1

we all know very well that a master key unlocks many locks,Similarly our just one
Master triangle can solve many questions belonging to properties and solutions of
triangles.
Properties and Solutions of Triangles
We
 It is the only triangle in which the
special points i.e. Centroid,Circumcenter, Incenter and Orthocen
Equilateral Triangle (A Magical Triangle ) : -
have made 3 Master Triangles, Equilateral , Rightangled and Rightangled isoscales.
,

0 0 0
ter are coincide.
also it is the only triangle in which Median, Internal angle bisector, Altitute are
also coincide.
For this triangle we take the sides as a = 1,b = 3 c = 1
and angles as A = 30 , B = 60 and C = 90 .
Right - angled Triangle : -
Right
 
0
,
3
Let a = b = c = 1 A= B = C = 60 Area= Δ =
4
Radius of circumcirc
  

(Equilateral Triangle)
0 0 0
For this triangle we take sides as a = 1,b = 1 c = 2
and angles as A = 45 , B = 45 and C = 90 .
- angled Isoscales : -
Master Triangle - MT -1 1
1 2 3
abc 1
le R
4Δ 3
Δ 1
Radius of in circle r
s 2 3
3
Radii of ex circles are r r r
2
3
Length of perpendicular (altitutes) AD BE CF
2
  
   
   
   
* The above master triangle can be used most widely to all the problems which
belong to a famil
-
-
Q In a triangle ABC the correct statement is :
y of triangles i.e. problems belong to all triangles.
* It can also be applied to all those problems for which the data of this triangle
satisfy the given conditions in the questions.
[
A B+C A B C
(a) (b c) cos = 2asin (b) (b c)cos = a sin
2 2 2 2
B C A B+C A
(c) (b c) sin =acos (d) ( b+c )sin =acos
2 2 2 2
S.
       
        
       
       
        
       
Here above problem belongs to all triangles,so
]IITJEE2005
Let the triangle be an equilateral,so according to data of MT 1,
a b c 1 and A B C 60º after putting the value of a,b,c then only option
(b)will balance and s o it is the right choice.
     
MT - 1 can be applied here.
–
A
B CD
E
P
F
1
2
 
 
0 0 0
a 1,b 3 ,c 2
A 30 ,B 60 ,C 90
3 1
r .
2
R 1.
1 3
Δ= . 3 .
2 2
   
   

 
 
 
Right Angled Triangle
Master Triangle 2 MT - 2
* The above master triangle can be used most widely to all the problems which
belong to a family of triangles i.e. pro
Q. If sides of a triangle are in ratio 1: 3: 2, then ratio between its orresponding angles is :
(
(a
ΙΙΤJEE 2004)
blems belong to all triangles.
and if the data of this triangle satisfy the given conditions in the questions.
     ) 3 2 1 b 3 1 2 c 1 2 3 d 1 3 : 2
S. The data of MT–2,  a 1,b 3 and c 2  satisfy the given conditions
so triangle is right angled & A 30º, B 60º, C 90º. A:B:C 30 60:90 1 : 2 3
Q In a Δ A
      
  
       
 BC, If r and R are in- radius and circum-radius then 2(r R)
(a) a b (b) b c (c) c a (d) a b c
ST. Let the triangle be a right angled isoscales, According to MT–3,
a 1, b
 
    
 
AIEEE2005
 
 
1 1 1 1
1, c 2 & r 1 , R L.H.S. 2 r R 2 1 2
2 2 2 2
put the values of a, b & c in the options,(a) will give R.H.S
a c
Q. In ABC if angles are in arithmatic Pr ogressions then value of sin 2C sin 2A is :
c a
(a) 1/2 (b) 3
 
          
 
 
IITJEE2010
0 0 0
0 0
2 2 2
/2 (c) 1 (d) 3
S. Angles are in A.P. so by data of MT-2,A 30 ,B 60 ,C 90 and a 1,b 3,c 2
a c 1 2 3
sin 2C sin 2A sin180 sin 60 2 3.
c a 2 1 2
a b c
Q. In ABC if A : B : C 1 : 2 : 3,then the value of is equals to :
ab bc ac
2 2 8
(a) (b) (c)
3 1 3 1 3 3
     
     
 
 
 
  

0 0 0
2 2 2
8
(d)
2 3 3 1
S. Angles of MT-2 are 30 : 60 : C 90 1 : 2 3 and so we can apply MT-2,
a b c 1 3 4 8
and we can take a 1,b 3,c 2.
ab bc ac 1. 3 3.2 1.2 3 3 2

  
   
     
    

2
1
r
A
BC
3
 
 
0 0 0
1
R ,
2
a 1, b 1, c 2 1
r 1 ,
2A 45 ,B 45 ,C 90
1 1
Δ 1 1
2 2
 
   
  
   
    
Right Angled Isoscales
Master Triangle - 3 MT - 3
* The above master triangle can be used most widely to all the problems which
belong to a family of triangles i.e. p
Q. In a ABC if sinA sinB sinC 1 2 and cosA cosB cosC 2 ,then triangle is:
(a) Equilateral (b) Isosceles (c)
       
roblems belong to all triangles.
and if the data of this triangle satisfy the given conditions in the questions.
2 2 2
Right angled (d) Right angle isosceles
S.  data of MT–3, A 45º, B 45º andC 90º satisfies given both conditions,
it is right angled isosceles and hence option (d) is right choice.
Q. In ABC if b c 3a ,then the val
  

  

0 0 0
0 0 0
ue of cot B cot C cot A is equals to :
ab
(a) 4 (b) (c) (d) 0
4
S. Since data of MT–3, a 1, b 1 and c 2 satisfies given condition,
therefore A=45 ,B=45 and C 90
then cot B cot C cot A cot 45 cot 90 cot 45 0
2c
Q. In a ABC, if
 
 

  

     

 
0 0 0 0
0
os A cos B 2cos C a b
then the value of A is :
a b c bc ca
(a) 60 (b) 90 (c) 30 (d)75
S. Since for A 90º,B 45º and C 45º and a 2, b 1 and c 1
2.0 1 2 1 3 3
The given condition 2 satisfies ,
12 2 2 2 2
therefore A 90 .
Q. In any tria
    
     
     
 
2 2 2 2
2 2 2
C C
ngle ABC, (a b) cos (a b) sin is equals to :
2 2
(a) a (b) b (c) c (d) 1
S. :- Let the triangle be right angled isoscales.
Therefore, according to M
   
      
   
Master Triangle
2 2 2 2 2
T–3 a 1, b 1, c 2 and A 45º, B 45º,C 90º.
C C 1
L.H.S. (a b) cos (a b) sin 0 4 2 c (since c 2)
2 2 2
     
   
            
   
Alart: - Here MT -1 can't be applied,as it will give more than one options same.
2
1
r
A
B
C
1
4
    
3 3 3
0 3 0 3 0 3 0 0 0 0
3 0 3 0
a b c
Q. In a ΔABC, if sin A sin B sin C = 3sinA sinB sinC, then b c a =
c a b
(a) 0 (b) a b c (c) a b c ab bc ca (d) 1
S. Let A B C 60 so sin 60 sin 60 sin 60 3sin60 .sin60 .sin60
3sin 60 3sin 60 Satisfy the given co
 
     
     
  ndition
a b c 1 1 1
the triangle is an equilateral so take a b c 1 b c a 1 1 1 0
c a b 1 1 1
cosA cosB cosC
Q In triangle ABC if and if a=2 then area of triangle will be :
a b c
3
(a)1 (b) 2 (c) (d) 3
2
      
 
2 2
2 2
S. The data of MT–1 satisfies the given condition. so the triangle is An equilateral
3 3
area of the equilateral triangleis Δ a (2) 3
4 4
a a a
Q. In ABC, if cos , cos & cos ,
b c b c b c
then tan tan
2 2
    
      
  
   
 
  
 
2
0
2 2 2 2 0
2 2
+ tan =
2
(a) 3 (b) 1 (c) 3 3 (d) 9
1
S. Let the ABC is an equilateral then cos cos cos 60
2
tan tan + tan = 3tan 30 = 1
2 2 2
(a b c)(b c a) (c a b) (a b c)
Q. In triangle ABC, =
4b c
(a)
  
   
  
             
       
      
     
       
2 2 2 2
sin A (b) cos A (c) tan A (d) cot A
S. Let the triangle be an equilateral. Therefore, according to MT–1
3
a b c 1 and A B C 60º so L.H.S.
4
after putting the value of A in the options, (a) will
      
2 2 2
2 3
0
give R.H.S.
.
1 A 1 B 1 C
Q In triangle ABC , cos cos cos
a 2 b 2 c 2
s s s
(a) s (b) (c) (d)
abc abc abc
S. Let the triangle is an equilateral and a b c 2 & A B C 60
L.H.S. 3
     
       
     
     

 
2 3 9
cos 30º 3. =
4 4
put values of a, b, c and s in the options,then c will give the required result.

Alart: - Here MT -1 can't be applied,as it will give more than one options same.
A
B CD
E
P
F
1
A
B CD
E
P
F
1
5
 
2 2 2 2 2 2 2 2 2 2 2 2
A– B+C
Q. In a triangle ABC, 2ac sin =
2
(a) a b  – c     (b) c a b (c)b – c – a       (d)c – a – b
S. Let the triangle is a right angled. Therefore, according to MT 2
a 1, b = 3 ,c 2 & A 30º,B 60º,C 90º.
then L.
  

    
2 2 2
1
H.S. 2 1 2 sin 30º 4 2.
2
put values of a, b, c in the options, then (b) will match with L.H.S.
Q. In a triangle ABC, If c a b , then 4s(s
      
 
Alart: - Here MT -1 can't be applied,as it will give more than one options same.
 
4 2 2 2 2 2 2
2 2 2
2 2 2
2 2 2
a)(s b)(s c)
(a) s (b) b c (c) c a (d) a b
S. :- c a b the triangle is right angled and c is hypoteneous.
1 a b
L.H.S. 4s(s a) (s b) (s c 4Δ ×a b = 4 a b
2 4
Therefore, option d i

   
 
 
           
 
Master Triangle 
2 2
s the right option.
Q. In triangle ABC if is the area of the triangle then a sin 2C c sin 2A
(a) Δ (b) 2Δ (c) 3Δ (d) 4Δ
S. :- Let the triangle be an equilateral so according to MT–1 ,
a b c 1, A B
  
    
Master Triangle
2
2 2
2 2 2
3 3 3
C 60°, Δ= (1) , Δ 3 4Δ
4 4 4
3
LHS a sin2C c sin2A 1 sin120° 1 sin120°= 2sin120° 2 3 4Δ .
2
a b c A B C
Q. In a ABC,value of the exp ression sin sin sin is :
sin A sin B sin C 2 2 2
(a)2 (b) (c) (d
2
     
         
       
         
      

 
0
2 2 2
)
4
S. :- let the triangle be an equilateral,then according to data of MT-1
3
a b c 1, A B C 60 ,
4
a b c A B C 2 2 2 1 1 1
sin sin sin
sin A sin B sin C 2 2 2 2 2 23 3 3
Q. In a ABC, if G is th

       
        
               
        

Master Triangle
e centroid of the triangle and GA,GB,GC makes angles , ,
with each other then cot A cot B cot C cot cot cot
(a) 1 (b) 0 (c)3 (d)3 3
S. :- Let the triangle be an equilateral
then according to data of MT-1.
A B C
  
        
 
Master Triangle
 
0 0
0 0 0 0 0 0
0 0
60 then 120
cot 60 cot 60 cot 60 cot120 cot120 cot120
3(cot 60 cot120 ) 3 3 3 0
     
     
     
A
B C
G
6
Q. Let f,g,h are the lengths of perpendiculars from circumcentre of ABC on the sides
a b c abc
a,b and c and if k then the value of k is :
f g h fgh
1 1
(a) 1 (b) (c) (d) 2
2 4
S. :- Let the triangle be an equilateral.
so accor ding to data

  
Master Triangle
2
1 2 3
2 2 2
2 3 1 1
of MT-1,
1
a b c 1and f g h
2 3
a b c abc
k
f g h fgh
2 3 2 3 2 3 k 2 3 2 3 2 3
k 1/4
Q. Let in a ΔABC with side 'a ',AD is a median of If AE and AF are medians of ΔABD
a
and Δ ADC and AD m ,AE m ,AF m then
8
(a) m m 2m (b) m
     
   
     
 
   
  2 2 2 2 2 2 2 2 2
2 3 2 3 1 2 3 1
1 2 3
2 2
2 3
m 2m (c) m m m (d) m m m
S. :- Let the triangle is an equilateral with side 'a'.
therefore according to MT-1
3 a
AD = m , AE = AF, m m
2
a 3 a a 13 a
ED ,AE = AF m m
4 2 4 4
Afte
     
  
   
            
Master Triangle

 
2
1 2 3
1 2 3
1
a
r putting values of m ,m ,m in options then only (a) will give .
8
Q. If , , are the int ernal bi sec tors of angles A,B and C of a ABC, then :
A
cos co
2
Statement : I

 
 
  
Reasoning Based problems can also be solved by Master Triangles
l l l
l
 
1 1
2 2 2
2 2 2
1 2 3
A A
s cos
1 1 12 2
2
a b c
a b c
Statement : II bc 1 , bc 1 , bc 1
b c a c b a
ST. Let the triangle is an equilateral then according to data of MT-1.
A B C
   
   
        
 
          
                                
  
l l
l l l
 
 
 
0
1 2 3
2
3
60 and a b c 1 and
2
3 3 3
1 1 12 2 2Statement : I 2 3 6(false)
1 1 13 3 3
2 2 2
3 1 3 3
Statement : II 1 1 1 , which is true.
4 1 1 4 4
other two are also true so d is right option.
   
 
       
 
  
         
l = l = l
A
DΕ
B C
F
A
B CD
E
P
F
1
A
B CD
E
P
F
1
7
Q. In a triangle ABC, points D and E are taken on side BC such that BD = DE = EC.
If ADE = AED = , then:
(a) tan =3tanB (b) 3t
  

One or more than one currect answers types problems can also be solved by Master Triangles
 
2
0
0
2 2
6tan
an =tanC (c) =tanA (d) B = C
tan 9
3 2
S. Let tan = 3 3 and tanB tan60 3
1 6
tan =3tanB so
6tan 6 3 3
= =tan60 3 = 3 tanA so
tan 9 3 3 9
clearly B = C so

  
 
   
 
 
 
  
 
(a) is true.
(c) is true.
(d) is true. Hence (a) ,(c) and (d) are
Q. The int ernal bi sec tor of A of ABC meets side BC at D. A line drawn through D and
perpendicular to AD intersects side AC at E and AB at F,If a,b and c are the sides of
triangle then which of the followi
 
the correct answers.
0
ngs is true :
2bc A 4bc A
(a) AE is H.M.of b & c. (b)AD cos (c) EF sin (d) AEF is isoscales.
b c 2 b c 2
S. Let the triangle is an equilateral therefore according to the data of MT-1,
3
A B C 60 & a b c 1,AD ,AE AF AB BC AC
2

  
 
          
[ IITJEE 2006,5M]
 
 
   
 
0 0
0
1
2bc 2 1 1
then (a) 1 AE
b c 1 1
3 2 1 1 3
(b) cos 30 cos 30 .
2 1 1 2
4 1 1
c 1 sin 30 1 .
1 1
(d) As AD is perpendicular EF and DE DF
and AD is the bi sec tors therefore the AEF can be isoscales. .

 
  
 
 
  

 
 



True .
True
True
True
Hence (a),(b),(c),(d
Q. Let AD, BE and CF are the perpendiculars from the angular points of a ABC upon
the opposite sides, then which of the following is not true :
Perimeter of DEF
(a)
Perimeter of ABC




) are correct answers.
r
. (b) Area of DEF = 2 cosAcosBcosC.
R
R
(c) Area of AEF = cos2A. (d) Circum radius of DEF = .
4
S. Let the triangle be an equilateral then according to data of MT 1.
Perimeter of DEF 3 2 1 r
(a)
Perimeter of ABC 3 2 R
(b)
 
  

  


-
2
3 0
2
3 1 3 3 3
of DEF = 2 cosAcosBcosC =2 cos 60
4 2 4 16 16
3 1 3 1 R 1 1
(c) of AEF= cos2A (d) R of DEF =
4 2 4 2 4 2 3 4 3
.
 
     
 
   
           
   
Hence options (c) & (d) are correct
A
B C
  EFD
1/3
1/6
A
B CD
E
P
F
1
8
 
1 2 3
2 2 2
1 2 3
Q If P ,P ,P are altiudes of a triangle ABC from thevertices A,B,C and if is area of
the triangle then
1 1 1
i The value of is :
P P P
sin A sin B si
(a)

 
 
: -Paragraph Based problems can also be solved by Master Triangles
 
 
1 2 3
0
1 2 3
n C cot A cot B cot C tan A tan B tan C
(b) (c) (d) 0
1 1 1
ii The value of is :
P P P
1 2 1
(a) R (b) (c) (d)
r r R
S. i Let the triangle is an equilateral triangle then according to MT 1.
3
A=B =C=60 . a=b=c=1.P P P .
2
   
  
 

  
 
 
2 2 2
1 2 3
1 2 3
3 1 1
,r = , R = .
4 2 3 3
1 1 1 4 4 4
L.H.S. 4.
3 3 3P P P
After putting the values of A,B,C and in options
then d will give R.H.S.
1 1 1 2 1
ii L.H.S. ×3= 2 3 .
P P P r3
Q. Let DEF is the triangle formed by joining the points of contacts of th
 
      

    
e incircle with
sides of ABC also let R,r and Δ are radius of circumcircle, radius of incircle, and
area of the triangle ABC, then
(i). The sides of ΔDEF are :
A B C A B
(a) 2r cos ,2rcos , 2rcos (b) r cos , rcos
2 2 2 2 2

         
        
         
C
, rcos
2
r A r B r C
(c) r sin2A,r sin2B, r sin2C (d) cos , cos , cos
2 2 2 2 2 2
(ii). Area of ΔDEF is :
rΔ rΔ rΔ 2rΔ
(a) (b) (c) (d)
4R 2R R R
S. :- Let the triangle be an equilateral then according to data of MT-1,
A
 
  
 
     
     
     
Master Triangle
0
0
2
1 1 3
=B=C=60 and a =b=c=1,R = ,r = , area = Δ =
43 2 3
1 1 1
The sides of ΔDEF are , , .
2 2 2
1 1 1 1
put values A=B=C=60 & r = in options then only option (a) will give , , .
2 2 22 3
3 1 3 3
also of ΔDEF , put r,Δ,R in options then only (b)will give .
4 2 16 16
 
   
 
A
B CD
E
P
F
1

Trigonometry

  • 1.
    1  we all knowvery well that a master key unlocks many locks,Similarly our just one Master triangle can solve many questions belonging to properties and solutions of triangles. Properties and Solutions of Triangles We  It is the only triangle in which the special points i.e. Centroid,Circumcenter, Incenter and Orthocen Equilateral Triangle (A Magical Triangle ) : - have made 3 Master Triangles, Equilateral , Rightangled and Rightangled isoscales. ,  0 0 0 ter are coincide. also it is the only triangle in which Median, Internal angle bisector, Altitute are also coincide. For this triangle we take the sides as a = 1,b = 3 c = 1 and angles as A = 30 , B = 60 and C = 90 . Right - angled Triangle : - Right   0 , 3 Let a = b = c = 1 A= B = C = 60 Area= Δ = 4 Radius of circumcirc     (Equilateral Triangle) 0 0 0 For this triangle we take sides as a = 1,b = 1 c = 2 and angles as A = 45 , B = 45 and C = 90 . - angled Isoscales : - Master Triangle - MT -1 1 1 2 3 abc 1 le R 4Δ 3 Δ 1 Radius of in circle r s 2 3 3 Radii of ex circles are r r r 2 3 Length of perpendicular (altitutes) AD BE CF 2                * The above master triangle can be used most widely to all the problems which belong to a famil - - Q In a triangle ABC the correct statement is : y of triangles i.e. problems belong to all triangles. * It can also be applied to all those problems for which the data of this triangle satisfy the given conditions in the questions. [ A B+C A B C (a) (b c) cos = 2asin (b) (b c)cos = a sin 2 2 2 2 B C A B+C A (c) (b c) sin =acos (d) ( b+c )sin =acos 2 2 2 2 S.                                                   Here above problem belongs to all triangles,so ]IITJEE2005 Let the triangle be an equilateral,so according to data of MT 1, a b c 1 and A B C 60º after putting the value of a,b,c then only option (b)will balance and s o it is the right choice.       MT - 1 can be applied here. – A B CD E P F 1
  • 2.
    2     00 0 a 1,b 3 ,c 2 A 30 ,B 60 ,C 90 3 1 r . 2 R 1. 1 3 Δ= . 3 . 2 2                Right Angled Triangle Master Triangle 2 MT - 2 * The above master triangle can be used most widely to all the problems which belong to a family of triangles i.e. pro Q. If sides of a triangle are in ratio 1: 3: 2, then ratio between its orresponding angles is : ( (a ΙΙΤJEE 2004) blems belong to all triangles. and if the data of this triangle satisfy the given conditions in the questions.      ) 3 2 1 b 3 1 2 c 1 2 3 d 1 3 : 2 S. The data of MT–2,  a 1,b 3 and c 2  satisfy the given conditions so triangle is right angled & A 30º, B 60º, C 90º. A:B:C 30 60:90 1 : 2 3 Q In a Δ A                    BC, If r and R are in- radius and circum-radius then 2(r R) (a) a b (b) b c (c) c a (d) a b c ST. Let the triangle be a right angled isoscales, According to MT–3, a 1, b          AIEEE2005     1 1 1 1 1, c 2 & r 1 , R L.H.S. 2 r R 2 1 2 2 2 2 2 put the values of a, b & c in the options,(a) will give R.H.S a c Q. In ABC if angles are in arithmatic Pr ogressions then value of sin 2C sin 2A is : c a (a) 1/2 (b) 3                  IITJEE2010 0 0 0 0 0 2 2 2 /2 (c) 1 (d) 3 S. Angles are in A.P. so by data of MT-2,A 30 ,B 60 ,C 90 and a 1,b 3,c 2 a c 1 2 3 sin 2C sin 2A sin180 sin 60 2 3. c a 2 1 2 a b c Q. In ABC if A : B : C 1 : 2 : 3,then the value of is equals to : ab bc ac 2 2 8 (a) (b) (c) 3 1 3 1 3 3                       0 0 0 2 2 2 8 (d) 2 3 3 1 S. Angles of MT-2 are 30 : 60 : C 90 1 : 2 3 and so we can apply MT-2, a b c 1 3 4 8 and we can take a 1,b 3,c 2. ab bc ac 1. 3 3.2 1.2 3 3 2                     2 1 r A BC
  • 3.
    3     00 0 1 R , 2 a 1, b 1, c 2 1 r 1 , 2A 45 ,B 45 ,C 90 1 1 Δ 1 1 2 2                   Right Angled Isoscales Master Triangle - 3 MT - 3 * The above master triangle can be used most widely to all the problems which belong to a family of triangles i.e. p Q. In a ABC if sinA sinB sinC 1 2 and cosA cosB cosC 2 ,then triangle is: (a) Equilateral (b) Isosceles (c)         roblems belong to all triangles. and if the data of this triangle satisfy the given conditions in the questions. 2 2 2 Right angled (d) Right angle isosceles S.  data of MT–3, A 45º, B 45º andC 90º satisfies given both conditions, it is right angled isosceles and hence option (d) is right choice. Q. In ABC if b c 3a ,then the val         0 0 0 0 0 0 ue of cot B cot C cot A is equals to : ab (a) 4 (b) (c) (d) 0 4 S. Since data of MT–3, a 1, b 1 and c 2 satisfies given condition, therefore A=45 ,B=45 and C 90 then cot B cot C cot A cot 45 cot 90 cot 45 0 2c Q. In a ABC, if                   0 0 0 0 0 os A cos B 2cos C a b then the value of A is : a b c bc ca (a) 60 (b) 90 (c) 30 (d)75 S. Since for A 90º,B 45º and C 45º and a 2, b 1 and c 1 2.0 1 2 1 3 3 The given condition 2 satisfies , 12 2 2 2 2 therefore A 90 . Q. In any tria                    2 2 2 2 2 2 2 C C ngle ABC, (a b) cos (a b) sin is equals to : 2 2 (a) a (b) b (c) c (d) 1 S. :- Let the triangle be right angled isoscales. Therefore, according to M                Master Triangle 2 2 2 2 2 T–3 a 1, b 1, c 2 and A 45º, B 45º,C 90º. C C 1 L.H.S. (a b) cos (a b) sin 0 4 2 c (since c 2) 2 2 2                            Alart: - Here MT -1 can't be applied,as it will give more than one options same. 2 1 r A B C 1
  • 4.
    4     3 3 3 0 3 0 3 0 3 0 0 0 0 3 0 3 0 a b c Q. In a ΔABC, if sin A sin B sin C = 3sinA sinB sinC, then b c a = c a b (a) 0 (b) a b c (c) a b c ab bc ca (d) 1 S. Let A B C 60 so sin 60 sin 60 sin 60 3sin60 .sin60 .sin60 3sin 60 3sin 60 Satisfy the given co                 ndition a b c 1 1 1 the triangle is an equilateral so take a b c 1 b c a 1 1 1 0 c a b 1 1 1 cosA cosB cosC Q In triangle ABC if and if a=2 then area of triangle will be : a b c 3 (a)1 (b) 2 (c) (d) 3 2          2 2 2 2 S. The data of MT–1 satisfies the given condition. so the triangle is An equilateral 3 3 area of the equilateral triangleis Δ a (2) 3 4 4 a a a Q. In ABC, if cos , cos & cos , b c b c b c then tan tan 2 2                           2 0 2 2 2 2 0 2 2 + tan = 2 (a) 3 (b) 1 (c) 3 3 (d) 9 1 S. Let the ABC is an equilateral then cos cos cos 60 2 tan tan + tan = 3tan 30 = 1 2 2 2 (a b c)(b c a) (c a b) (a b c) Q. In triangle ABC, = 4b c (a)                                                      2 2 2 2 sin A (b) cos A (c) tan A (d) cot A S. Let the triangle be an equilateral. Therefore, according to MT–1 3 a b c 1 and A B C 60º so L.H.S. 4 after putting the value of A in the options, (a) will        2 2 2 2 3 0 give R.H.S. . 1 A 1 B 1 C Q In triangle ABC , cos cos cos a 2 b 2 c 2 s s s (a) s (b) (c) (d) abc abc abc S. Let the triangle is an equilateral and a b c 2 & A B C 60 L.H.S. 3                              2 3 9 cos 30º 3. = 4 4 put values of a, b, c and s in the options,then c will give the required result.  Alart: - Here MT -1 can't be applied,as it will give more than one options same. A B CD E P F 1 A B CD E P F 1
  • 5.
    5   2 22 2 2 2 2 2 2 2 2 2 A– B+C Q. In a triangle ABC, 2ac sin = 2 (a) a b  – c     (b) c a b (c)b – c – a       (d)c – a – b S. Let the triangle is a right angled. Therefore, according to MT 2 a 1, b = 3 ,c 2 & A 30º,B 60º,C 90º. then L.          2 2 2 1 H.S. 2 1 2 sin 30º 4 2. 2 put values of a, b, c in the options, then (b) will match with L.H.S. Q. In a triangle ABC, If c a b , then 4s(s          Alart: - Here MT -1 can't be applied,as it will give more than one options same.   4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 a)(s b)(s c) (a) s (b) b c (c) c a (d) a b S. :- c a b the triangle is right angled and c is hypoteneous. 1 a b L.H.S. 4s(s a) (s b) (s c 4Δ ×a b = 4 a b 2 4 Therefore, option d i                        Master Triangle  2 2 s the right option. Q. In triangle ABC if is the area of the triangle then a sin 2C c sin 2A (a) Δ (b) 2Δ (c) 3Δ (d) 4Δ S. :- Let the triangle be an equilateral so according to MT–1 , a b c 1, A B         Master Triangle 2 2 2 2 2 2 3 3 3 C 60°, Δ= (1) , Δ 3 4Δ 4 4 4 3 LHS a sin2C c sin2A 1 sin120° 1 sin120°= 2sin120° 2 3 4Δ . 2 a b c A B C Q. In a ABC,value of the exp ression sin sin sin is : sin A sin B sin C 2 2 2 (a)2 (b) (c) (d 2                                             0 2 2 2 ) 4 S. :- let the triangle be an equilateral,then according to data of MT-1 3 a b c 1, A B C 60 , 4 a b c A B C 2 2 2 1 1 1 sin sin sin sin A sin B sin C 2 2 2 2 2 23 3 3 Q. In a ABC, if G is th                                             Master Triangle e centroid of the triangle and GA,GB,GC makes angles , , with each other then cot A cot B cot C cot cot cot (a) 1 (b) 0 (c)3 (d)3 3 S. :- Let the triangle be an equilateral then according to data of MT-1. A B C               Master Triangle   0 0 0 0 0 0 0 0 0 0 60 then 120 cot 60 cot 60 cot 60 cot120 cot120 cot120 3(cot 60 cot120 ) 3 3 3 0                   A B C G
  • 6.
    6 Q. Let f,g,hare the lengths of perpendiculars from circumcentre of ABC on the sides a b c abc a,b and c and if k then the value of k is : f g h fgh 1 1 (a) 1 (b) (c) (d) 2 2 4 S. :- Let the triangle be an equilateral. so accor ding to data     Master Triangle 2 1 2 3 2 2 2 2 3 1 1 of MT-1, 1 a b c 1and f g h 2 3 a b c abc k f g h fgh 2 3 2 3 2 3 k 2 3 2 3 2 3 k 1/4 Q. Let in a ΔABC with side 'a ',AD is a median of If AE and AF are medians of ΔABD a and Δ ADC and AD m ,AE m ,AF m then 8 (a) m m 2m (b) m                         2 2 2 2 2 2 2 2 2 2 3 2 3 1 2 3 1 1 2 3 2 2 2 3 m 2m (c) m m m (d) m m m S. :- Let the triangle is an equilateral with side 'a'. therefore according to MT-1 3 a AD = m , AE = AF, m m 2 a 3 a a 13 a ED ,AE = AF m m 4 2 4 4 Afte                           Master Triangle    2 1 2 3 1 2 3 1 a r putting values of m ,m ,m in options then only (a) will give . 8 Q. If , , are the int ernal bi sec tors of angles A,B and C of a ABC, then : A cos co 2 Statement : I         Reasoning Based problems can also be solved by Master Triangles l l l l   1 1 2 2 2 2 2 2 1 2 3 A A s cos 1 1 12 2 2 a b c a b c Statement : II bc 1 , bc 1 , bc 1 b c a c b a ST. Let the triangle is an equilateral then according to data of MT-1. A B C                                                                   l l l l l       0 1 2 3 2 3 60 and a b c 1 and 2 3 3 3 1 1 12 2 2Statement : I 2 3 6(false) 1 1 13 3 3 2 2 2 3 1 3 3 Statement : II 1 1 1 , which is true. 4 1 1 4 4 other two are also true so d is right option.                              l = l = l A DΕ B C F A B CD E P F 1 A B CD E P F 1
  • 7.
    7 Q. In atriangle ABC, points D and E are taken on side BC such that BD = DE = EC. If ADE = AED = , then: (a) tan =3tanB (b) 3t     One or more than one currect answers types problems can also be solved by Master Triangles   2 0 0 2 2 6tan an =tanC (c) =tanA (d) B = C tan 9 3 2 S. Let tan = 3 3 and tanB tan60 3 1 6 tan =3tanB so 6tan 6 3 3 = =tan60 3 = 3 tanA so tan 9 3 3 9 clearly B = C so                      (a) is true. (c) is true. (d) is true. Hence (a) ,(c) and (d) are Q. The int ernal bi sec tor of A of ABC meets side BC at D. A line drawn through D and perpendicular to AD intersects side AC at E and AB at F,If a,b and c are the sides of triangle then which of the followi   the correct answers. 0 ngs is true : 2bc A 4bc A (a) AE is H.M.of b & c. (b)AD cos (c) EF sin (d) AEF is isoscales. b c 2 b c 2 S. Let the triangle is an equilateral therefore according to the data of MT-1, 3 A B C 60 & a b c 1,AD ,AE AF AB BC AC 2                  [ IITJEE 2006,5M]           0 0 0 1 2bc 2 1 1 then (a) 1 AE b c 1 1 3 2 1 1 3 (b) cos 30 cos 30 . 2 1 1 2 4 1 1 c 1 sin 30 1 . 1 1 (d) As AD is perpendicular EF and DE DF and AD is the bi sec tors therefore the AEF can be isoscales. .                      True . True True True Hence (a),(b),(c),(d Q. Let AD, BE and CF are the perpendiculars from the angular points of a ABC upon the opposite sides, then which of the following is not true : Perimeter of DEF (a) Perimeter of ABC     ) are correct answers. r . (b) Area of DEF = 2 cosAcosBcosC. R R (c) Area of AEF = cos2A. (d) Circum radius of DEF = . 4 S. Let the triangle be an equilateral then according to data of MT 1. Perimeter of DEF 3 2 1 r (a) Perimeter of ABC 3 2 R (b)            - 2 3 0 2 3 1 3 3 3 of DEF = 2 cosAcosBcosC =2 cos 60 4 2 4 16 16 3 1 3 1 R 1 1 (c) of AEF= cos2A (d) R of DEF = 4 2 4 2 4 2 3 4 3 .                               Hence options (c) & (d) are correct A B C   EFD 1/3 1/6 A B CD E P F 1
  • 8.
    8   1 23 2 2 2 1 2 3 Q If P ,P ,P are altiudes of a triangle ABC from thevertices A,B,C and if is area of the triangle then 1 1 1 i The value of is : P P P sin A sin B si (a)      : -Paragraph Based problems can also be solved by Master Triangles     1 2 3 0 1 2 3 n C cot A cot B cot C tan A tan B tan C (b) (c) (d) 0 1 1 1 ii The value of is : P P P 1 2 1 (a) R (b) (c) (d) r r R S. i Let the triangle is an equilateral triangle then according to MT 1. 3 A=B =C=60 . a=b=c=1.P P P . 2                  2 2 2 1 2 3 1 2 3 3 1 1 ,r = , R = . 4 2 3 3 1 1 1 4 4 4 L.H.S. 4. 3 3 3P P P After putting the values of A,B,C and in options then d will give R.H.S. 1 1 1 2 1 ii L.H.S. ×3= 2 3 . P P P r3 Q. Let DEF is the triangle formed by joining the points of contacts of th                e incircle with sides of ABC also let R,r and Δ are radius of circumcircle, radius of incircle, and area of the triangle ABC, then (i). The sides of ΔDEF are : A B C A B (a) 2r cos ,2rcos , 2rcos (b) r cos , rcos 2 2 2 2 2                               C , rcos 2 r A r B r C (c) r sin2A,r sin2B, r sin2C (d) cos , cos , cos 2 2 2 2 2 2 (ii). Area of ΔDEF is : rΔ rΔ rΔ 2rΔ (a) (b) (c) (d) 4R 2R R R S. :- Let the triangle be an equilateral then according to data of MT-1, A                          Master Triangle 0 0 2 1 1 3 =B=C=60 and a =b=c=1,R = ,r = , area = Δ = 43 2 3 1 1 1 The sides of ΔDEF are , , . 2 2 2 1 1 1 1 put values A=B=C=60 & r = in options then only option (a) will give , , . 2 2 22 3 3 1 3 3 also of ΔDEF , put r,Δ,R in options then only (b)will give . 4 2 16 16         A B CD E P F 1