) , (    ) , (    HPBW: half power beam width
  • 18. Beam area and beam efficiency                   4 2 0 0 ) , ( ) sin( ) , ( d P d d P n n A Main beam area Minor lobes area     d P beam Main n M ) , (       d P lobes or n m min ) , (   m M A      Beam area A M M     Main beam efficiency
  • 19. Effective aperture and aperture efficiency Receiving antenna extracts power from incident wave e in rec A S P   For some antennas, there is a clear physical aperture and an aperture efficiency can be defined p e ap A A   A e A   2  Aperture and beam area are linked:
  • 20. Directivity and gain average P P D ) , ( ) , ( max      A n d P D           4 ) , ( 4 4 Isotropic antenna:  4  A 1  D 2 4   e A D  From pattern From aperture only losses ohmic to due lower than is ) 1 (0 factor efficiency Gain D G k k D k G g g g     Directivity
  • 21. Radiation resistance • Antenna presents an impedance at its terminals A A A jX R Z   •Resistive part is radiation resistance plus loss resistance L R A R R R   The radiation resistance does not correspond to a real resistor present in the antenna but to the resistance of space coupled via the beam to the antenna terminals.
  • 22. Types of Antenna • Wire • Aperture • Arrays
  • 23. Wire antenna • Dipole • Loop • Folded dipoles • Helical antenna • Yagi (array of dipoles) • Corner reflector • Many more types Horizontal dipole
  • 24. Wire antenna - resonance • Many wire antennas (but not all) are used at or near resonance • Some times it is not practical to built the whole resonant length • The physical length can be shortened using loading techniques – Inductive load: e.g. center, base or top coil (usually adjustable) – Capacitive load: e.g. capacitance “hats” (flat top at one or both ends)
  • 25. Yagi-Uda Elements Gain dBi Gain dBd 3 7.5 5.5 4 8.5 6.5 5 10 8 6 11.5 9.5 7 12.5 10.5 8 13.5 11.5
  • 26. Aperture antenna • Collect power over a well defined aperture • Large compared to wavelength • Various types: – Reflector antenna – Horn antenna – Lens
  • 27. Reflector antenna • Shaped reflector: parabolic dish, cylindrical antenna … – Reflector acts as a large collecting area and concentrates power onto a focal region where the feed is located • Combined optical systems: Cassegrain, Nasmyth … – Two (Cassegrain) or three (Nasmyth) mirrors are used to bring the focus to a location where the feed including the transmitter/receiver can be installed more easily.
  • 28. Cassegrain antenna • Less prone to back scatter than simple parabolic antenna • Greater beam steering possibility: secondary mirror motion amplified by optical system • Much more compact for a given f/D ratio
  • 29. Cassegrain antenna (2) • Gain depends on diameter, wavelength, illumination • Effective aperture is limited by surface accuracy, blockage • Scale plate depends on equivalent focal length • Loss in aperture efficiency due to: – Tapered illumination – Spillover (illumination does not stop at the edge of the dish) – Blockage of secondary mirror, support legs – Surface irregularities (effect depends on wavelength) deviation surface of rms 4 cos 2             g K 96 . 0 : efficiency blockage 94 . 0 : efficiency spillover 87 . 0 : efficiency taper b s t       At the SEST:
  • 30. Horn antenna • Rectangular or circular waveguide flared up • Spherical wave fronts from phase centre • Flare angle and aperture determine gain
  • 31. Short dipole ) 1 1 ( 2 ) cos( 3 2 0 ) ( 0 r j cr le I E r t j r         ) 1 1 ( 4 ) sin( 3 2 2 0 ) ( 0 r j cr r c j le I E r t j            ) 1 ( 4 ) sin( 2 ) ( 0 r cr j le I H r t j          2 r 1 as varies P r 1 as vary H E , 2     and r for  •Length much shorter than wavelength •Current constant along the length •Near dipole power is mostly reactive •As r increases Er vanishes, E and H gradually become in phase       l r e I j E r t j ) sin( 60 ) ( 0  
  • 32. Short dipole pattern Short dipole power pattern X Y  Z  ( ) . 0 30 60 90 120 150 180 210 240 270 300 330 0.8 0.6 0.4 0.2 0 PN  . Short dipole power pattern X Y  Z  ( ) . 3 8  A 5 . 1  D 2 2 80          l Rr
  • 33. Thin wire antenna •Wire diameter is small compared to wavelength •Current distribution along the wire is no longer constant dipole fed - centre 2 2 sin ) ( e.g. 0                 y L I y I   •Using field equation for short dipole, replace the constant current with actual distribution     point feed at current I dipole, fed - centre sin 2 cos 2 cos cos 60 0 ) ( 0                                    L L r e I j E r t j
  • 34. Thin wire pattern thin wire centre fed dipole power pattern X Y  Z  ( ) l 1  2   A 7.735  D 1.625  thin wire centre fed dipole power pattern X Y  Z  ( ) l 1.395   A 5.097  D 2.466  thin wire centre fed dipole power pattern X Y  Z  ( ) l 10   A 1.958  D 6.417 
  • 35. 0 30 60 90 120 150 180 210 240 270 300 330 Power pattern of 2 isotropic sources Pn  d 1  2   0deg  0 30 60 90 120 150 180 210 240 270 300 330 Power pattern of 2 isotropic sources Pn  d 1  2   90  deg  0 30 60 90 120 150 180 210 240 270 300 330 1.5 1 0.5 0 Field Pattern of 2 isotropic sources E i   i 0 30 60 90 120 150 180 210 240 270 300 330 Power pattern of 2 isotropic sources Pn  d 1  2   45  deg  0 30 60 90 120 150 180 210 240 270 300 330 1.5 1 0.5 0 Field Pattern of 2 isotropic sources E i   i 0 30 60 90 120 150 180 210 240 270 300 330 Power pattern of 2 isotropic sources Pn  d 1  2   135  deg  Array of isotropic point sources – beam shaping  x y d
  • 36. Array of isotropic point sources – centre-fed array 0 30 60 90 120 150 180 210 240 270 300 330 0.8 0.6 0.4 0.2 0 Field Pattern of n isotropic sources Efi i n 8   0deg  d 0.5  0 30 60 90 120 150 180 210 240 270 300 330 0.8 0.6 0.4 0.2 0 Field Pattern of n isotropic sources Efi i n 3   67.5  deg  d 0.5          ) cos( 2 ) ( d   2 / sin 2 sin 1 ) (           n n En  x y d     0
  • 37. Array of isotropic point sources – end-fired 0 30 60 90 120 150 180 210 240 270 300 330 0.8 0.6 0.4 0.2 0 Field End-fired, n isotropic sources Efi i n 10   108  deg  d 1  4  end-fired array,n elements power pattern X Y  Z  ( ) n 10  d 0.25   A 0.713  D 17.627      n d          1 cos 2 ) (                    2 sin 2 sin 2 sin ) (     n n En  x y d     0
  • 38. Pattern multiplication The total field pattern of an array of non-isotropic but similar point sources is the product of the individual source pattern and the pattern of an array of isotropic point sources having the same locations,relative amplitudes and phases as the non-isotropic point sources. 0 30 60 90 120 150 180 210 240 270 300 330 0.8 0.6 0.4 0.2 0 Primary field pattern Ef1i i n 2  1 104  deg  d1 0.3  0 30 60 90 120 150 180 210 240 270 300 330 0.8 0.6 0.4 0.2 0 Secondary field pattern Ef2i i n 2  2 180deg  d2 0.6  0 30 60 90 120 150 180 210 240 270 300 330 0.8 0.6 0.4 0.2 0 Total field pattern Efi i Total pattern of two primary sources (each an array of two isotropic sources) replacing two isotropic sources (4 sources in total).
  • 39. Patterns from line and area distributions •When the number of discrete elements in an array becomes large, it may be easier to consider the line or the aperture distribution as continuous. • line source: line to normal anglefrom length, l , ) sin( u ) ( 2 ) ( 1 1           l dx e x f l u E jux •2-D aperture source:           on distributi field aperture ) , ( ) , ( , sin cos sin     y x f dy dx e y x f E aperture y x j      
  • 40. Fourier transform of aperture illumination Diffraction limit only estimate rough D HPBW   10 5 0 5 10 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Ep xp 300 240 180 120 60 0 60 120 180 240 300 50 45 40 35 30 25 20 15 10 5 0 Far field angular distance [arcsec] Power pattern [dB] 3  10 5 0 5 10 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Ep xp 300 240 180 120 60 0 60 120 180 240 300 50 45 40 35 30 25 20 15 10 5 0 Far field angular distance [arcsec] Power pattern [dB] 3 
  • 41. Predicted power pattern - SEST 1.3 mm- off axis 130 mm EFN . Far field pattern from FFT of Aperture field distribution Predicted power pattern - flat illumination EFN . Predicted power pattern - SEST 1.3 mm- on axis EFN .
  • 42. Effect of edge taper Predicted power pattern -16dB taper EFN . Predicted power pattern -8dB taper EFN .
  • 43. dBi versus dBd •dBi indicates gain vs. isotropic antenna •Isotropic antenna radiates equally well in all directions, spherical pattern •dBd indicates gain vs. reference half-wavelength dipole •Dipole has a doughnut shaped pattern with a gain of 2.15 dBi dB dBd dBi 15 . 2  
  • 44. Feed and line matching •The antenna impedance must be matched by the line feeding it if maximum power transfer is to be achieved •The line impedance should then be the complex conjugate of that of the antenna •Most feed line are essentially resistive
  • 45. Signal transmission, radar echo , , ,  t t et G P A • Receiving antenna • Transmitting antenna r r er G P A , , t r t r t t r P G G r G r P G P 2 2 2 4 4 4                          4 3 2 2 2 2 4 4 4 4 r G G P G r r P G P r t t r t t r     Radar return S, power density Effective receiving area S, power density Effective receiving area Reflected power density (area) section cross radar  
  • 46. Antenna temperature • Power received from antenna as from a black body or the radiation resitance at temperature Ta