SlideShare a Scribd company logo
1 of 36
Download to read offline
2/16/2017
1
Interaction of MSE Abutments 
with Superstructures under 
Seismic Loading
Prof. John S. McCartney and Yewei Zheng
University of California San Diego
Department of Structural Engineering
Presentation to: GI of ASCE Orange County Section
November 3, 2016
Presentation Overview
2
2
• Personal Research Introduction
• Geotechnical Engineering at UCSD
– Faculty 
– Facilities 
– New MS in Geotechnical Engineering
• Technical Presentation: MSE Bridge Abutments
– Motivation
– Numerical Simulations with FLAC
– Experimental Shaking Table Testing Program
– Unsaturated Soil Aspect: Apparent Cohesion Estimates 
– Preliminary Results
2/16/2017
2
3
Personal Research Introduction
University of Colorado Boulder
BS/MS 2002
Faculty 2008-2014
University of Arkansas
Faculty 2007-2008
University of California San Diego
Faculty 2014-present University of Texas at Austin
PhD 2007
Personal Research Focus
Material Characterization
1. Unsaturated soil mechanics
• Effective stress evaluation
• Yielding mechanisms under changes in temperature and suction
• Compression behavior of soils to high stresses
• Thermal volume change mechanisms
• Measurement of hydro/thermal properties (SWRC, HCF, TCF, VHCF)
2. Geosynthetics engineering
3. Shear strength of tire-derived aggregates
Foundation Engineering
1. Centrifuge and full-scale modeling
2. Thermally active geotechnical systems (energy piles, geothermal heat
storage systems, thermal soil improvement)
3. Offshore foundations
Earthquake Engineering and Soil-Structure Interaction
1. Seismic response of unsaturated soils
2. Seismic response of MSE bridge abutments
4
4
Personal Research Introduction
2/16/2017
3
Geotechnical Faculty at UCSD
Ahmed Elgamal,
Professor
Enrique Luco,
Professor
John McCartney,
Associate Professor
Ingrid Tomac,
Asst. Research Scientist
Tara Hutchinson,
Professor
5
http://nees.ucsd.edu/facilities/shake-table.shtml
Large-scale experiments (UC San Diego outdoor shake table)
6
2/16/2017
4
Length of 6.7 m (22 ft), width of 3 m
(9.6 ft) and height of 4.7 m (15.2 ft)
Facilities: Large Laminar Container
7
Facilities: Container for Retaining Wall Testing on
the Large Shaking Table
8
2/16/2017
5
Facilities: Powell Laboratory Shake Table
9
UCSD South Powell Structural Lab 
Shake Table:
• Dimension: 10 ft. x 16 ft.
• Shaking DOF: 1D in N‐S direction
• Maximum gravity load: 80 kips
• Dynamic stroke: ± 6 in.
• Dynamic capacity: 90 kips
• Large laminar container
Facilities: Large Soil Pit for Foundation Testing
9m-deep soil pit and
reaction wall for
foundation testing
Earth moving equipment:
Bobcat, compactor, backhoe, crane
10
2/16/2017
6
Facilities: Full-Scale Soil-Borehole Thermal Energy
Storage System
11
0
5
10
15
20
25
30
35
Thermal energy (GJ)
Solar
Borehole Array
Actidyn Model C61-3
Capacity: 50 g-ton Nominal radius: 1.70m Max. acc.: 130g
UCSD Facilties: Geotechnical Centrifuge
12
2/16/2017
7
Facilities: Update of the Geotechnical Centrifuge
New features:
• Data acquisition system and actuators
• Containers (laminar, 3 clay tanks)
• Shaking table
• Control room
13
UCSD Element‐Scale Geotechnical Laboratory
14
Stress path triaxial
testing setup
Standard soil
characterization
equipment
2/16/2017
8
UCSD Element‐Scale Geotechnical Laboratory
15
Geosynthetic pullout box
Large-scale direct shear/simple
shear device for shear strength of
large particle materials (tire
derived aggregates)
MS in Geotechnical Engineering at UCSD
Goals:
• Provide advanced degree option for students seeking to specialize in geotechnical
engineering
• Meet demand of local employers and interest of current undergraduate students
• Build links to practice for students only interested in MS
• Provide a recruiting tool for top MS students to continue for a PhD in
geotechnical engineering
• Facilitate completion of MS coursework in 4 quarters plus a summer
• Leverage and build upon existing courses in the department
• Build upon existing strengths: earthquake engineering, soil-structure interaction,
computational geotechnics, and large-scale evaluation of geotechnical systems
Program:
• The M.S. degree program includes required core courses and technical electives
• M.S. students must complete 48 units of graduate credits for graduation (12 courses)
• Suggested focus sequences:
• Geotechnical engineering and geomechanics
• Geotechnical earthquake engineering
• Soil-structure interaction
16
2/16/2017
9
MS in Geotechnical Engineering at UCSD
Core Courses (Students must take all four):
• SE 271 Solid Mechanics for Structural & Aerospace Engineering
• SE 241 Advanced Soil Mechanics
• SE 242 Advanced Foundation Engineering
• SE 250 Stability of Earth Slopes & Retaining Walls
Geotechnical electives (students must select at least four):
• SE 222 Geotechnical Earthquake Engineering
• SE 226 Groundwater Engineering
• SE 243 Soil-Structure Interaction
• SE 244 Numerical Methods in Geomechanics
• SE 247 Ground Improvement
• SE 248 Engineering Properties of Soils
• SE 207 Rock Mechanics
• SE 207 Soil Dynamics
• SE 207 Unsaturated Soil Mechanics
Other technical electives (choose up to 4):
• Students may select from a list of structural, computational mechanics, or geology
courses for the remaining 4 technical electives
17
Geotechnical Engineering 
Graduate Student Organizations
CalGeo Student Chapter (Initiated 2015)
• Brings in local geotechnical engineers for seminars
GeoInstitute Graduate Student Organization (Initiated 2016)
• Facilitates engagement of graduate students in international geotechnical conferences
18
2/16/2017
10
Technical Presentation: Seismic 
Response of MSE Bridge Abutments
Roadways
Slopes
Embankments
Retaining walls
Bridge abutments
• General trend is toward the use of GRS‐IBS abutments (close spacing, variable 
lengths, specific design details from FHWA), but current study is on MSE bridge 
abutments (length = 0.7H, load applied to bridge seat on reinforced soil mass)
• GRS and MSE have many advantages over pile‐supported bridge abutments, 
including cost savings, easier and faster construction, and smoother transition
19
19
Geosynthetics in
transportation applications:
Acknowledgements
20
20
• Project sponsors: 
– Caltrans
– Pooled fund members 
(WashDOT, UDOT, MDOT)
• Collaborators
– Yewei Zheng, Ph.D. Candidate
– Prof. Benson Shing, Chair of 
SE at UCSD
– Prof. Patrick Fox, Head of CEE 
at Penn State University
2/16/2017
11
Research Motivation
GRS bridge abutments have been widely used in US, but has not been adopted 
in California due to uncertainty about seismic performance:
• Geotechnical: backfill settlement and facing displacement
• Structural: bridge deck and seat movements, impact force between bridge 
deck and seat, and interaction between bridge superstructure and GRS 
abutment, overall philosophy of GRS vs. MSE (concerns with bridge deck 
being placed directly onto the reinforced soil mass) 
21
21
MSE wall
performance
in Maule
Earthquake,
Chile
Research Motivation
GRS bridge abutments have been widely used in US, but has not been adopted 
in California due to uncertainty about seismic performance:
• Geotechnical: backfill settlement and facing displacement
• Structural: bridge deck and seat movements, impact force between bridge 
deck and seat, and interaction between bridge superstructure and GRS 
abutment, overall philosophy of GRS vs. MSE (concerns with bridge deck 
being placed directly onto the reinforced soil mass) 
22
22
MSE bridge
abutment
performance
in Maule
Earthquake,
Chile
2/16/2017
12
Literature Review – Static Performance
• Lee and Wu (2004) reviewed several case studies of in‐
service GRS abutments and reported satisfactory 
performance under service load conditions
• Adams et al. (2011) reported excellent performance for five 
in‐service GRS‐IBS abutments
• Field and laboratory static loading tests indicate that the 
GRS piers and abutments had satisfactory performance 
under design loads and relatively high load‐bearing 
capacity (Adams 1997; Gotteland et al. 1997; Ketchart and 
Wu 1997; Wu et al. 2001, 2006; Adams et al. 2011; Nicks et 
al. 2013)
23
23
Literature Review – Seismic Performance
• El‐Emam and Bathurst (2004, 2005, 2007) performed a series of 
shake table tests on reduced‐scale GRS walls with a full‐height 
rigid facing panel 
• Ling et al. (2005, 2012) conducted full‐scale shake table tests on 
GRS walls with modular block facing using fine sand and silty sand 
as backfill soils
• Yen et al. (2011) found that GRS abutments performed well from 
post‐earthquake reconnaissance for 2010 Maule Earthquake
• Helwany et al. (2012) conducted large‐scale shake table tests on a 
GRS abutment and found that it can sustain sin motion up to 1g 
without significant distresses
24
24
2/16/2017
13
Literature Review – Seismic Performance
References
Height 
(m)
Facing Backfill Reinforcement
Input 
motion
Findings
El‐Emam and 
Bathurst 
(2004, 2005, 
2007)
1.0
rigid 
panel
sand
polyester 
geogrid
sinusoidal
facing lateral displacement could be 
reduced by using smaller facing 
panel mass, inclined facing panels, 
longer reinforcement, stiffer 
reinforcement, and smaller vertical 
reinforcement spacing
Ling et al. 
(2005, 2012)
2.8
modular 
block
sand/silty
sand
polyester 
geogrid
earthquake
longer reinforcement at top layer 
and smaller reinforcement vertical
spacing improved seismic 
performance; vertical acceleration
has little influence; apparent
cohesion improved seismic
performance
Helwany et al. 
(2012)
3.6
modular 
block
sand
woven 
geotextile
sinusoidal
GRS abutment remained functional 
under sinusoidal motions up to 1.0 g
25
25
Project Objectives
• Investigate performance of MSE abutments for service limit 
state, strength limit state, and extreme event limit state (seismic 
loading) 
• Approaches:
• Numerical simulations using FLAC2D and FLAC3D
• ½ scale experimental physical modeling
• Improve design guidelines for external and internal stability of 
MSE bridge abutments for static and seismic loading
0 ~ 200 kPa 200 ~ > 1000 kPa extreme loadings
service limit strength limit extreme event limit
26
26
2/16/2017
14
Validation of FLAC 2D Model for Static Loading
Founders/Meadows Parkway Bridge, CO (Abu-Hejleh et al. 2002)
Extensive instrumentation
27
27
Instrumented section 800 (after Abu-Hejleh et al. 2002)
28
28
Validation of FLAC 2D Model for Static Loading
2/16/2017
15
Backfill Soil for Founders‐Meadows
Backfill treated as an elastic‐plastic material with Mohr‐Coulomb 
failure criterion, and Duncan‐Chang hyperbolic relationship
Comparison of measured and simulated triaxial test results
0
200
400
600
800
1000
1200
0 2 4 6 8 10
Simulated
Measured (69 kPa)
Measured (138 kPa)
Measured (207 kPa)
DeviatoricStress(kPa)
Axial Strain (%)
3' = 207 kPa
3' = 138 kPa
3' = 69 kPa
-1.0
-0.5
0
0.5
1.0
1.5
2.0
0 2 4 6 8 10
Simulated
Measured (69 kPa)
Measured (138 kPa)
Measured (207 kPa)
VolumetricStrain(%)
3' = 69 kPa
3' = 138 kPa
Axial Strain (%)
3' = 207 kPa
29
29
Reinforcement and Interfaces
linearly elastic‐plastic cable 
elements
Axial strain Relative displacement
Tensile force Shear force Shear strength
Normal force
interface elements with Coulomb sliding
Reinforcement:  Interfaces: 
30
30
2/16/2017
16
Initial Numerical Model Validation
In general, simulated results are in good agreement with field 
measurements, including displacements, lateral and vertical earth 
pressures, and tensile strains and forces in reinforcement 
Lower Wall
Construction
(Stage 1)
Bridge/Approach
Construction
(Stages 2-6)
Traffic
Loading
(Stage 7)
Incremental Maximum Lateral Facing Displacement (mm)
Measured 12 10 5
Simulated HR n/a 9 3
Simulated NHR 11 14 4
Incremental Bridge Footing Settlement (mm)
Measured n/a 12 10
Simulated HR n/a 13 5
Simulated NHR n/a 14 7
Incremental displacements for Founders/Meadows
GRS bridge abutment (Zheng and Fox 2016 in JGGE)
0
1
2
3
4
5
6
0 2 4 6 8 10 12 14 16
Measured
Simulated HR
Simulated NHR
Elevation(m)
Lateral Facing Displacement (mm)
Horizontal restraint (HR) from the 
bridge structure has important 
effect on abutment deflections
31
31
Shake Table Testing Program
UCSD South Powell Structural Lab 
Shake Table:
• Dimension: 10 ft. x 16 ft.
• Shaking DOF: 1D in N‐S direction
• Maximum gravity load: 80 kips
• Dynamic stroke: ± 6 in.
• Dynamic capacity: 90 kips
Shake table testing has been successfully used to investigate 
seismic performance of GRS structures (El‐Emam and Bathurst 
2004, 2005, 2007; Ling et al. 2005, 2012; Tatsuoka et al. 2009, 
2012; Helwany et al. 2012)
32
32
2/16/2017
17
Longitudinal Testing
Powell lab shake table
Support
wall
Steel beams
Bridge deck
Bridge seat
GRS abutment
Upper wall
Sliding platform
33
33
Transverse Testing
Bridge deck
Powell lab shake table
GRS abutment
34
34
2/16/2017
18
1g Shake Table Similitude Relationships
Scaling Factor λ=2
Length λ 2
Density 1 1
Strain 1 1
Mass λ3 8
Acceleration 1 1
Velocity λ1/2 1.414
Stress λ 2
Stiffness λ2 4
Force λ3 8
Time λ1/2 1.414
Frequency λ‐1/2 0.707
Similitude relationships for 1 g shake table
test (Iai 1989)
Stress-strain relationships for model and
prototype (Rocha 1957; Roscoe 1968)
35
35
Goal: same strains in model and prototype
UCSD Sand Backfill
0
20
40
60
80
100
0.01 0.1 1 10
PercentFiner(%)
Particle Size (mm)
SW Sand
Cu = 6.1, Cz = 0
36
36
2/16/2017
19
UCSD Sand Backfill
-2
0
2
4
6
8
0 2 4 6 8 10
VolumetricStrain(%)
3' = 7 kPa
3' = 138 kPa
Axial Strain (%)
3' = 207 kPa
3' = 69 kPa
3' = 34 kPa
0
200
400
600
800
1000
1200
0 2 4 6 8 10
DeviatorStress(kPa)
Axial Strain (%)
3' = 69 kPa
3' = 34 kPa
3' = 7 kPa
3' = 138 kPa
3' = 207 kPa
37
37
UCSD Sand Backfill
38
38
Properties Value 
Specific gravity, Gs 2.61
Coefficient of uniformity, Cu 6.1
Coefficient of curvature, Cz 1.0
Maximum void ratio, emax 0.853
Minimum void ratio, emin 0.371
Recompression index, Cr 0.001
Compression index, Cc 0.006
Friction angle, ′ (°) 49.3
van Genuchten (1980) SWRC model parameter, vG (kPa‐1) 0.5
van Genuchten (1980) SWRC model  parameter, NvG 2.1
Drying curve volumetric water content at zero suction, d 0.319
Wetting curve volumetric water content at zero suction, w 0.204
Residual volumetric water content, r 0
2/16/2017
20
0
250
500
750
1000
1 10 100
TensileStiffness(kN/m)
Strain Rate (%/min)
Geogrid Reinforcement
0
200
400
600
800
1000
1200
1400
0 5 10 15 20
TensileLoad(N)
Strain (%)
10%/min - 1
10%/min - 2
10%/min - 3
0
200
400
600
800
1000
1200
1400
0 5 10 15 20TensileLoad(N)
Strain (%)
1%/min
5%/min
10%/min
50%/min
100%/min
J = 580 kN/m
2%
Typical range
J = 378 kN/m
<1%
39
39
Prototype (target) Model (used in tests)
Manufacturer Model ‐ Tensar LH800
Materials HDPE HDPE
Aperture Size (MD x TD) 9 in x 2.4 in 4.5 in x 1.2 in
Stiffness (kip/ft) 104 kip/ft 26 kip/ft
Length – 0.7H (ft) 9.8 4.9
Shaking Table Testing Plan
40
40
Focus of this presentation
Test 1 2 3 4 5 6 7
Purpose
Reduced 
Bridge 
Load
Reinf. 
spacing
Reinf. 
stiffness
Baseline Baseline
Steel 
mesh
Reduced 
Bridge 
Load
(repeat)
Shaking 
Direction
Long. Long. Long. Long. Transverse Long. Long.
Reinf. spacing 
(in)
6 12 6 6 6 6 6
Reinf. stiffness 
(kip/ft)
25.9 25.9 12.9 25.9 25.9 327.6 25.9
Average bridge 
surcharge (psf)
940 1340 1340 1340 1340 1340 940
2/16/2017
21
Experimental/Numerical Design
• Bridge deck: 6.4 m long, 0.9 m wide, and 0.45 m deep, 2.3 m clearance
• Bridge load: 7 kN + 65 kN + 33 kN (vertical stress = 63 kPa)
• MSE abutment: 2.15 m high lower wall and 0.6 m high upper wall
• Reinforcement: 0.15 m spacing and 1.5 m (0.7H) long
GRS abutment
Bridge seat
Bridge deck
Support wall
Sliding platform
Upper wall
Shake table
Steel beam
Reaction wall
41
41
Additional Schematics
42
42
2/16/2017
22
Additional Schematics
43
43
Construction
44
44
2/16/2017
23
Test Setup
GRS abutment Support wall
45
45
Test Setup
46
46
2/16/2017
24
Instrumentation
Strain gages
String potentiometers
Linear potentiometers
Pressure cells
Load cells
Accelerometers
Dielectric sensors
47
47
Instrumentation 
Plan
Longitudinal Section L1
Longitudinal Section L2
Transverse Section T1
48
48
L1
T1
2/16/2017
25
Estimates of Apparent Cohesion in Backfill
49
49
0
0.5
1.0
1.5
2.0
2.5
0 2 4 6 8 10
Elevation,z(m)
Gravimetric Water Content (%)
S = wGs/e
0.0
0.2
0.4
0.6
0.8
1.0
1.2
0.1 1.0 10.0 100.0 1000.0
Degree of saturation, S
Suction, ψ (kPa)
Drying
Wetting
e = 0.50
n = 0.33
p = 0
relative density = 60%
α = 0.85
N = 1.80
α = 0.65
N = 1.80
res
res
e
S
SS
S



1
   






 vG
vG NN
vGeS
1
1
1 
Apparent Cohesion
50
50
0
0.5
1.0
1.5
2.0
2.5
0 2 4 6 8 10 12 14
Drying
Wetting
Elevation,z(m)
Apparent Cohesion (kPa)
f = ’tan’ = (Se)tan’
’ = (-ua)+s
’ = (-ua)+
’ = (-ua)+Se
’ = (Se)
SWRC is needed for to estimate
the apparent cohesion, but
otherwise the material properties
for saturated/dry soil can be used
Apparent cohesion changes with
wetting/drying:
Effective stress:
2/16/2017
26
Concept of Applied Shaking Motions
51
51
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0 5 10 15 20 25 30 35 40
Original
Scaled
Acceleration(g)
Time (s)
-150
-100
-50
0
50
100
150
0 5 10 15 20 25 30 35 40
Original
Scaled
Displacement(mm)
Time (s)
• Frequency of motion is
reduced by √2, which
shortens the duration
• Acceleration amplitude
stays the same
• Displacement
amplitude is scaled by
half
Typical Response Spectrum of Applied Motion
52
52
0
0.2
0.4
0.6
0.8
1.0
1.2
0.1 1 10
Target input
Shaking table
PsuedoSpectralAcceleration(g)
Frequency (Hz)
1940 Imperial Valley Motion (El
Centro Station): 5% damping
2/16/2017
27
Applied Shaking Motions
Shaking 
Number
Motion
Maximum 
Acceleration (g)
Maximum 
Displacement 
(mm)
Control Mode
1 White Noise 0.1 26.1 Acceleration
2 1940 Imperial Valley  0.31 66 Displacement
3 White Noise 0.1 26.1 Acceleration
4 2010 Maule 0.40 109 Displacement
5 White Noise 0.1 26.1 Acceleration
6 1994 Northridge 0.58 88.7 Displacement
7 White Noise 0.1 26.1 Acceleration
8 Sin @ 0.5 Hz 0.05 50 Displacement
9 Sin @ 1 Hz  0.1 25 Displacement
10 Sin @ 2 Hz 0.2 12.5 Displacement
11 Sin @ 5 Hz 0.25 2.5 Displacement
12 White Noise 0.1 26.1 Acceleration
53
53
Applied Shaking Motions
• White noise – characterize frequencies
• Earthquake motions (frequencies scaled)
1. 1940 Imperial Valley (El Centro) – PGA = 0.31 g/ PGD = 66 mm
2. 2010 Maule (Concepcion) – PGA = 0.40 g/ PGD = 109 mm
3. 1994 Northridge (Newhall) – PGA = 0.58 g/ PGD = 89 mm
• Sinusoidal motions (0.5, 1, 2, and 5 Hz)
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0 4 8 12 16 20 24 28
Acceleration(g)
Time (s)
-100
-50
0
50
100
0 4 8 12 16 20 24 28
Displacement(mm)
Time (s)
-60
-40
-20
0
20
40
60
0 5 10 15 20 25 30 35 40
Displacement(mm)
Time (s)
-3
-2
-1
0
1
2
3
0 5 10 15 20 25 30 35 40
Displacement(mm)
Time (s)
0.5 Hz 5 Hz
Imperial Valley ‐ AccelerationImperial Valley ‐ Displacement
54
54
2/16/2017
28
Bridge Seat Settlements
Test 4, Maule Earthquake
SE SW
NE
NW
Bridge Seat Instrumentation
55
55
Confinement of the soil at
the back of the wall (south)
leads to less variable
strains during shaking
-2
0
2
4
6
8
10
0 20 40 60 80 100
NW
NE
SW
SE
Settlement(mm)
Time (s)
-2
0
2
4
6
8
10
0 20 40 60 80 100
Settlement(mm)
Time (s)
Bridge Seat Settlements
Test
Vertical
Stress 
(kPa)
Residual Bridge Seat Settlements (mm)
Bridge Deck 
Placement
Imperial 
Valley 
Motion
Maule 
Motion
Northridge 
Motion
Test 1 
(reduced
load)
44 1.4 2.7 2.5 ‐
Test 4 
(baseline)
63 2.1  1.5 1.5 2.1
Note: Values are incremental for each testing stage, and are 
the average of the settlements of the four corners
56
56
2/16/2017
29
Lateral Facing Displacements
• Lateral face displacements generally increase with elevation
• Residual displacements are incremental for each shaking event
• Maximum dynamic lateral facing displacements are greater than residual values
57
57
0
0.5
1.0
1.5
2.0
0 1 2 3 4 5 6
EOC - Abutment
Imperial Valley - Residual
Imperial Valley - Max
Maule - Residual
Maule - Max
Elevation,z(m)
Lateral Facing Displacement (mm)
Lateral Facing Displacements
• Displacements for L1 are larger than L2 despite greater confinement in L1 
• Displacements are larger for the Northridge Earthquake, which has larger PGA
• Displacements for T1 are larger than L1 and L2
0
0.5
1.0
1.5
2.0
0 0.5 1.0 1.5 2.0
L1
L2
T1
Elevation(m)
Lateral Facing Displacement (mm)
0
0.5
1.0
1.5
2.0
0 1 2 3 4 5
L1
L2
T1
Elevation(m)
Lateral Facing Displacement (mm)
Test 4 - Imperial Valley Motion Test 4 - Northridge Motion
58
58
2/16/2017
30
Relative Movements of Bridge Seat and 
Top of the Wall
Test
Vertical
Stress 
(kPa)
Relative Bridge Seat Lateral 
Movements (mm)
Imperial 
Valley 
Motion
Maule 
Motion
Northridge 
Motion
Test 1 44 2.4 6.4 ‐
Test 4 63 ‐0.2 0.4 0
Note: Incremental average values, (‐) is 
toward the back of the wall
59
59
Fundamental Frequency from White Noise Motions
60
60
0
5
10
15
20
25
0 5 10 15 20 25
Shaking event 1
Shaking event 3
Shaking event 5
FourierAmplitude
Frequency (Hz)
2/16/2017
31
Acceleration Amplification
• Acceleration amplification increases with elevation
• Amplification ratios increase from retained soil zone to reinforced soil zone to wall facing
• Amplification ratios are larger for L1 than L2
Imperial Valley Earthquake
0
0.5
1.0
1.5
2.0
0.8 1.0 1.2 1.4 1.6 1.8
L1 - Wall Facing
L1 - Reinforced Soil Zone
L1 - Retained Soil Zone
L2 - Reinforced Soil Zone
L2 - Retained Soil Zone
Elevation(m)
Acceleration Amplification Ratio
61
61
Bridge Seat and Deck Accelerations
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
0 4 8 12 16 20 24 28
Bridge Seat
Bridge Deck
Acceleration(g)
Time (s)
Imperial Valley Earthquake
Bridge deck:
Max acceleration = 0.53 g
Amplification ratio = 1.29
Bridge seat:
Max acceleration = 0.64 g
Amplification ratio = 1.56
62
62
2/16/2017
32
Bridge Seat and Deck Accelerations
63
63
0
5
10
15
20
25
0 5 10 15 20 25
Bridge deck/shaking table
Bridge seat/shaking table
FourierAmplitude
Frequency (Hz)
Bridge Seat and Deck Movements
64
64
-16
-12
-8
-4
0
4
8
12
16
0 20 40 60 80 100
East
West
HorizontalDisplacement(mm)
Time (s)
-16
-12
-8
-4
0
4
8
12
16
0 20 40 60 80 100
HorizontalDisplacement(mm)
Time (s)
Test 4 – Maule Motion
2/16/2017
33
Bridge Seat and Deck Movements
65
65
-16
-12
-8
-4
0
4
8
12
16
0 20 40 60 80 100
RelativeHorizontalDisplacement(mm)
Time (s)
Test 4 – Maule Motion
Bridge Seat and Deck Movements
-30
-20
-10
0
10
20
30
0 4 8 12 16 20 24 28
RelativeDisplacement(mm)
Time (s)
Relative Displacement 
(mm)
1940 Imperial Valley 2010 Maule 1994 Northridge
Residual 2.1 1.4 ‐4.3
Maximum ‐ 6.8/8.3 ‐9.7/9.8 ‐30/20.6
Test 4 Bridge deck sliding relative to bridge seat (relative displacement)
Northridge Earthquake
seismic joint closed
moving away from 
bridge seat
moving towards 
bridge seat
seismic joint 
remained open
66
66
2/16/2017
34
Seismic Joint Closure
0
10
20
30
40
50
60
0 4 8 12 16 20 24 28
SeismicJointSize(mm)
Time (s)
Northridge Earthquake
closed
remained open
67
67
Horizontal Contact Forces: Earthquake
-100
-50
0
50
100
0 4 8 12 16 20 24 28
Load Cell - East
Load Cell - West
HorizontalContactForce(kN)
Time (s)
Horizontal contact forces for the Northridge Earthquake, Test 4
68
68
2/16/2017
35
Reinforcement Strains
69
69
0
0.05
0.10
0.15
0.20
Top
Bottom
x = 0.46 m, z = 1.875 m
0
0.05
0.10
0.15
0.20
Top
Bottom
ReinforcementStrain(%)
x = 0.46 m, z = 0.975 m
0
0.05
0.10
0.15
0.20
0 4 8 12 16 20 24 28
Top
Bottom
Time (s)
x = 0.46 m, z = 0.075 m
Test 4 1940 Imperial Valley Motion
Reinforcement 
Strains
70
70
Test 4 1940 Imperial Valley Motion
bridge load
0
0.1
0.2
0.3
Initial
Maximum
Minimum
Residual
z = 1.95 m
layer 13
0
0.1
0.2
0.3
z = 1.50 m
layer 10
0
0.1
0.2
0.3
ReinforcementStrain(%)
z = 1.05 m
layer 7
0
0.1
0.2
0.3
z = 0.60 m
layer 4
0
0.1
0.2
0.3
0 0.5 1.0 1.5 2.0
z = 0.15 m
layer 1
Distance from Facing, x (m)
2/16/2017
36
Reinforcement Strains (Max.)
Longitudinal Section L1
bridge load
ReinforcementStrain(%)
0
0.1
0.2
0.3
0.4
0.5
EOC
Imperial Valley
Maule
Northridge
z = 1.95 m
layer 13
0
0.1
0.2
0.3
0.4
0.5
z = 1.05 m
layer 7
0
0.1
0.2
0.3
0.4
0.5
0 0.5 1.0 1.5 2.0
z = 0.15 m
layer 1
Distance from Facing (m)
bridge load
-0.1
0
0.1
0.2
0.3
0.4
EOC
Imperial Valley
Maule
Northridge
z = 1.95 m
layer 13
-0.1
0
0.1
0.2
0.3
0.4
z = 1.5 m
layer 10
-0.1
0
0.1
0.2
0.3
0.4
ReinforcementStrain(%)
z = 1.05 m
layer 7
-0.1
0
0.1
0.2
0.3
0.4
z = 0.6 m
layer 4
-0.1
0
0.1
0.2
0.3
0.4
0 0.5 1.0 1.5 2.0
z = 0.15 m
layer 1
Distance from Facing (m)
bridge load
ReinforcementStrain(%)
0
0.1
0.2
0.3
0.4
0.5
z = 1.95 m
layer 13
0
0.1
0.2
0.3
0.4
0.5
z = 1.05 m
layer 7
0
0.1
0.2
0.3
0.4
0.5
0 0.2 0.4 0.6 0.8 1.0
z = 0.15 m
layer 1
Distance from Facing (m)
Longitudinal Section L2 Transverse Section T1
max strain 
71
71
Preliminary Findings
• The bridge deck load was observed to lead to more static deformations (lateral and 
vertical), but less dynamic deformations due to the greater geosynthetic 
confinement
• Lateral displacements are greater near the top of the wall but are not large enough 
to cause geotechnical concerns 
• Lateral displacements and acceleration responses for section L1 are larger than L2
• Acceleration amplifies with elevation, and amplification ratios increase from 
retained soil zone to reinforced soil zone to wall facing
• Seismic‐induced reinforcement strains are largest near the wall face due to the 
inertia of the facing blocks
• Seismic joint might close during shaking and result in impact force on the bridge 
seat, but only during high frequency sinusoidal movements or Northridge EQ
• Overall, MSE abutments show good seismic performance in terms of lateral facing 
displacements and bridge seat movements
72
72

More Related Content

What's hot

Professional Geologist Work Experience
Professional Geologist Work ExperienceProfessional Geologist Work Experience
Professional Geologist Work ExperienceWilliamOlsenPG
 
ACCESS RESEARCH ARTICLE OPEN ACCES Wastewater Pipeline Design in Accordance w...
ACCESS RESEARCH ARTICLE OPEN ACCES Wastewater Pipeline Design in Accordance w...ACCESS RESEARCH ARTICLE OPEN ACCES Wastewater Pipeline Design in Accordance w...
ACCESS RESEARCH ARTICLE OPEN ACCES Wastewater Pipeline Design in Accordance w...IJERA Editor
 
A STUDY OF GEO-ENGINEERING PROPERTIES OF RIVER-BORNE COARSE AGGREGATES OF RIV...
A STUDY OF GEO-ENGINEERING PROPERTIES OF RIVER-BORNE COARSE AGGREGATES OF RIV...A STUDY OF GEO-ENGINEERING PROPERTIES OF RIVER-BORNE COARSE AGGREGATES OF RIV...
A STUDY OF GEO-ENGINEERING PROPERTIES OF RIVER-BORNE COARSE AGGREGATES OF RIV...IAEME Publication
 
35 110225172422-phpapp01
35 110225172422-phpapp0135 110225172422-phpapp01
35 110225172422-phpapp01apple1p
 
Behavior of piles and pile groups under lateral load
Behavior of piles and pile groups under lateral loadBehavior of piles and pile groups under lateral load
Behavior of piles and pile groups under lateral loadjain_abhishek
 
Construction Time Analysis For Different Steps In Drill-And-Blast Method Of H...
Construction Time Analysis For Different Steps In Drill-And-Blast Method Of H...Construction Time Analysis For Different Steps In Drill-And-Blast Method Of H...
Construction Time Analysis For Different Steps In Drill-And-Blast Method Of H...IJERA Editor
 

What's hot (10)

Professional Geologist Work Experience
Professional Geologist Work ExperienceProfessional Geologist Work Experience
Professional Geologist Work Experience
 
ACCESS RESEARCH ARTICLE OPEN ACCES Wastewater Pipeline Design in Accordance w...
ACCESS RESEARCH ARTICLE OPEN ACCES Wastewater Pipeline Design in Accordance w...ACCESS RESEARCH ARTICLE OPEN ACCES Wastewater Pipeline Design in Accordance w...
ACCESS RESEARCH ARTICLE OPEN ACCES Wastewater Pipeline Design in Accordance w...
 
Ijciet 06 10_015
Ijciet 06 10_015Ijciet 06 10_015
Ijciet 06 10_015
 
A STUDY OF GEO-ENGINEERING PROPERTIES OF RIVER-BORNE COARSE AGGREGATES OF RIV...
A STUDY OF GEO-ENGINEERING PROPERTIES OF RIVER-BORNE COARSE AGGREGATES OF RIV...A STUDY OF GEO-ENGINEERING PROPERTIES OF RIVER-BORNE COARSE AGGREGATES OF RIV...
A STUDY OF GEO-ENGINEERING PROPERTIES OF RIVER-BORNE COARSE AGGREGATES OF RIV...
 
35 110225172422-phpapp01
35 110225172422-phpapp0135 110225172422-phpapp01
35 110225172422-phpapp01
 
Dirnberger Kiewit Resume
Dirnberger Kiewit ResumeDirnberger Kiewit Resume
Dirnberger Kiewit Resume
 
Behavior of piles and pile groups under lateral load
Behavior of piles and pile groups under lateral loadBehavior of piles and pile groups under lateral load
Behavior of piles and pile groups under lateral load
 
Construction Time Analysis For Different Steps In Drill-And-Blast Method Of H...
Construction Time Analysis For Different Steps In Drill-And-Blast Method Of H...Construction Time Analysis For Different Steps In Drill-And-Blast Method Of H...
Construction Time Analysis For Different Steps In Drill-And-Blast Method Of H...
 
Engineering Geologist
Engineering GeologistEngineering Geologist
Engineering Geologist
 
1893
18931893
1893
 

Viewers also liked

DiscoverE Leading Kids Through A Successful Engineering Experience
DiscoverE Leading Kids Through A Successful Engineering ExperienceDiscoverE Leading Kids Through A Successful Engineering Experience
DiscoverE Leading Kids Through A Successful Engineering ExperienceDiscoverE
 
2017 Engineers Week Planning Webinar
2017 Engineers Week Planning Webinar 2017 Engineers Week Planning Webinar
2017 Engineers Week Planning Webinar DiscoverE
 
College Edition Slide for Electronic Media Board
College Edition Slide for Electronic Media BoardCollege Edition Slide for Electronic Media Board
College Edition Slide for Electronic Media BoardDiscoverE
 
DiscoverE Family Day Toolkit
DiscoverE Family Day Toolkit DiscoverE Family Day Toolkit
DiscoverE Family Day Toolkit DiscoverE
 
5 easy tips to prep for engineers week
5 easy tips to prep for engineers week5 easy tips to prep for engineers week
5 easy tips to prep for engineers weekDiscoverE
 
Inspiration Innovation: Exploring Engineering Careers
Inspiration Innovation: Exploring Engineering Careers Inspiration Innovation: Exploring Engineering Careers
Inspiration Innovation: Exploring Engineering Careers DiscoverE
 
Effectively talking to kids about engineering
Effectively talking to kids about engineeringEffectively talking to kids about engineering
Effectively talking to kids about engineeringDiscoverE
 
Engineering career presentation for middle school
Engineering career presentation for middle schoolEngineering career presentation for middle school
Engineering career presentation for middle schoolikfly2002
 
The Top Skills That Can Get You Hired in 2017
The Top Skills That Can Get You Hired in 2017The Top Skills That Can Get You Hired in 2017
The Top Skills That Can Get You Hired in 2017LinkedIn
 

Viewers also liked (12)

ASCE OC Geo-Institute Luncheon - ARTIC: Anaheim Regional Transportation Inter...
ASCE OC Geo-Institute Luncheon - ARTIC: Anaheim Regional Transportation Inter...ASCE OC Geo-Institute Luncheon - ARTIC: Anaheim Regional Transportation Inter...
ASCE OC Geo-Institute Luncheon - ARTIC: Anaheim Regional Transportation Inter...
 
ASCE Utility Standards
ASCE Utility StandardsASCE Utility Standards
ASCE Utility Standards
 
Recent Trends in Pile Foundations Auger Cast Piles for Low Noise / Low Vibration
Recent Trends in Pile Foundations Auger Cast Piles for Low Noise / Low VibrationRecent Trends in Pile Foundations Auger Cast Piles for Low Noise / Low Vibration
Recent Trends in Pile Foundations Auger Cast Piles for Low Noise / Low Vibration
 
DiscoverE Leading Kids Through A Successful Engineering Experience
DiscoverE Leading Kids Through A Successful Engineering ExperienceDiscoverE Leading Kids Through A Successful Engineering Experience
DiscoverE Leading Kids Through A Successful Engineering Experience
 
2017 Engineers Week Planning Webinar
2017 Engineers Week Planning Webinar 2017 Engineers Week Planning Webinar
2017 Engineers Week Planning Webinar
 
College Edition Slide for Electronic Media Board
College Edition Slide for Electronic Media BoardCollege Edition Slide for Electronic Media Board
College Edition Slide for Electronic Media Board
 
DiscoverE Family Day Toolkit
DiscoverE Family Day Toolkit DiscoverE Family Day Toolkit
DiscoverE Family Day Toolkit
 
5 easy tips to prep for engineers week
5 easy tips to prep for engineers week5 easy tips to prep for engineers week
5 easy tips to prep for engineers week
 
Inspiration Innovation: Exploring Engineering Careers
Inspiration Innovation: Exploring Engineering Careers Inspiration Innovation: Exploring Engineering Careers
Inspiration Innovation: Exploring Engineering Careers
 
Effectively talking to kids about engineering
Effectively talking to kids about engineeringEffectively talking to kids about engineering
Effectively talking to kids about engineering
 
Engineering career presentation for middle school
Engineering career presentation for middle schoolEngineering career presentation for middle school
Engineering career presentation for middle school
 
The Top Skills That Can Get You Hired in 2017
The Top Skills That Can Get You Hired in 2017The Top Skills That Can Get You Hired in 2017
The Top Skills That Can Get You Hired in 2017
 

Similar to Interaction of MSE Abutments with Superstructures under Seismic Loading

Course Details of Msc. Engineering Geology & Hydrogeology
Course Details of Msc. Engineering Geology & HydrogeologyCourse Details of Msc. Engineering Geology & Hydrogeology
Course Details of Msc. Engineering Geology & HydrogeologyJeevan Dissanayake
 
Unit 2 - Site Investigation.ppt
Unit 2 - Site Investigation.pptUnit 2 - Site Investigation.ppt
Unit 2 - Site Investigation.pptSylvesterRakgate1
 
PG Course in Tunnelling - Description 2013 EN
PG Course in Tunnelling - Description 2013 ENPG Course in Tunnelling - Description 2013 EN
PG Course in Tunnelling - Description 2013 ENGregory Rousakis
 
Rs1042 civil engineering 11 &amp; 12 2074
Rs1042  civil engineering 11 &amp; 12 2074Rs1042  civil engineering 11 &amp; 12 2074
Rs1042 civil engineering 11 &amp; 12 2074Mahendra Poudel
 
Performance analysis of geosynthetics used in asphalt rehabilitation on urban...
Performance analysis of geosynthetics used in asphalt rehabilitation on urban...Performance analysis of geosynthetics used in asphalt rehabilitation on urban...
Performance analysis of geosynthetics used in asphalt rehabilitation on urban...Matthew Coleman
 
Geotechnical research group - Aarhus University Denmark
Geotechnical research group - Aarhus University DenmarkGeotechnical research group - Aarhus University Denmark
Geotechnical research group - Aarhus University Denmarkkks_eng
 
BOS_Foundationl Engineering PPT.pptx
BOS_Foundationl Engineering PPT.pptxBOS_Foundationl Engineering PPT.pptx
BOS_Foundationl Engineering PPT.pptxMrBhaskarWabhitkar
 
Geo technical Sllyabi for studentsss.pdf
Geo technical Sllyabi for studentsss.pdfGeo technical Sllyabi for studentsss.pdf
Geo technical Sllyabi for studentsss.pdfsoukat2
 
Laboratory-scale geochemical and geomechanical testing of near wellbore CO2 i...
Laboratory-scale geochemical and geomechanical testing of near wellbore CO2 i...Laboratory-scale geochemical and geomechanical testing of near wellbore CO2 i...
Laboratory-scale geochemical and geomechanical testing of near wellbore CO2 i...Global CCS Institute
 
Importance of geological considerations while choosing tunnel sites and align...
Importance of geological considerations while choosing tunnel sites and align...Importance of geological considerations while choosing tunnel sites and align...
Importance of geological considerations while choosing tunnel sites and align...Buddharatna godboley
 
Applicatio of Soil Structure Interaction in the analysis of flexible retainin...
Applicatio of Soil Structure Interaction in the analysis of flexible retainin...Applicatio of Soil Structure Interaction in the analysis of flexible retainin...
Applicatio of Soil Structure Interaction in the analysis of flexible retainin...NikhilGautam68
 
Resume Dwyer 9-16
Resume Dwyer 9-16Resume Dwyer 9-16
Resume Dwyer 9-16Don Dwyer
 
M.tech (se & ndm) w.e.f. 2012 13 batch
M.tech (se & ndm) w.e.f. 2012 13 batchM.tech (se & ndm) w.e.f. 2012 13 batch
M.tech (se & ndm) w.e.f. 2012 13 batchsanthosh kumar
 
Saqlain and Teams project phase- two.pptx
Saqlain and Teams project phase- two.pptxSaqlain and Teams project phase- two.pptx
Saqlain and Teams project phase- two.pptxshafigecr
 

Similar to Interaction of MSE Abutments with Superstructures under Seismic Loading (20)

Engineering Geology Lecture 1
Engineering Geology Lecture 1Engineering Geology Lecture 1
Engineering Geology Lecture 1
 
Course Details of Msc. Engineering Geology & Hydrogeology
Course Details of Msc. Engineering Geology & HydrogeologyCourse Details of Msc. Engineering Geology & Hydrogeology
Course Details of Msc. Engineering Geology & Hydrogeology
 
Unit 2 - Site Investigation.ppt
Unit 2 - Site Investigation.pptUnit 2 - Site Investigation.ppt
Unit 2 - Site Investigation.ppt
 
PG Course in Tunnelling - Description 2013 EN
PG Course in Tunnelling - Description 2013 ENPG Course in Tunnelling - Description 2013 EN
PG Course in Tunnelling - Description 2013 EN
 
Rs1042 civil engineering 11 &amp; 12 2074
Rs1042  civil engineering 11 &amp; 12 2074Rs1042  civil engineering 11 &amp; 12 2074
Rs1042 civil engineering 11 &amp; 12 2074
 
Performance analysis of geosynthetics used in asphalt rehabilitation on urban...
Performance analysis of geosynthetics used in asphalt rehabilitation on urban...Performance analysis of geosynthetics used in asphalt rehabilitation on urban...
Performance analysis of geosynthetics used in asphalt rehabilitation on urban...
 
Geotechnical research group - Aarhus University Denmark
Geotechnical research group - Aarhus University DenmarkGeotechnical research group - Aarhus University Denmark
Geotechnical research group - Aarhus University Denmark
 
CV-Dr.HBN
CV-Dr.HBNCV-Dr.HBN
CV-Dr.HBN
 
BOS_Foundationl Engineering PPT.pptx
BOS_Foundationl Engineering PPT.pptxBOS_Foundationl Engineering PPT.pptx
BOS_Foundationl Engineering PPT.pptx
 
Course Out PPT.pptx
Course Out PPT.pptxCourse Out PPT.pptx
Course Out PPT.pptx
 
Geo technical Sllyabi for studentsss.pdf
Geo technical Sllyabi for studentsss.pdfGeo technical Sllyabi for studentsss.pdf
Geo technical Sllyabi for studentsss.pdf
 
1 introduction
1 introduction1 introduction
1 introduction
 
CV-Updated (11282016)
CV-Updated (11282016)CV-Updated (11282016)
CV-Updated (11282016)
 
Laboratory-scale geochemical and geomechanical testing of near wellbore CO2 i...
Laboratory-scale geochemical and geomechanical testing of near wellbore CO2 i...Laboratory-scale geochemical and geomechanical testing of near wellbore CO2 i...
Laboratory-scale geochemical and geomechanical testing of near wellbore CO2 i...
 
Importance of geological considerations while choosing tunnel sites and align...
Importance of geological considerations while choosing tunnel sites and align...Importance of geological considerations while choosing tunnel sites and align...
Importance of geological considerations while choosing tunnel sites and align...
 
Applicatio of Soil Structure Interaction in the analysis of flexible retainin...
Applicatio of Soil Structure Interaction in the analysis of flexible retainin...Applicatio of Soil Structure Interaction in the analysis of flexible retainin...
Applicatio of Soil Structure Interaction in the analysis of flexible retainin...
 
Pdf to-word (1)
Pdf to-word (1)Pdf to-word (1)
Pdf to-word (1)
 
Resume Dwyer 9-16
Resume Dwyer 9-16Resume Dwyer 9-16
Resume Dwyer 9-16
 
M.tech (se & ndm) w.e.f. 2012 13 batch
M.tech (se & ndm) w.e.f. 2012 13 batchM.tech (se & ndm) w.e.f. 2012 13 batch
M.tech (se & ndm) w.e.f. 2012 13 batch
 
Saqlain and Teams project phase- two.pptx
Saqlain and Teams project phase- two.pptxSaqlain and Teams project phase- two.pptx
Saqlain and Teams project phase- two.pptx
 

More from American Society of Civil Engineers, Orange County Branch

More from American Society of Civil Engineers, Orange County Branch (20)

ASCE OC Luncheon - Sustainability in Transportation Part 2
ASCE OC Luncheon - Sustainability in Transportation Part 2ASCE OC Luncheon - Sustainability in Transportation Part 2
ASCE OC Luncheon - Sustainability in Transportation Part 2
 
ASCE OC Sustainability in Transportation Presentation Part 1
ASCE OC Sustainability in Transportation Presentation Part 1ASCE OC Sustainability in Transportation Presentation Part 1
ASCE OC Sustainability in Transportation Presentation Part 1
 
ASCE OC - EWRI: OCWD Mid-Basin Injection: Centennial Park Project
ASCE OC - EWRI: OCWD Mid-Basin Injection: Centennial Park ProjectASCE OC - EWRI: OCWD Mid-Basin Injection: Centennial Park Project
ASCE OC - EWRI: OCWD Mid-Basin Injection: Centennial Park Project
 
ASCE OC Branch - T&DI Luncheon - Delivering the State's First Diverging Diamo...
ASCE OC Branch - T&DI Luncheon - Delivering the State's First Diverging Diamo...ASCE OC Branch - T&DI Luncheon - Delivering the State's First Diverging Diamo...
ASCE OC Branch - T&DI Luncheon - Delivering the State's First Diverging Diamo...
 
ASCE OC Branch - Geo-Institute Dinner Presentation: Fundamentals of Torque Do...
ASCE OC Branch - Geo-Institute Dinner Presentation: Fundamentals of Torque Do...ASCE OC Branch - Geo-Institute Dinner Presentation: Fundamentals of Torque Do...
ASCE OC Branch - Geo-Institute Dinner Presentation: Fundamentals of Torque Do...
 
ASCE OC Geo Institute - Dinner Presentation - 08-15-2017
ASCE OC Geo Institute - Dinner Presentation - 08-15-2017ASCE OC Geo Institute - Dinner Presentation - 08-15-2017
ASCE OC Geo Institute - Dinner Presentation - 08-15-2017
 
Wilshire Grand Redevelopment Project
Wilshire Grand Redevelopment ProjectWilshire Grand Redevelopment Project
Wilshire Grand Redevelopment Project
 
Jessica Cassman on ENVISION 10/20/16
Jessica Cassman on ENVISION 10/20/16Jessica Cassman on ENVISION 10/20/16
Jessica Cassman on ENVISION 10/20/16
 
Beth Breitenbach on ENVISION 10/20/16
Beth Breitenbach on ENVISION 10/20/16Beth Breitenbach on ENVISION 10/20/16
Beth Breitenbach on ENVISION 10/20/16
 
Doug Sereno on ENVISION 10/20/16
Doug Sereno on ENVISION 10/20/16Doug Sereno on ENVISION 10/20/16
Doug Sereno on ENVISION 10/20/16
 
The State of Orange County's Infrastructure - 2016 Report Card
The State of Orange County's Infrastructure - 2016 Report CardThe State of Orange County's Infrastructure - 2016 Report Card
The State of Orange County's Infrastructure - 2016 Report Card
 
Autonomous Vehicles and Reducing GHG
Autonomous Vehicles and Reducing GHGAutonomous Vehicles and Reducing GHG
Autonomous Vehicles and Reducing GHG
 
Hyperxite sponsor packet_v2.4 (4)
Hyperxite sponsor packet_v2.4 (4)Hyperxite sponsor packet_v2.4 (4)
Hyperxite sponsor packet_v2.4 (4)
 
Transforming Transportation at the Speed of Sound
Transforming Transportation at the Speed of SoundTransforming Transportation at the Speed of Sound
Transforming Transportation at the Speed of Sound
 
ASCE Seawater Desalination Project at Huntington Beach - Poseidon Water
ASCE Seawater Desalination Project at Huntington Beach - Poseidon WaterASCE Seawater Desalination Project at Huntington Beach - Poseidon Water
ASCE Seawater Desalination Project at Huntington Beach - Poseidon Water
 
Hyperxite sponsor packet_v2.4
Hyperxite sponsor packet_v2.4Hyperxite sponsor packet_v2.4
Hyperxite sponsor packet_v2.4
 
TTG Luncheon 4.6.2016 - OC Streetcar
TTG Luncheon 4.6.2016 - OC StreetcarTTG Luncheon 4.6.2016 - OC Streetcar
TTG Luncheon 4.6.2016 - OC Streetcar
 
Can a GSA be formed within a Partially Adjudicated Basin? | Brian Powell, EMWD
Can a GSA be formed within a Partially Adjudicated Basin? | Brian Powell, EMWDCan a GSA be formed within a Partially Adjudicated Basin? | Brian Powell, EMWD
Can a GSA be formed within a Partially Adjudicated Basin? | Brian Powell, EMWD
 
How OCWD Plans to Comply with SGMA, Or Are We Already There? | Roy Herndon, OCWD
How OCWD Plans to Comply with SGMA, Or Are We Already There? | Roy Herndon, OCWDHow OCWD Plans to Comply with SGMA, Or Are We Already There? | Roy Herndon, OCWD
How OCWD Plans to Comply with SGMA, Or Are We Already There? | Roy Herndon, OCWD
 
Sustainable Groundwater Management Act (SGMA) | Enrique Lopezcalva, RMC Water...
Sustainable Groundwater Management Act (SGMA) | Enrique Lopezcalva, RMC Water...Sustainable Groundwater Management Act (SGMA) | Enrique Lopezcalva, RMC Water...
Sustainable Groundwater Management Act (SGMA) | Enrique Lopezcalva, RMC Water...
 

Recently uploaded

Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...ranjana rawat
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 

Recently uploaded (20)

Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 

Interaction of MSE Abutments with Superstructures under Seismic Loading

  • 1. 2/16/2017 1 Interaction of MSE Abutments  with Superstructures under  Seismic Loading Prof. John S. McCartney and Yewei Zheng University of California San Diego Department of Structural Engineering Presentation to: GI of ASCE Orange County Section November 3, 2016 Presentation Overview 2 2 • Personal Research Introduction • Geotechnical Engineering at UCSD – Faculty  – Facilities  – New MS in Geotechnical Engineering • Technical Presentation: MSE Bridge Abutments – Motivation – Numerical Simulations with FLAC – Experimental Shaking Table Testing Program – Unsaturated Soil Aspect: Apparent Cohesion Estimates  – Preliminary Results
  • 2. 2/16/2017 2 3 Personal Research Introduction University of Colorado Boulder BS/MS 2002 Faculty 2008-2014 University of Arkansas Faculty 2007-2008 University of California San Diego Faculty 2014-present University of Texas at Austin PhD 2007 Personal Research Focus Material Characterization 1. Unsaturated soil mechanics • Effective stress evaluation • Yielding mechanisms under changes in temperature and suction • Compression behavior of soils to high stresses • Thermal volume change mechanisms • Measurement of hydro/thermal properties (SWRC, HCF, TCF, VHCF) 2. Geosynthetics engineering 3. Shear strength of tire-derived aggregates Foundation Engineering 1. Centrifuge and full-scale modeling 2. Thermally active geotechnical systems (energy piles, geothermal heat storage systems, thermal soil improvement) 3. Offshore foundations Earthquake Engineering and Soil-Structure Interaction 1. Seismic response of unsaturated soils 2. Seismic response of MSE bridge abutments 4 4 Personal Research Introduction
  • 3. 2/16/2017 3 Geotechnical Faculty at UCSD Ahmed Elgamal, Professor Enrique Luco, Professor John McCartney, Associate Professor Ingrid Tomac, Asst. Research Scientist Tara Hutchinson, Professor 5 http://nees.ucsd.edu/facilities/shake-table.shtml Large-scale experiments (UC San Diego outdoor shake table) 6
  • 4. 2/16/2017 4 Length of 6.7 m (22 ft), width of 3 m (9.6 ft) and height of 4.7 m (15.2 ft) Facilities: Large Laminar Container 7 Facilities: Container for Retaining Wall Testing on the Large Shaking Table 8
  • 5. 2/16/2017 5 Facilities: Powell Laboratory Shake Table 9 UCSD South Powell Structural Lab  Shake Table: • Dimension: 10 ft. x 16 ft. • Shaking DOF: 1D in N‐S direction • Maximum gravity load: 80 kips • Dynamic stroke: ± 6 in. • Dynamic capacity: 90 kips • Large laminar container Facilities: Large Soil Pit for Foundation Testing 9m-deep soil pit and reaction wall for foundation testing Earth moving equipment: Bobcat, compactor, backhoe, crane 10
  • 6. 2/16/2017 6 Facilities: Full-Scale Soil-Borehole Thermal Energy Storage System 11 0 5 10 15 20 25 30 35 Thermal energy (GJ) Solar Borehole Array Actidyn Model C61-3 Capacity: 50 g-ton Nominal radius: 1.70m Max. acc.: 130g UCSD Facilties: Geotechnical Centrifuge 12
  • 7. 2/16/2017 7 Facilities: Update of the Geotechnical Centrifuge New features: • Data acquisition system and actuators • Containers (laminar, 3 clay tanks) • Shaking table • Control room 13 UCSD Element‐Scale Geotechnical Laboratory 14 Stress path triaxial testing setup Standard soil characterization equipment
  • 8. 2/16/2017 8 UCSD Element‐Scale Geotechnical Laboratory 15 Geosynthetic pullout box Large-scale direct shear/simple shear device for shear strength of large particle materials (tire derived aggregates) MS in Geotechnical Engineering at UCSD Goals: • Provide advanced degree option for students seeking to specialize in geotechnical engineering • Meet demand of local employers and interest of current undergraduate students • Build links to practice for students only interested in MS • Provide a recruiting tool for top MS students to continue for a PhD in geotechnical engineering • Facilitate completion of MS coursework in 4 quarters plus a summer • Leverage and build upon existing courses in the department • Build upon existing strengths: earthquake engineering, soil-structure interaction, computational geotechnics, and large-scale evaluation of geotechnical systems Program: • The M.S. degree program includes required core courses and technical electives • M.S. students must complete 48 units of graduate credits for graduation (12 courses) • Suggested focus sequences: • Geotechnical engineering and geomechanics • Geotechnical earthquake engineering • Soil-structure interaction 16
  • 9. 2/16/2017 9 MS in Geotechnical Engineering at UCSD Core Courses (Students must take all four): • SE 271 Solid Mechanics for Structural & Aerospace Engineering • SE 241 Advanced Soil Mechanics • SE 242 Advanced Foundation Engineering • SE 250 Stability of Earth Slopes & Retaining Walls Geotechnical electives (students must select at least four): • SE 222 Geotechnical Earthquake Engineering • SE 226 Groundwater Engineering • SE 243 Soil-Structure Interaction • SE 244 Numerical Methods in Geomechanics • SE 247 Ground Improvement • SE 248 Engineering Properties of Soils • SE 207 Rock Mechanics • SE 207 Soil Dynamics • SE 207 Unsaturated Soil Mechanics Other technical electives (choose up to 4): • Students may select from a list of structural, computational mechanics, or geology courses for the remaining 4 technical electives 17 Geotechnical Engineering  Graduate Student Organizations CalGeo Student Chapter (Initiated 2015) • Brings in local geotechnical engineers for seminars GeoInstitute Graduate Student Organization (Initiated 2016) • Facilitates engagement of graduate students in international geotechnical conferences 18
  • 10. 2/16/2017 10 Technical Presentation: Seismic  Response of MSE Bridge Abutments Roadways Slopes Embankments Retaining walls Bridge abutments • General trend is toward the use of GRS‐IBS abutments (close spacing, variable  lengths, specific design details from FHWA), but current study is on MSE bridge  abutments (length = 0.7H, load applied to bridge seat on reinforced soil mass) • GRS and MSE have many advantages over pile‐supported bridge abutments,  including cost savings, easier and faster construction, and smoother transition 19 19 Geosynthetics in transportation applications: Acknowledgements 20 20 • Project sponsors:  – Caltrans – Pooled fund members  (WashDOT, UDOT, MDOT) • Collaborators – Yewei Zheng, Ph.D. Candidate – Prof. Benson Shing, Chair of  SE at UCSD – Prof. Patrick Fox, Head of CEE  at Penn State University
  • 11. 2/16/2017 11 Research Motivation GRS bridge abutments have been widely used in US, but has not been adopted  in California due to uncertainty about seismic performance: • Geotechnical: backfill settlement and facing displacement • Structural: bridge deck and seat movements, impact force between bridge  deck and seat, and interaction between bridge superstructure and GRS  abutment, overall philosophy of GRS vs. MSE (concerns with bridge deck  being placed directly onto the reinforced soil mass)  21 21 MSE wall performance in Maule Earthquake, Chile Research Motivation GRS bridge abutments have been widely used in US, but has not been adopted  in California due to uncertainty about seismic performance: • Geotechnical: backfill settlement and facing displacement • Structural: bridge deck and seat movements, impact force between bridge  deck and seat, and interaction between bridge superstructure and GRS  abutment, overall philosophy of GRS vs. MSE (concerns with bridge deck  being placed directly onto the reinforced soil mass)  22 22 MSE bridge abutment performance in Maule Earthquake, Chile
  • 12. 2/16/2017 12 Literature Review – Static Performance • Lee and Wu (2004) reviewed several case studies of in‐ service GRS abutments and reported satisfactory  performance under service load conditions • Adams et al. (2011) reported excellent performance for five  in‐service GRS‐IBS abutments • Field and laboratory static loading tests indicate that the  GRS piers and abutments had satisfactory performance  under design loads and relatively high load‐bearing  capacity (Adams 1997; Gotteland et al. 1997; Ketchart and  Wu 1997; Wu et al. 2001, 2006; Adams et al. 2011; Nicks et  al. 2013) 23 23 Literature Review – Seismic Performance • El‐Emam and Bathurst (2004, 2005, 2007) performed a series of  shake table tests on reduced‐scale GRS walls with a full‐height  rigid facing panel  • Ling et al. (2005, 2012) conducted full‐scale shake table tests on  GRS walls with modular block facing using fine sand and silty sand  as backfill soils • Yen et al. (2011) found that GRS abutments performed well from  post‐earthquake reconnaissance for 2010 Maule Earthquake • Helwany et al. (2012) conducted large‐scale shake table tests on a  GRS abutment and found that it can sustain sin motion up to 1g  without significant distresses 24 24
  • 13. 2/16/2017 13 Literature Review – Seismic Performance References Height  (m) Facing Backfill Reinforcement Input  motion Findings El‐Emam and  Bathurst  (2004, 2005,  2007) 1.0 rigid  panel sand polyester  geogrid sinusoidal facing lateral displacement could be  reduced by using smaller facing  panel mass, inclined facing panels,  longer reinforcement, stiffer  reinforcement, and smaller vertical  reinforcement spacing Ling et al.  (2005, 2012) 2.8 modular  block sand/silty sand polyester  geogrid earthquake longer reinforcement at top layer  and smaller reinforcement vertical spacing improved seismic  performance; vertical acceleration has little influence; apparent cohesion improved seismic performance Helwany et al.  (2012) 3.6 modular  block sand woven  geotextile sinusoidal GRS abutment remained functional  under sinusoidal motions up to 1.0 g 25 25 Project Objectives • Investigate performance of MSE abutments for service limit  state, strength limit state, and extreme event limit state (seismic  loading)  • Approaches: • Numerical simulations using FLAC2D and FLAC3D • ½ scale experimental physical modeling • Improve design guidelines for external and internal stability of  MSE bridge abutments for static and seismic loading 0 ~ 200 kPa 200 ~ > 1000 kPa extreme loadings service limit strength limit extreme event limit 26 26
  • 14. 2/16/2017 14 Validation of FLAC 2D Model for Static Loading Founders/Meadows Parkway Bridge, CO (Abu-Hejleh et al. 2002) Extensive instrumentation 27 27 Instrumented section 800 (after Abu-Hejleh et al. 2002) 28 28 Validation of FLAC 2D Model for Static Loading
  • 15. 2/16/2017 15 Backfill Soil for Founders‐Meadows Backfill treated as an elastic‐plastic material with Mohr‐Coulomb  failure criterion, and Duncan‐Chang hyperbolic relationship Comparison of measured and simulated triaxial test results 0 200 400 600 800 1000 1200 0 2 4 6 8 10 Simulated Measured (69 kPa) Measured (138 kPa) Measured (207 kPa) DeviatoricStress(kPa) Axial Strain (%) 3' = 207 kPa 3' = 138 kPa 3' = 69 kPa -1.0 -0.5 0 0.5 1.0 1.5 2.0 0 2 4 6 8 10 Simulated Measured (69 kPa) Measured (138 kPa) Measured (207 kPa) VolumetricStrain(%) 3' = 69 kPa 3' = 138 kPa Axial Strain (%) 3' = 207 kPa 29 29 Reinforcement and Interfaces linearly elastic‐plastic cable  elements Axial strain Relative displacement Tensile force Shear force Shear strength Normal force interface elements with Coulomb sliding Reinforcement:  Interfaces:  30 30
  • 16. 2/16/2017 16 Initial Numerical Model Validation In general, simulated results are in good agreement with field  measurements, including displacements, lateral and vertical earth  pressures, and tensile strains and forces in reinforcement  Lower Wall Construction (Stage 1) Bridge/Approach Construction (Stages 2-6) Traffic Loading (Stage 7) Incremental Maximum Lateral Facing Displacement (mm) Measured 12 10 5 Simulated HR n/a 9 3 Simulated NHR 11 14 4 Incremental Bridge Footing Settlement (mm) Measured n/a 12 10 Simulated HR n/a 13 5 Simulated NHR n/a 14 7 Incremental displacements for Founders/Meadows GRS bridge abutment (Zheng and Fox 2016 in JGGE) 0 1 2 3 4 5 6 0 2 4 6 8 10 12 14 16 Measured Simulated HR Simulated NHR Elevation(m) Lateral Facing Displacement (mm) Horizontal restraint (HR) from the  bridge structure has important  effect on abutment deflections 31 31 Shake Table Testing Program UCSD South Powell Structural Lab  Shake Table: • Dimension: 10 ft. x 16 ft. • Shaking DOF: 1D in N‐S direction • Maximum gravity load: 80 kips • Dynamic stroke: ± 6 in. • Dynamic capacity: 90 kips Shake table testing has been successfully used to investigate  seismic performance of GRS structures (El‐Emam and Bathurst  2004, 2005, 2007; Ling et al. 2005, 2012; Tatsuoka et al. 2009,  2012; Helwany et al. 2012) 32 32
  • 18. 2/16/2017 18 1g Shake Table Similitude Relationships Scaling Factor λ=2 Length λ 2 Density 1 1 Strain 1 1 Mass λ3 8 Acceleration 1 1 Velocity λ1/2 1.414 Stress λ 2 Stiffness λ2 4 Force λ3 8 Time λ1/2 1.414 Frequency λ‐1/2 0.707 Similitude relationships for 1 g shake table test (Iai 1989) Stress-strain relationships for model and prototype (Rocha 1957; Roscoe 1968) 35 35 Goal: same strains in model and prototype UCSD Sand Backfill 0 20 40 60 80 100 0.01 0.1 1 10 PercentFiner(%) Particle Size (mm) SW Sand Cu = 6.1, Cz = 0 36 36
  • 19. 2/16/2017 19 UCSD Sand Backfill -2 0 2 4 6 8 0 2 4 6 8 10 VolumetricStrain(%) 3' = 7 kPa 3' = 138 kPa Axial Strain (%) 3' = 207 kPa 3' = 69 kPa 3' = 34 kPa 0 200 400 600 800 1000 1200 0 2 4 6 8 10 DeviatorStress(kPa) Axial Strain (%) 3' = 69 kPa 3' = 34 kPa 3' = 7 kPa 3' = 138 kPa 3' = 207 kPa 37 37 UCSD Sand Backfill 38 38 Properties Value  Specific gravity, Gs 2.61 Coefficient of uniformity, Cu 6.1 Coefficient of curvature, Cz 1.0 Maximum void ratio, emax 0.853 Minimum void ratio, emin 0.371 Recompression index, Cr 0.001 Compression index, Cc 0.006 Friction angle, ′ (°) 49.3 van Genuchten (1980) SWRC model parameter, vG (kPa‐1) 0.5 van Genuchten (1980) SWRC model  parameter, NvG 2.1 Drying curve volumetric water content at zero suction, d 0.319 Wetting curve volumetric water content at zero suction, w 0.204 Residual volumetric water content, r 0
  • 20. 2/16/2017 20 0 250 500 750 1000 1 10 100 TensileStiffness(kN/m) Strain Rate (%/min) Geogrid Reinforcement 0 200 400 600 800 1000 1200 1400 0 5 10 15 20 TensileLoad(N) Strain (%) 10%/min - 1 10%/min - 2 10%/min - 3 0 200 400 600 800 1000 1200 1400 0 5 10 15 20TensileLoad(N) Strain (%) 1%/min 5%/min 10%/min 50%/min 100%/min J = 580 kN/m 2% Typical range J = 378 kN/m <1% 39 39 Prototype (target) Model (used in tests) Manufacturer Model ‐ Tensar LH800 Materials HDPE HDPE Aperture Size (MD x TD) 9 in x 2.4 in 4.5 in x 1.2 in Stiffness (kip/ft) 104 kip/ft 26 kip/ft Length – 0.7H (ft) 9.8 4.9 Shaking Table Testing Plan 40 40 Focus of this presentation Test 1 2 3 4 5 6 7 Purpose Reduced  Bridge  Load Reinf.  spacing Reinf.  stiffness Baseline Baseline Steel  mesh Reduced  Bridge  Load (repeat) Shaking  Direction Long. Long. Long. Long. Transverse Long. Long. Reinf. spacing  (in) 6 12 6 6 6 6 6 Reinf. stiffness  (kip/ft) 25.9 25.9 12.9 25.9 25.9 327.6 25.9 Average bridge  surcharge (psf) 940 1340 1340 1340 1340 1340 940
  • 21. 2/16/2017 21 Experimental/Numerical Design • Bridge deck: 6.4 m long, 0.9 m wide, and 0.45 m deep, 2.3 m clearance • Bridge load: 7 kN + 65 kN + 33 kN (vertical stress = 63 kPa) • MSE abutment: 2.15 m high lower wall and 0.6 m high upper wall • Reinforcement: 0.15 m spacing and 1.5 m (0.7H) long GRS abutment Bridge seat Bridge deck Support wall Sliding platform Upper wall Shake table Steel beam Reaction wall 41 41 Additional Schematics 42 42
  • 24. 2/16/2017 24 Instrumentation Strain gages String potentiometers Linear potentiometers Pressure cells Load cells Accelerometers Dielectric sensors 47 47 Instrumentation  Plan Longitudinal Section L1 Longitudinal Section L2 Transverse Section T1 48 48 L1 T1
  • 25. 2/16/2017 25 Estimates of Apparent Cohesion in Backfill 49 49 0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 Elevation,z(m) Gravimetric Water Content (%) S = wGs/e 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.1 1.0 10.0 100.0 1000.0 Degree of saturation, S Suction, ψ (kPa) Drying Wetting e = 0.50 n = 0.33 p = 0 relative density = 60% α = 0.85 N = 1.80 α = 0.65 N = 1.80 res res e S SS S    1            vG vG NN vGeS 1 1 1  Apparent Cohesion 50 50 0 0.5 1.0 1.5 2.0 2.5 0 2 4 6 8 10 12 14 Drying Wetting Elevation,z(m) Apparent Cohesion (kPa) f = ’tan’ = (Se)tan’ ’ = (-ua)+s ’ = (-ua)+ ’ = (-ua)+Se ’ = (Se) SWRC is needed for to estimate the apparent cohesion, but otherwise the material properties for saturated/dry soil can be used Apparent cohesion changes with wetting/drying: Effective stress:
  • 26. 2/16/2017 26 Concept of Applied Shaking Motions 51 51 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0 5 10 15 20 25 30 35 40 Original Scaled Acceleration(g) Time (s) -150 -100 -50 0 50 100 150 0 5 10 15 20 25 30 35 40 Original Scaled Displacement(mm) Time (s) • Frequency of motion is reduced by √2, which shortens the duration • Acceleration amplitude stays the same • Displacement amplitude is scaled by half Typical Response Spectrum of Applied Motion 52 52 0 0.2 0.4 0.6 0.8 1.0 1.2 0.1 1 10 Target input Shaking table PsuedoSpectralAcceleration(g) Frequency (Hz) 1940 Imperial Valley Motion (El Centro Station): 5% damping
  • 27. 2/16/2017 27 Applied Shaking Motions Shaking  Number Motion Maximum  Acceleration (g) Maximum  Displacement  (mm) Control Mode 1 White Noise 0.1 26.1 Acceleration 2 1940 Imperial Valley  0.31 66 Displacement 3 White Noise 0.1 26.1 Acceleration 4 2010 Maule 0.40 109 Displacement 5 White Noise 0.1 26.1 Acceleration 6 1994 Northridge 0.58 88.7 Displacement 7 White Noise 0.1 26.1 Acceleration 8 Sin @ 0.5 Hz 0.05 50 Displacement 9 Sin @ 1 Hz  0.1 25 Displacement 10 Sin @ 2 Hz 0.2 12.5 Displacement 11 Sin @ 5 Hz 0.25 2.5 Displacement 12 White Noise 0.1 26.1 Acceleration 53 53 Applied Shaking Motions • White noise – characterize frequencies • Earthquake motions (frequencies scaled) 1. 1940 Imperial Valley (El Centro) – PGA = 0.31 g/ PGD = 66 mm 2. 2010 Maule (Concepcion) – PGA = 0.40 g/ PGD = 109 mm 3. 1994 Northridge (Newhall) – PGA = 0.58 g/ PGD = 89 mm • Sinusoidal motions (0.5, 1, 2, and 5 Hz) -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0 4 8 12 16 20 24 28 Acceleration(g) Time (s) -100 -50 0 50 100 0 4 8 12 16 20 24 28 Displacement(mm) Time (s) -60 -40 -20 0 20 40 60 0 5 10 15 20 25 30 35 40 Displacement(mm) Time (s) -3 -2 -1 0 1 2 3 0 5 10 15 20 25 30 35 40 Displacement(mm) Time (s) 0.5 Hz 5 Hz Imperial Valley ‐ AccelerationImperial Valley ‐ Displacement 54 54
  • 28. 2/16/2017 28 Bridge Seat Settlements Test 4, Maule Earthquake SE SW NE NW Bridge Seat Instrumentation 55 55 Confinement of the soil at the back of the wall (south) leads to less variable strains during shaking -2 0 2 4 6 8 10 0 20 40 60 80 100 NW NE SW SE Settlement(mm) Time (s) -2 0 2 4 6 8 10 0 20 40 60 80 100 Settlement(mm) Time (s) Bridge Seat Settlements Test Vertical Stress  (kPa) Residual Bridge Seat Settlements (mm) Bridge Deck  Placement Imperial  Valley  Motion Maule  Motion Northridge  Motion Test 1  (reduced load) 44 1.4 2.7 2.5 ‐ Test 4  (baseline) 63 2.1  1.5 1.5 2.1 Note: Values are incremental for each testing stage, and are  the average of the settlements of the four corners 56 56
  • 29. 2/16/2017 29 Lateral Facing Displacements • Lateral face displacements generally increase with elevation • Residual displacements are incremental for each shaking event • Maximum dynamic lateral facing displacements are greater than residual values 57 57 0 0.5 1.0 1.5 2.0 0 1 2 3 4 5 6 EOC - Abutment Imperial Valley - Residual Imperial Valley - Max Maule - Residual Maule - Max Elevation,z(m) Lateral Facing Displacement (mm) Lateral Facing Displacements • Displacements for L1 are larger than L2 despite greater confinement in L1  • Displacements are larger for the Northridge Earthquake, which has larger PGA • Displacements for T1 are larger than L1 and L2 0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0 L1 L2 T1 Elevation(m) Lateral Facing Displacement (mm) 0 0.5 1.0 1.5 2.0 0 1 2 3 4 5 L1 L2 T1 Elevation(m) Lateral Facing Displacement (mm) Test 4 - Imperial Valley Motion Test 4 - Northridge Motion 58 58
  • 30. 2/16/2017 30 Relative Movements of Bridge Seat and  Top of the Wall Test Vertical Stress  (kPa) Relative Bridge Seat Lateral  Movements (mm) Imperial  Valley  Motion Maule  Motion Northridge  Motion Test 1 44 2.4 6.4 ‐ Test 4 63 ‐0.2 0.4 0 Note: Incremental average values, (‐) is  toward the back of the wall 59 59 Fundamental Frequency from White Noise Motions 60 60 0 5 10 15 20 25 0 5 10 15 20 25 Shaking event 1 Shaking event 3 Shaking event 5 FourierAmplitude Frequency (Hz)
  • 31. 2/16/2017 31 Acceleration Amplification • Acceleration amplification increases with elevation • Amplification ratios increase from retained soil zone to reinforced soil zone to wall facing • Amplification ratios are larger for L1 than L2 Imperial Valley Earthquake 0 0.5 1.0 1.5 2.0 0.8 1.0 1.2 1.4 1.6 1.8 L1 - Wall Facing L1 - Reinforced Soil Zone L1 - Retained Soil Zone L2 - Reinforced Soil Zone L2 - Retained Soil Zone Elevation(m) Acceleration Amplification Ratio 61 61 Bridge Seat and Deck Accelerations -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0 4 8 12 16 20 24 28 Bridge Seat Bridge Deck Acceleration(g) Time (s) Imperial Valley Earthquake Bridge deck: Max acceleration = 0.53 g Amplification ratio = 1.29 Bridge seat: Max acceleration = 0.64 g Amplification ratio = 1.56 62 62
  • 32. 2/16/2017 32 Bridge Seat and Deck Accelerations 63 63 0 5 10 15 20 25 0 5 10 15 20 25 Bridge deck/shaking table Bridge seat/shaking table FourierAmplitude Frequency (Hz) Bridge Seat and Deck Movements 64 64 -16 -12 -8 -4 0 4 8 12 16 0 20 40 60 80 100 East West HorizontalDisplacement(mm) Time (s) -16 -12 -8 -4 0 4 8 12 16 0 20 40 60 80 100 HorizontalDisplacement(mm) Time (s) Test 4 – Maule Motion
  • 33. 2/16/2017 33 Bridge Seat and Deck Movements 65 65 -16 -12 -8 -4 0 4 8 12 16 0 20 40 60 80 100 RelativeHorizontalDisplacement(mm) Time (s) Test 4 – Maule Motion Bridge Seat and Deck Movements -30 -20 -10 0 10 20 30 0 4 8 12 16 20 24 28 RelativeDisplacement(mm) Time (s) Relative Displacement  (mm) 1940 Imperial Valley 2010 Maule 1994 Northridge Residual 2.1 1.4 ‐4.3 Maximum ‐ 6.8/8.3 ‐9.7/9.8 ‐30/20.6 Test 4 Bridge deck sliding relative to bridge seat (relative displacement) Northridge Earthquake seismic joint closed moving away from  bridge seat moving towards  bridge seat seismic joint  remained open 66 66
  • 34. 2/16/2017 34 Seismic Joint Closure 0 10 20 30 40 50 60 0 4 8 12 16 20 24 28 SeismicJointSize(mm) Time (s) Northridge Earthquake closed remained open 67 67 Horizontal Contact Forces: Earthquake -100 -50 0 50 100 0 4 8 12 16 20 24 28 Load Cell - East Load Cell - West HorizontalContactForce(kN) Time (s) Horizontal contact forces for the Northridge Earthquake, Test 4 68 68
  • 35. 2/16/2017 35 Reinforcement Strains 69 69 0 0.05 0.10 0.15 0.20 Top Bottom x = 0.46 m, z = 1.875 m 0 0.05 0.10 0.15 0.20 Top Bottom ReinforcementStrain(%) x = 0.46 m, z = 0.975 m 0 0.05 0.10 0.15 0.20 0 4 8 12 16 20 24 28 Top Bottom Time (s) x = 0.46 m, z = 0.075 m Test 4 1940 Imperial Valley Motion Reinforcement  Strains 70 70 Test 4 1940 Imperial Valley Motion bridge load 0 0.1 0.2 0.3 Initial Maximum Minimum Residual z = 1.95 m layer 13 0 0.1 0.2 0.3 z = 1.50 m layer 10 0 0.1 0.2 0.3 ReinforcementStrain(%) z = 1.05 m layer 7 0 0.1 0.2 0.3 z = 0.60 m layer 4 0 0.1 0.2 0.3 0 0.5 1.0 1.5 2.0 z = 0.15 m layer 1 Distance from Facing, x (m)
  • 36. 2/16/2017 36 Reinforcement Strains (Max.) Longitudinal Section L1 bridge load ReinforcementStrain(%) 0 0.1 0.2 0.3 0.4 0.5 EOC Imperial Valley Maule Northridge z = 1.95 m layer 13 0 0.1 0.2 0.3 0.4 0.5 z = 1.05 m layer 7 0 0.1 0.2 0.3 0.4 0.5 0 0.5 1.0 1.5 2.0 z = 0.15 m layer 1 Distance from Facing (m) bridge load -0.1 0 0.1 0.2 0.3 0.4 EOC Imperial Valley Maule Northridge z = 1.95 m layer 13 -0.1 0 0.1 0.2 0.3 0.4 z = 1.5 m layer 10 -0.1 0 0.1 0.2 0.3 0.4 ReinforcementStrain(%) z = 1.05 m layer 7 -0.1 0 0.1 0.2 0.3 0.4 z = 0.6 m layer 4 -0.1 0 0.1 0.2 0.3 0.4 0 0.5 1.0 1.5 2.0 z = 0.15 m layer 1 Distance from Facing (m) bridge load ReinforcementStrain(%) 0 0.1 0.2 0.3 0.4 0.5 z = 1.95 m layer 13 0 0.1 0.2 0.3 0.4 0.5 z = 1.05 m layer 7 0 0.1 0.2 0.3 0.4 0.5 0 0.2 0.4 0.6 0.8 1.0 z = 0.15 m layer 1 Distance from Facing (m) Longitudinal Section L2 Transverse Section T1 max strain  71 71 Preliminary Findings • The bridge deck load was observed to lead to more static deformations (lateral and  vertical), but less dynamic deformations due to the greater geosynthetic  confinement • Lateral displacements are greater near the top of the wall but are not large enough  to cause geotechnical concerns  • Lateral displacements and acceleration responses for section L1 are larger than L2 • Acceleration amplifies with elevation, and amplification ratios increase from  retained soil zone to reinforced soil zone to wall facing • Seismic‐induced reinforcement strains are largest near the wall face due to the  inertia of the facing blocks • Seismic joint might close during shaking and result in impact force on the bridge  seat, but only during high frequency sinusoidal movements or Northridge EQ • Overall, MSE abutments show good seismic performance in terms of lateral facing  displacements and bridge seat movements 72 72