SlideShare a Scribd company logo
Introduction into Mechanical Design -
Reverse Engineering
Agenda
• Introduction
• Design Process
• Marketing analysis
• Brainstorming
• Preliminary design
• Design review
• Detailed Design
• Design Evaluation
• Iterations
• Manufacturing
• Design for Manufacturing / Assembly
• Design for Environment
• Reverse Engineering
• Manufacturing trends in the research sector
• IET Inspec Direct Database
• IET Inspec Analytics
• IET digital library
Design Process
Marketing
analysis Brainstorming
Preliminary
Design
Design
Review
Detailed
Design
Design
Evaluation
Iterations /
Optimization
Manufacturing
Marketing analysis
• Customer needs
• Budget
• Design restrictions
• Specifications
• Problem definition
Brainstorming
1.Set a time limit.
2.Begin with a target problem/brief.
3.Refrain from judgment/criticism.
4.Encourage strange ideas.
5.Aim for quantity.
6.Build on others’ ideas.
7.Allow one conversation at a time.
8.Use a Decision matrix
Preliminary Design
Preliminary design
The preliminary design, or high-level design includes, often bridges a gap between
design conception and detailed design, particularly in cases where the level of
conceptualization achieved during ideation is not sufficient for full evaluation. So
in this task, the overall system configuration is defined, and schematics, diagrams,
and layouts of the project may provide early project configuration.
An essential phase in new product design and development is defining the
product’s exact characteristics. Impressions and conclusions from the research
stage are integrated with performance expectations, to create the initial design,
which defines the functional requirements and elements.
Design Review
A design review is a milestone within a product development process whereby a design is evaluated against its
requirements in order to verify the outcomes of previous activities and identify issues before committing to and if
need to be reprioritize further work. In addition a design review checklist should be used in the review process.
Detailed Design
Material selection
Material selection is the act of choosing the material best suited to achieve the requirements of a given
application. Many different factors go into determining the selection requirements, such as mechanical
properties, chemical properties, physical properties, electrical properties and cost.
Material Selection Charts
Detailed Design
Material selection
Material Selection Charts
Detailed Design
Design Calculations
When you have decided on the basic design for your device,
you will need to do the calculations to make sure that the
design will achieve the aim: how much force is required,
what size parts are needed, and so on.
Make sure that you double-check your own calculations (or
get a college to do it for you) and include all calculations in
your project documentation.
Simulations
Design simulation helps manufacturers verify and validate
the intended function of a product under development, as
well as the manufacturability of the product.
• Structural
• Thermal
• Vibrations
• Electrical
• Magnetism
Detailed Design
Prototype
A prototype is an early sample, model or release of
a product created to test a concept or process.
Typically, a prototype is used to evaluate a new
design to improve the accuracy of analysts and
system users. The visual representation of the
prototype demonstrates what the product is doing
at any given point, what the interactive elements
are, and how the product would function in the real
world.
3D printing
3D printing, or additive manufacturing, is the
construction of a three-dimensional object from a
CAD model or a digital 3D model. The term "3D
printing" can refer to a variety of processes in which
material is deposited, joined or solidified under
computer control to create a three-dimensional
object, with material being added together, typically
layer by layer.
Design Evaluation
Engineers evaluate designs for effectiveness to see if
they solve the problems that they were supposed to
solve, for consistency to make sure that the design
works the same way every time, and for efficiency to
make sure that it solves the problem in the simplest
way possible without any extra steps or pieces.
Testing
• Check for dimensional accuracy
• Collect test data
• Analyze test data
• Performance
• Usability
• Durability
• Validation of design
Examples
• Static structural
• Dynamic Structural
• Fatigue testing
• Thermal testing
• Drop shock testing
Iterations
Design optimization
The area of design optimization is where the
performance of a design can be made drastically
better than an initial naive implementation.
Topology optimization
Topology optimization is a mathematical method
which spatially optimizes the distribution of material
within a defined domain, by fulfilling given
constraints previously established and minimizing a
predefined cost function. For such an optimization
procedure, the three main elements are design
variables, the cost function and the constraints.
Manufacturing
Manufacturing processes
• Manufacturing Costs.
• Manufacturing Technique Capabilities and
availability.
• Desired Look and Feel of Product.
• Materials Needed for Production.
• Desired Surface Finishing of Product and
dimensional accuracy.
Maintenance
Design for Manufacturing / Assembly
Design for Manufacturing (DFM) is the process of
designing parts, components or products for ease of
manufacturing with an end goal of making a better
product at a lower cost. This is done by simplifying,
optimizing and refining the product design. Design for
Manufacturing (DFM) and design for assembly (DFA)
are the integration of product design and process
planning into one common activity. The goal is to
design a product that is easily and economically
manufactured.
For any business looking to make money and create
products that are profitable, DFM is vital for efficiency,
speed, and high rates of production. It is thought that
approximately 70% of the manufacturing costs of a
product derive from decisions made in the early design
stages, such as materials used or method of
manufacturing.
Design for Environment
Design for the Environment (DfE) is a design approach to reduce
the overall human health and environmental impact of a
product, process or service, where impacts are considered across
its life cycle.
• Reducing the use of materials, maximizing the number of replaceable
or recyclable components.
• Reducing toxic or polluting materials.
• Reducing emissions and waste in production processes.
• Increasing energy efficiency in phases of production and use.
• Increasing reliability and maintainability of the system.
• Respecting current legal constraints and evaluating future regulations
in preparation.
Design effort versus cost curve.
Reverse Engineering
It is the process of creating a product by a deep investigation to the shape
and the function of an existing production. The reverse engineering
process enables you to determine how a part was designed so that you
can recreate it.
The reverse engineering process is named as such because it involves
working backward through the original design process.
The challenge is to gain a working knowledge of the original design by
disassembling the product piece-by-piece or layer-by-layer.
Applications
• When the part malfunctions or breaks down completely, you replace
the component, not the whole device.
• Companies sometimes use reverse engineering to regain design data
on their own long-discontinued products. Even if the company still has
their paper blueprints, they may want to create a digital version of them
to make the plans easier to access and use.
• Design Improvement.
• Product analysis (to examine how a product works, what components it
consists of, estimate costs, identify potential)
Reverse Engineering
• When reverse engineering a mechanical product,
you start by analyzing the dimensions and
attributes of the product.
• Before disassembly, the reverse-engineering
team has to photograph the product up close
from the front and back to create a record of the
product composition.
• During disassembly, the design team removes
each part from the product, one after another.
The parts must be set aside for safekeeping and
organized in the order they were removed.
• With the various components removed from the
old product, the design team then draws up a list
of the materials of the product components.
3D Scanning
3D scanning is the process of analyzing a real-world object or
environment to collect data on its shape and possibly its
appearance. The collected data can then be used to construct
digital 3D models.
After all the pertinent information has been gathered and
recorded, you can use this data to create computer-aided design
(CAD) drawings for subsequent analysis and development.
Material identification
•Color
•Texture
•Mechanical properties
•Spark test
•Electrical properties
•Thermal properties
•Magnetic properties
•Radiation - X-ray Fluorescence (XRF) analyser: The
device scans the metal material and identifies its key
elements. However, it cannot detect carbon and some
lighter elements and is not suitable for identification of
pure carbon steel materials.
•Optical Emission Spectroscopy (OES): This method
can detect almost all types of elements including
carbon and lighter elements and carbon steel.
How can you access Inspec
Analytics & Inspec Direct?
Inspec Direct
Inspec Direct
Pinpoint relevant research fast
Whether you’re looking for inspiration for your next research project or
compiling a comprehensive literature review of your chosen field, your
journey starts with Inspec, the definitive engineering and physics research
database.
Why to use Inspec?
•Keep pace with developments in the fast-moving world of science,
engineering and technology. Pinpoint the latest global research in your field.
•Access quality data quickly.
•Avoid research duplication and “reinventing the wheel”.
•Track your competitor movements to stay one step ahead.
•Accelerate your R&D activities by saving time and money.
 850,000 records added in 2019
 Optional Archive adds another 873,699
 Over 4,500 journals, and 3,000 other publications
from 700 publishers
 Over 10% open access
Inspec content
Physics
10 million +
Computing and control
engineering
5.5 million
Electrical and electronic
engineering
7 million 2.2 million
Production, manufacturing &
mech. engineering
19.5m records (Feb 2020)
1969 To date
Or 1898 with the Inspec Archive
IET Inspec
Inspec Direct
Demonstration
Controlled Terms
Inspec Analytics
Demonstration
Thank You

More Related Content

Similar to Introduction into Mechanical Design - Reverse Engineering.pptx

1 a. Introduction design of machine element
1 a. Introduction   design of machine element1 a. Introduction   design of machine element
1 a. Introduction design of machine element
Dr.R. SELVAM
 
Steve Majors resume
Steve Majors resumeSteve Majors resume
Steve Majors resumeSteve Majors
 
3.2 Managing Engineering Design.ppt
3.2 Managing Engineering Design.ppt3.2 Managing Engineering Design.ppt
3.2 Managing Engineering Design.ppt
KrishnaGupta191
 
Unit 1 .pptx
Unit 1 .pptxUnit 1 .pptx
Unit 1 .pptx
Aditya Dhobale
 
CIM- 1-120000000-UNIT-1 INTRODUCTION.ppt
CIM- 1-120000000-UNIT-1 INTRODUCTION.pptCIM- 1-120000000-UNIT-1 INTRODUCTION.ppt
CIM- 1-120000000-UNIT-1 INTRODUCTION.ppt
dharma raja`
 
UNIT-1-PPCE.pptx
UNIT-1-PPCE.pptxUNIT-1-PPCE.pptx
UNIT-1-PPCE.pptx
dharma raja`
 
Engineering Design Notes
Engineering Design NotesEngineering Design Notes
Engineering Design Notes
Sead Spuzic
 
I.INTRODUCTION AND OVERVIEW in Work Study and Measurement
I.INTRODUCTION AND OVERVIEW in Work Study and MeasurementI.INTRODUCTION AND OVERVIEW in Work Study and Measurement
I.INTRODUCTION AND OVERVIEW in Work Study and Measurement
JenelIturiaga
 
Product Design.pptx
Product Design.pptxProduct Design.pptx
Product Design.pptx
RiadHasan25
 
Company Presentation 2015
Company Presentation 2015Company Presentation 2015
Company Presentation 2015Mach Cao Xuan
 
2_Analogy btw science math and engineering and ED.pptx
2_Analogy btw science math and engineering  and ED.pptx2_Analogy btw science math and engineering  and ED.pptx
2_Analogy btw science math and engineering and ED.pptx
aabhishekkushwaha9
 
Design stages and_prerequisites
Design stages and_prerequisitesDesign stages and_prerequisites
Design stages and_prerequisitesphysics101
 
Concurrent engineering
Concurrent engineeringConcurrent engineering
Concurrent engineering
paragmahajan01
 
2.2 Product-architecture.ppt
2.2 Product-architecture.ppt2.2 Product-architecture.ppt
2.2 Product-architecture.ppt
girilogu2
 
Introduction to Engineering Design Process
Introduction to Engineering Design ProcessIntroduction to Engineering Design Process
Introduction to Engineering Design Process
Lk Rigor
 
om chapter 3.ppt
om chapter 3.pptom chapter 3.ppt
om chapter 3.ppt
DejeneDay
 
Introduction to CAD/CAM
Introduction to CAD/CAMIntroduction to CAD/CAM
Introduction to CAD/CAM
Nafis Ahmad
 
Engineering Design Notes
Engineering Design NotesEngineering Design Notes
Engineering Design Notes
Sead Spuzic
 
Difference between DFM, DFA, DFMA with good explanation
Difference between DFM, DFA, DFMA with good explanationDifference between DFM, DFA, DFMA with good explanation
Difference between DFM, DFA, DFMA with good explanation
ManiKandan214178
 
Design It 4 U, Thane, Product Deveopment
Design It 4 U, Thane, Product DeveopmentDesign It 4 U, Thane, Product Deveopment
Design It 4 U, Thane, Product Deveopment
IndiaMART InterMESH Limited
 

Similar to Introduction into Mechanical Design - Reverse Engineering.pptx (20)

1 a. Introduction design of machine element
1 a. Introduction   design of machine element1 a. Introduction   design of machine element
1 a. Introduction design of machine element
 
Steve Majors resume
Steve Majors resumeSteve Majors resume
Steve Majors resume
 
3.2 Managing Engineering Design.ppt
3.2 Managing Engineering Design.ppt3.2 Managing Engineering Design.ppt
3.2 Managing Engineering Design.ppt
 
Unit 1 .pptx
Unit 1 .pptxUnit 1 .pptx
Unit 1 .pptx
 
CIM- 1-120000000-UNIT-1 INTRODUCTION.ppt
CIM- 1-120000000-UNIT-1 INTRODUCTION.pptCIM- 1-120000000-UNIT-1 INTRODUCTION.ppt
CIM- 1-120000000-UNIT-1 INTRODUCTION.ppt
 
UNIT-1-PPCE.pptx
UNIT-1-PPCE.pptxUNIT-1-PPCE.pptx
UNIT-1-PPCE.pptx
 
Engineering Design Notes
Engineering Design NotesEngineering Design Notes
Engineering Design Notes
 
I.INTRODUCTION AND OVERVIEW in Work Study and Measurement
I.INTRODUCTION AND OVERVIEW in Work Study and MeasurementI.INTRODUCTION AND OVERVIEW in Work Study and Measurement
I.INTRODUCTION AND OVERVIEW in Work Study and Measurement
 
Product Design.pptx
Product Design.pptxProduct Design.pptx
Product Design.pptx
 
Company Presentation 2015
Company Presentation 2015Company Presentation 2015
Company Presentation 2015
 
2_Analogy btw science math and engineering and ED.pptx
2_Analogy btw science math and engineering  and ED.pptx2_Analogy btw science math and engineering  and ED.pptx
2_Analogy btw science math and engineering and ED.pptx
 
Design stages and_prerequisites
Design stages and_prerequisitesDesign stages and_prerequisites
Design stages and_prerequisites
 
Concurrent engineering
Concurrent engineeringConcurrent engineering
Concurrent engineering
 
2.2 Product-architecture.ppt
2.2 Product-architecture.ppt2.2 Product-architecture.ppt
2.2 Product-architecture.ppt
 
Introduction to Engineering Design Process
Introduction to Engineering Design ProcessIntroduction to Engineering Design Process
Introduction to Engineering Design Process
 
om chapter 3.ppt
om chapter 3.pptom chapter 3.ppt
om chapter 3.ppt
 
Introduction to CAD/CAM
Introduction to CAD/CAMIntroduction to CAD/CAM
Introduction to CAD/CAM
 
Engineering Design Notes
Engineering Design NotesEngineering Design Notes
Engineering Design Notes
 
Difference between DFM, DFA, DFMA with good explanation
Difference between DFM, DFA, DFMA with good explanationDifference between DFM, DFA, DFMA with good explanation
Difference between DFM, DFA, DFMA with good explanation
 
Design It 4 U, Thane, Product Deveopment
Design It 4 U, Thane, Product DeveopmentDesign It 4 U, Thane, Product Deveopment
Design It 4 U, Thane, Product Deveopment
 

Recently uploaded

Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
BrazilAccount1
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
SupreethSP4
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 

Recently uploaded (20)

Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 

Introduction into Mechanical Design - Reverse Engineering.pptx

  • 1. Introduction into Mechanical Design - Reverse Engineering
  • 2. Agenda • Introduction • Design Process • Marketing analysis • Brainstorming • Preliminary design • Design review • Detailed Design • Design Evaluation • Iterations • Manufacturing • Design for Manufacturing / Assembly • Design for Environment • Reverse Engineering • Manufacturing trends in the research sector • IET Inspec Direct Database • IET Inspec Analytics • IET digital library
  • 4. Marketing analysis • Customer needs • Budget • Design restrictions • Specifications • Problem definition Brainstorming 1.Set a time limit. 2.Begin with a target problem/brief. 3.Refrain from judgment/criticism. 4.Encourage strange ideas. 5.Aim for quantity. 6.Build on others’ ideas. 7.Allow one conversation at a time. 8.Use a Decision matrix
  • 5. Preliminary Design Preliminary design The preliminary design, or high-level design includes, often bridges a gap between design conception and detailed design, particularly in cases where the level of conceptualization achieved during ideation is not sufficient for full evaluation. So in this task, the overall system configuration is defined, and schematics, diagrams, and layouts of the project may provide early project configuration. An essential phase in new product design and development is defining the product’s exact characteristics. Impressions and conclusions from the research stage are integrated with performance expectations, to create the initial design, which defines the functional requirements and elements.
  • 6. Design Review A design review is a milestone within a product development process whereby a design is evaluated against its requirements in order to verify the outcomes of previous activities and identify issues before committing to and if need to be reprioritize further work. In addition a design review checklist should be used in the review process.
  • 7. Detailed Design Material selection Material selection is the act of choosing the material best suited to achieve the requirements of a given application. Many different factors go into determining the selection requirements, such as mechanical properties, chemical properties, physical properties, electrical properties and cost. Material Selection Charts
  • 9. Detailed Design Design Calculations When you have decided on the basic design for your device, you will need to do the calculations to make sure that the design will achieve the aim: how much force is required, what size parts are needed, and so on. Make sure that you double-check your own calculations (or get a college to do it for you) and include all calculations in your project documentation. Simulations Design simulation helps manufacturers verify and validate the intended function of a product under development, as well as the manufacturability of the product. • Structural • Thermal • Vibrations • Electrical • Magnetism
  • 10. Detailed Design Prototype A prototype is an early sample, model or release of a product created to test a concept or process. Typically, a prototype is used to evaluate a new design to improve the accuracy of analysts and system users. The visual representation of the prototype demonstrates what the product is doing at any given point, what the interactive elements are, and how the product would function in the real world. 3D printing 3D printing, or additive manufacturing, is the construction of a three-dimensional object from a CAD model or a digital 3D model. The term "3D printing" can refer to a variety of processes in which material is deposited, joined or solidified under computer control to create a three-dimensional object, with material being added together, typically layer by layer.
  • 11. Design Evaluation Engineers evaluate designs for effectiveness to see if they solve the problems that they were supposed to solve, for consistency to make sure that the design works the same way every time, and for efficiency to make sure that it solves the problem in the simplest way possible without any extra steps or pieces. Testing • Check for dimensional accuracy • Collect test data • Analyze test data • Performance • Usability • Durability • Validation of design Examples • Static structural • Dynamic Structural • Fatigue testing • Thermal testing • Drop shock testing
  • 12. Iterations Design optimization The area of design optimization is where the performance of a design can be made drastically better than an initial naive implementation. Topology optimization Topology optimization is a mathematical method which spatially optimizes the distribution of material within a defined domain, by fulfilling given constraints previously established and minimizing a predefined cost function. For such an optimization procedure, the three main elements are design variables, the cost function and the constraints.
  • 13. Manufacturing Manufacturing processes • Manufacturing Costs. • Manufacturing Technique Capabilities and availability. • Desired Look and Feel of Product. • Materials Needed for Production. • Desired Surface Finishing of Product and dimensional accuracy. Maintenance
  • 14. Design for Manufacturing / Assembly Design for Manufacturing (DFM) is the process of designing parts, components or products for ease of manufacturing with an end goal of making a better product at a lower cost. This is done by simplifying, optimizing and refining the product design. Design for Manufacturing (DFM) and design for assembly (DFA) are the integration of product design and process planning into one common activity. The goal is to design a product that is easily and economically manufactured. For any business looking to make money and create products that are profitable, DFM is vital for efficiency, speed, and high rates of production. It is thought that approximately 70% of the manufacturing costs of a product derive from decisions made in the early design stages, such as materials used or method of manufacturing.
  • 15. Design for Environment Design for the Environment (DfE) is a design approach to reduce the overall human health and environmental impact of a product, process or service, where impacts are considered across its life cycle. • Reducing the use of materials, maximizing the number of replaceable or recyclable components. • Reducing toxic or polluting materials. • Reducing emissions and waste in production processes. • Increasing energy efficiency in phases of production and use. • Increasing reliability and maintainability of the system. • Respecting current legal constraints and evaluating future regulations in preparation.
  • 16. Design effort versus cost curve.
  • 17. Reverse Engineering It is the process of creating a product by a deep investigation to the shape and the function of an existing production. The reverse engineering process enables you to determine how a part was designed so that you can recreate it. The reverse engineering process is named as such because it involves working backward through the original design process. The challenge is to gain a working knowledge of the original design by disassembling the product piece-by-piece or layer-by-layer. Applications • When the part malfunctions or breaks down completely, you replace the component, not the whole device. • Companies sometimes use reverse engineering to regain design data on their own long-discontinued products. Even if the company still has their paper blueprints, they may want to create a digital version of them to make the plans easier to access and use. • Design Improvement. • Product analysis (to examine how a product works, what components it consists of, estimate costs, identify potential)
  • 18. Reverse Engineering • When reverse engineering a mechanical product, you start by analyzing the dimensions and attributes of the product. • Before disassembly, the reverse-engineering team has to photograph the product up close from the front and back to create a record of the product composition. • During disassembly, the design team removes each part from the product, one after another. The parts must be set aside for safekeeping and organized in the order they were removed. • With the various components removed from the old product, the design team then draws up a list of the materials of the product components.
  • 19. 3D Scanning 3D scanning is the process of analyzing a real-world object or environment to collect data on its shape and possibly its appearance. The collected data can then be used to construct digital 3D models. After all the pertinent information has been gathered and recorded, you can use this data to create computer-aided design (CAD) drawings for subsequent analysis and development.
  • 20. Material identification •Color •Texture •Mechanical properties •Spark test •Electrical properties •Thermal properties •Magnetic properties •Radiation - X-ray Fluorescence (XRF) analyser: The device scans the metal material and identifies its key elements. However, it cannot detect carbon and some lighter elements and is not suitable for identification of pure carbon steel materials. •Optical Emission Spectroscopy (OES): This method can detect almost all types of elements including carbon and lighter elements and carbon steel.
  • 21. How can you access Inspec Analytics & Inspec Direct?
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 28. Inspec Direct Pinpoint relevant research fast Whether you’re looking for inspiration for your next research project or compiling a comprehensive literature review of your chosen field, your journey starts with Inspec, the definitive engineering and physics research database. Why to use Inspec? •Keep pace with developments in the fast-moving world of science, engineering and technology. Pinpoint the latest global research in your field. •Access quality data quickly. •Avoid research duplication and “reinventing the wheel”. •Track your competitor movements to stay one step ahead. •Accelerate your R&D activities by saving time and money.
  • 29.  850,000 records added in 2019  Optional Archive adds another 873,699  Over 4,500 journals, and 3,000 other publications from 700 publishers  Over 10% open access Inspec content Physics 10 million + Computing and control engineering 5.5 million Electrical and electronic engineering 7 million 2.2 million Production, manufacturing & mech. engineering 19.5m records (Feb 2020) 1969 To date Or 1898 with the Inspec Archive
  • 31.
  • 33.

Editor's Notes

  1. The Inspec database has been the definitive engineering and physics research database for almost 50 years. Over that time our expert indexers have indexed over 19 million articles from journals across the world. There are currently more than 4,500 journals indexed in Inspec. Full: Built on Science Abstracts, which dates back to 1898, the IET’s research database, Inspec, has been delivering access to engineering intelligence since 1969. Owing to the precision and accuracy of its indexing, Inspec has become the authoritative resource for accessing scientific literature across engineering, physics and computer science, serving numerous prestigious institutions and tens of thousands of users around the world.   Now, as the role of scholarly communications is evolving, the innovation that inspired the creation of the original Inspec is still in force. We’ve combined the latest in semantic technology with Inspec’s highly curated index to deliver Inspec Analytics; a dynamic new solution in response to the increasing need to assess the value and impact of research, and guide business strategy.