Embed presentation
Download as PDF, PPTX




























![void MaterializeTuple(char* tuple) {
for (int i = 0; i < num_slots_; ++i) {
char* slot = tuple + offsets_[i];
switch (types_[i]) {
case BOOLEAN:
*slot = ParseBoolean();
break;
case INT:
*slot = ParseInt();
case FLOAT: …
case STRING: …
// etc.
}
}
}
void MaterializeTuple(char* tuple) {
// i = 0
*(tuple + 0) = ParseInt();
// i = 1
*(tuple + 4) = ParseBoolean();
// i = 2
*(tuple + 5) = ParseInt();
}
Hot code path, called per row](https://image.slidesharecdn.com/impala-modernsqlengine-141113142045-conversion-gate02/85/Impala-A-Modern-Open-Source-SQL-Engine-for-Hadoop-29-320.jpg)























The document discusses a query execution framework involving components such as query planners, coordinators, and executors, which handle SQL requests and manage data across distributed systems like HDFS and HBase. It describes the process of transforming requests into executable plan fragments and handling intermediate results, with a focus on efficient data serialization. Additionally, it touches on various SQL functions and performance optimization techniques in data management.




























![void MaterializeTuple(char* tuple) {
for (int i = 0; i < num_slots_; ++i) {
char* slot = tuple + offsets_[i];
switch (types_[i]) {
case BOOLEAN:
*slot = ParseBoolean();
break;
case INT:
*slot = ParseInt();
case FLOAT: …
case STRING: …
// etc.
}
}
}
void MaterializeTuple(char* tuple) {
// i = 0
*(tuple + 0) = ParseInt();
// i = 1
*(tuple + 4) = ParseBoolean();
// i = 2
*(tuple + 5) = ParseInt();
}
Hot code path, called per row](https://image.slidesharecdn.com/impala-modernsqlengine-141113142045-conversion-gate02/85/Impala-A-Modern-Open-Source-SQL-Engine-for-Hadoop-29-320.jpg)





















