This document provides an introduction to machine learning, including definitions, types, and case studies. It begins with an agenda and overview of artificial intelligence applications. It then defines machine learning as a field that allows computers to learn without being explicitly programmed. The main types of machine learning are described as supervised, unsupervised, semi-supervised, and reinforcement learning. Example case studies on Netflix recommendations, cancer diagnosis, and Amazon inventory are outlined. The document concludes with tips on prerequisites and resources for studying machine learning, including mathematics, programming tools, and course recommendations.