Drugs and Dosing in
Renal Patients
Kimberly Treier and Hannah Bond
Pharm.D. Candidates 2016
Albany College of Pharmacy- VT campus
17 September 2015
Outline
• Kidney Anatomy
• Common Drugs Affecting the Kidney
• Renal Dosing Calculations
• Chronic Kidney Disease – Brief Overview
• Acute Kidney Injury – Brief Overview
• Drug Induced Nephrotoxicity – Brief Overview
Kidney Anatomy
Hannah Bond
Common Drugs Acting
on the Kidneys
Kimberly Treier
Afferent Arteriole
NSAIDs
- Ibuprofen
- Ketoprofen
- Naproxen
- Indomethacin
- Celecoxib
- Ketorolac
- others
Vasoconstriction
Efferent Arteriole
ACEIs
- Lisinopril
- Enalapril
ARBs
- Losartan
- Valsartan
Aldosterone
antagonists
- Spironolactone
- Eplerenone
Vasodilation
BOTH Arterioles
Dopamine agonists*
- Bromocriptine
- Ropinirole
Alpha-1 blocker
- Prazosin
- Doxazosin
Vasodilation
BOTH Arterioles
Direct-acting
vasodilators
- Hydralazine
Nitrates
- Nitroglycerine
- Nitroprusside
- Isosorbide
dinitrate
Vasodilation
Proximal Tubule
Carbonic
Anhydrase
Inhibitors
- Acetazolamaide
- Methazolamide
Promotes diuresis
and urinary
alkalinization
Proximal Tubule +
Descending Loop
Osmotic diuretics
- Mannitol
- Isosorbide
 urine osmolarity
(unable to be
reabsorbed) 
draws H2O into
lumen
Ascending Loop
Loop diuretics
- Furosemide
- Torsemide
- Bumetanide
 Na+ and Cl-
reabsorption
Distal Tubule
Thiazide diuretics
- HCTZ
- Indapamide
- Metolazone
- Chlorthalidone
 Na+ and Cl-
excretion
Distal Tubule +
Collecting Duct
K+-sparing diuretics
- Spironolactone
- Eplerenone
- Triamterene
- Amiloride
 Aldosterone-
mediated Na+ and
water reabsorption,
and K+ excretion
Collecting Duct
ADH agonists
- Desmopressin
 Renal H2O
reabsorption
ADH antagonists
- Conivaptan
- Tolvaptan
- Oxytocin??
Renal H2O
reabsorption
Proximal Tubule
SGLT2 inhibitors
- Canagliflozin
- Dapagliflozin
- Empagliflozin
 reabsorption of
filtered glucose
Juxtaglomerular
cells
Direct renin
inhibitor
- Aliskiren
 Release of
renin
Direct-acting
vasodilators
- Hydralazine
 Release of
renin
Renal Dosing
Calculations
Hannah Bond
• Step 1: Obtain the following information
• Age
• Height
• Current weight
• Most recent SCr
• Step 2: Calculate Ideal Body Weight (IBW)
• Male: 50 + (2.3 X inches over 60 inches in
height)
• Female: 45.5 + (2.3 X inches over 60 inches in
height)
Creatine Clearance
• Step 3: Determine dosing weight
• Use total body weight to calculate CrCl if TBW<
IBW
• Use adjusted body weight for obese patients
• TBW > 1.3 times IBW
• AdjBW: IBW + 0.4 (TBW – IBW)
• Step 4: Calculate estimated Creatine
Clearance
• Male: [(140-age) X IBW] / (72 X SCr)
• Female: [(140-age) X IBW] / (72 X SCr) X 0.85
Creatine Clearance
• A 57 year old African American female with a
PMH of CKD, HTN, and DM is admitted to
ICU for IV antibiotics to treat an infected ulcer
on her right foot. Dr. Johnson has ordered
Ceftazidime 1 g every 12 hours and
vancomycin 1 g every 12 hours.
• SCr: 2.51 mg/dL
• Height: 65 inches
• Weight: 68 kg
Creatine Clearance Example
• Step 1: Obtain the following information
• Age: 57
• Height: 65 inches
• Actual current weight: 68 kg
• Most recent SCr: 2.51 mg/dL
• Step 2: Calculate Ideal Body Weight (IBW)
• Male: 50 + (2.3 X inches over 60 inches in
height)
• Female: 45.5 + (2.3 X inches over 60 inches in
height)
• IBW = 45.5 + (2.3 X 5) = 57 kg
Creatine Clearance Example
• Step 3: Determine dosing weight
• Use total body weight to calculate CrCl if TBW< IBW
• 68 kg /57 kg = 1.19
• Use adjusted body weight for obese patients
• TBW > 1.3 times IBW
• AdjBW: IBW +0.4 (TBW – IBW)
• Step 4: Calculate estimated Creatine Clearance
• Male: [(140-age) X IBW] / (72 X SCr)
• Female: [(140-age) X IBW] / (72 X SCr) X 0.85
• CrCl = [140-57) X 57 kg]/(72 X 2.51 mg/dL) X 0.85 =
26.55 mL/min
Creatine Clearance Example
• Ceftazidime renal dosing
• CrCl 31-50 mL/min: 1-2 g every 12 hours
• CrCl 10-30 mL/min: 1-2 g every 24 hours
• CrCl < 10 mL/min: 1-2 g every 48 hours
• Based on the above information and her CrCl
of 26.55 mL/min, did the doctor prescribe the
correct dose of ceftazidime (1 g every 12
hours)?
Creatine Clearance Example
• Most drug dosing recommendations are
based on CrCl
• There are many equations to calculate CrCl
• Cockcroft-Gault (adults)
• Schwartz Equation (children)
Using CrCl
• Limitations:
• CrCl is just an estimate (“eCrCl”)
• Creatinine levels dependent on many factors
• Age
• Sex
• Muscle mass
• Diet
• Renal creatinine secretion (overestimation of kidney function)
• Fluctuating renal function (e.g. ICU)
• Multiple equations
• Lack of standardization among manufacturers (FDA
labeling and institution-specific implementation)
Using CrCl
• Step 1: Obtain the following information
• Age
• Sex
• Ethnicity
• Most recent SCr
• Step 2: Calculate eGFR
• GFR (mL/min/1.73 m2) = 175 × (Scr)-1.154 ×
(Age)-0.203 × (0.742 if female) × (1.212 if African
American)
Estimated Glomerular
Filtration Rate (eGFR)
• A 57 year old African American female with a
PMH of CKD, HTN, and DM is admitted to
ICU for IV antibiotics to treat an infected ulcer
on her right foot. Dr. Johnson has ordered
Ceftazidime 1 g every 12 hours and
vancomycin 1 g every 12 hours.
• SCr: 2.51 mg/dL
• Weight: 68 kg
• Height: 65 inches
eGFR example
• Step 1: Obtain the following information
• Age: 57
• Sex: Female
• Ethnicity: African American
• Most recent SCr: 2.51 mg/dL
• Step 2: Calculate eGFR
• GFR (mL/min/1.73 m2) = 175 × (Scr)-1.154 × (Age)-0.203
× (0.742 if female) × (1.212 if African American)
• = 175 × (2.51)-1.154 × (57)-0.203 × (0.742 if female) ×
(1.212 if African American)= 25 mL/min/1.73m2
eGFR Example
• Some drug dosing recommendations are based
on eGFR
• Basis for chronic kidney disease staging
• Multiple equations:
• Modification of Diet in Renal Disease (MDRD)
• Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI)
• Limitations:
• Less accurate in very large/small patients
• Multiply eGFR by BSA
Using eGFR
Chronic Kidney
Disease
Hannah Bond
What is Chronic Kidney
Disease?
• Presence of kidney damage or a reduction in
glomerular filtration rate for three months or
longer
• As CKD progresses, wastes can build to high
levels in your blood.
• Complications: high blood pressure, anemia,
weak bones, poor nutritional health and nerve
damage
CKD staging
GFR category GFR (mL/min/1.73m2) Terms
G1 ≥90 Normal to high
G2 60-89 Mild decreased
G3a 45-59 Mild to moderate
decrease
G3b 30-44 Moderate to severe
decrease
G4 15-29 Severe decrease
G5 <15 Kidney failure
Acute Kidney Injury
Kimberly Treier
What is AKI?
• Abrupt loss of kidney function
• Accumulation of urea and nitrogenous waste
• Inability to effectively regulate fluid and electrolytes
• ICU patients considered high-risk for AKI
• Occurs in up to ⅔ ICU patients
• Consequences:
• Prolonged hospital stay
• Hospital-related adverse events
• Development of CKD
• Acute/chronic renal replacement therapy
What is AKI?
Drug-Induced
Nephrotoxicity
Kimberly Treier
Risk factors for drug-induced nephrotoxicity in the
ICU
Chronic risk factors
- Older age (> 65 years)
- CKD
- Diabetes mellitus
- Malignancy
- Cardiovascular disease
- Liver disease
- Chronic pulmonary disease
- HTN
- Peripheral vascular disease
Acute risk factors
- Sepsis/infection
- Volume depletion (true and effective)
- Acute decompensated heart failure
- Hypotension
- Complex/major surgery
- Trauma
- Mechanical ventilationPerazella MA. Drug use and nephrotoxicity in the intensive care unit. Kidney International (2012) 81, 1172-1178; doi:
10.1038/ki.2010.475
Drug-Induced Nephrotoxicity
• Tubular epithelial cell damage
• Hemodynamically-mediated kidney damage
• Obstructive nephropathy
• Glomerular disease
• Tubulointerstitial disease
• Renal vasculitis, thrombosis, and cholesterol
emboli
Tubular epithelial cell damage
Acute tubular necrosis **Most common in inpatient setting**
- Aminoglycoside antibiotics
- Radiographic contrast media
- Cisplatin, carboplatin
- Amphotericin B
- Cyclosporine, tacrolimus
- Adefovir, cidofovir, tenofovir
- Pentamidine
- Foscarnet
- Zoledronate
Osmotic nephrosis
- Mannitol
- Dextran
- Radiocontrast media
- IV immunoglobulin
- Drug vehicles (e.g. sucrose, polyethylene glycol)
Drug-Induced Nephrotoxicity
Aminiglycoside nephrotoxicity
• Gentamycin, tobramycin, streptomycin, amikacin
• 10-25% of patients treated with aminoglycoside
• Critically ill: up to 58%
• Accumulation of drug in proximal tubular epithelial
cells  reactive oxygen species  cell apoptosis
and proximal tubular necrosis
Drug-Induced Nephrotoxicity
Dose adjustment example:
• Gentamycin:
• Traditional dosing – increase dosing interval:
• Initial dose given every [SCr x 8] hours
• Traditional dosing – decrease dose:
• Give usual initial dose, then reduce dose: [initial dose/SCr]
and give every 8 hours
• Once-daily dosing:
• Give usual mg/kg dose and adjust initial interval based on
CrCl (i.e. CrCl > 60 mL/min: every 24 h; CrCl 40-60
mL/min: every 36 h; CrCl 20-40 mL/min: every 48 h)
Drug-Induced Nephrotoxicity
Thank you!
Any questions?
References
• Santiago C, et. al. Renal Dopamine Receptors, Oxidative Stress, and Hypertension. International Journal of Molecular
Science. 2013 Sep: 14(9): 17553-17572
• Schmitz JM, et. al. Renal alpha-1 and alpha-2 adrenergic receptors: biochemical and pharmacological correlations. J
Pharmacol Exp Ther. 1981 Nov;219(2):400-6.
• Chunling Li, et. al. Molecular Mechanisms of Antidiuretic Effect on Oxytocin. Journal of the American Society Nephrology.
2008 Feb; 19(2):225-232
• Micromedex. Truven Health Analytics Inc. (online) Available at
<http://www.micromedexsolutions.com.acphs.idm.oclc.org/micromedex2/librarian/ND_T/evidencexpert/ND_PR/evidencexpert/
CS/613E30/ND_AppProduct/evidencexpert/DUPLICATIONSHIELDSYNC/2F559D/ND_PG/evidencexpert/ND_B/evidencexpe
rt/ND_P/evidencexpert/PFActionId/pf.HomePage?navitem=Logo#> (accessed 16 Sep 2015)
• CKD and Drug Dosing: Information for Providers. National Kidney Disease Education Program. Revised Apr 2015. Available
online at: www.nkdep.nih.gov
• Perazella MA. Drug use and nephrotoxicity in the intensive care unit. Kidney International (2012) 81, 1172-1178; doi:
10.1038/ki.2010.475
• DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM: Pharmacotherapy: A Pathophysiologic Approach, Ninth
Edition: www.accesspharmacy.com
• KDIGO clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int Suppl. 2012
Dec;2(5):337-414.
Radiographic contrast media-induced nephrotoxicity
(CIN)
• 3rd leading cause of hospital-acquired AKI
• <2% in patients with normal renal function
• Up to 50% in patients with CKD or diabetes
• Systemic hypotension (i.e. renal hypoperfusion) +
acute vasoconstriction  increased contrast
media remaining in tubules  cytotoxicity
Drug-Induced Nephrotoxicity
Prevention of radiographic CIN:
• Minimize contrast dose
• Use non-iodinated and low-/iso-osmolar contrast
media
• Hydration! – before, during and after
• Avoid other nephrotoxic drugs
Drug-Induced Nephrotoxicity
Tubular epithelial cell damage
Acute tubular necrosis
- Aminoglycoside antibiotics (gentamycin, tobramycin, etc.)
- Radiographic contrast media
- Cisplatin, carboplatin
- Amphotericin B
- Cyclosporine, tacrolimus
- Adefovir, cidofovir, tenofovir
- Pentamidine
- Foscarnet
- Zoledronate
Osmotic nephrosis
- Mannitol
- Dextran
- Radiocontrast media
- IV immunoglobulin
- Drug vehicles (e.g. sucrose, polyethylene glycol)
Drug-Induced Nephrotoxicity
Hemodynamically-mediated kidney injury
- ARBs (lisinopril, enalopril, etc.)
- ARBs (valsartan, candesartan, etc.)
- NSAIDs
- Cyclosporine, tacrolimus
- OKT3
Drug-Induced Nephrotoxicity
Obstructive neuropathy
Intratubular obstruction
- Acyclovir
- Sulfonamides
- Indinavir
- Foscarnet
- Methotrexate
Nephrolithiasis
- Sulfonamide
- Triamterene
- Indinavir
Nephrocalcinosis
- Oral sodium phosphate solution
Drug-Induced Nephrotoxicity
Glomerular disease
- Gold
- Lithium
- NSAIDs, COX-2 inhibitors (i.e. celecoxib)
Drug-Induced Nephrotoxicity
Tubulointerstitial disease
Allergic interstitial nephritis
- Penicillins
- Ciprofloxacin
- NSAIDs, COX-2 inhibitors (i.e. celecoxib)
- PPIs
- Loop diuretics (furosemide, torsemide, bumetanide)
Chronic interstitial nephritis
- Cyclosporine
- Lithium
- Aristolochic acid
Papillary necrosis
- NSAIDs
- Caffeine analgesics (e.g. Fiorecet, Fiorenol, Excedrin)
Drug-Induced Nephrotoxicity
Renal vasculitis, thrombosis and cholesterol emboli
Vasculitis and thrombosis
- Hydralazine
- Propylthiouracil
- Allopurinol
- Penicillamine
- Gemcitabine
- Mitomycin C
- Methamphetamines
- Cyclosprine, tacrolimus
- Adalimumab
- Bevacizumab
Cholesterol emboli
- Warfarin
- Thrombolytic agents
Drug-Induced Nephrotoxicity

ICU presentation - Hannah Bond and Kim Treier

  • 1.
    Drugs and Dosingin Renal Patients Kimberly Treier and Hannah Bond Pharm.D. Candidates 2016 Albany College of Pharmacy- VT campus 17 September 2015
  • 2.
    Outline • Kidney Anatomy •Common Drugs Affecting the Kidney • Renal Dosing Calculations • Chronic Kidney Disease – Brief Overview • Acute Kidney Injury – Brief Overview • Drug Induced Nephrotoxicity – Brief Overview
  • 3.
  • 6.
    Common Drugs Acting onthe Kidneys Kimberly Treier
  • 8.
    Afferent Arteriole NSAIDs - Ibuprofen -Ketoprofen - Naproxen - Indomethacin - Celecoxib - Ketorolac - others Vasoconstriction
  • 9.
    Efferent Arteriole ACEIs - Lisinopril -Enalapril ARBs - Losartan - Valsartan Aldosterone antagonists - Spironolactone - Eplerenone Vasodilation
  • 10.
    BOTH Arterioles Dopamine agonists* -Bromocriptine - Ropinirole Alpha-1 blocker - Prazosin - Doxazosin Vasodilation
  • 11.
    BOTH Arterioles Direct-acting vasodilators - Hydralazine Nitrates -Nitroglycerine - Nitroprusside - Isosorbide dinitrate Vasodilation
  • 12.
    Proximal Tubule Carbonic Anhydrase Inhibitors - Acetazolamaide -Methazolamide Promotes diuresis and urinary alkalinization
  • 13.
    Proximal Tubule + DescendingLoop Osmotic diuretics - Mannitol - Isosorbide  urine osmolarity (unable to be reabsorbed)  draws H2O into lumen
  • 14.
    Ascending Loop Loop diuretics -Furosemide - Torsemide - Bumetanide  Na+ and Cl- reabsorption
  • 15.
    Distal Tubule Thiazide diuretics -HCTZ - Indapamide - Metolazone - Chlorthalidone  Na+ and Cl- excretion
  • 16.
    Distal Tubule + CollectingDuct K+-sparing diuretics - Spironolactone - Eplerenone - Triamterene - Amiloride  Aldosterone- mediated Na+ and water reabsorption, and K+ excretion
  • 17.
    Collecting Duct ADH agonists -Desmopressin  Renal H2O reabsorption ADH antagonists - Conivaptan - Tolvaptan - Oxytocin?? Renal H2O reabsorption
  • 18.
    Proximal Tubule SGLT2 inhibitors -Canagliflozin - Dapagliflozin - Empagliflozin  reabsorption of filtered glucose
  • 19.
    Juxtaglomerular cells Direct renin inhibitor - Aliskiren Release of renin Direct-acting vasodilators - Hydralazine  Release of renin
  • 20.
  • 21.
    • Step 1:Obtain the following information • Age • Height • Current weight • Most recent SCr • Step 2: Calculate Ideal Body Weight (IBW) • Male: 50 + (2.3 X inches over 60 inches in height) • Female: 45.5 + (2.3 X inches over 60 inches in height) Creatine Clearance
  • 22.
    • Step 3:Determine dosing weight • Use total body weight to calculate CrCl if TBW< IBW • Use adjusted body weight for obese patients • TBW > 1.3 times IBW • AdjBW: IBW + 0.4 (TBW – IBW) • Step 4: Calculate estimated Creatine Clearance • Male: [(140-age) X IBW] / (72 X SCr) • Female: [(140-age) X IBW] / (72 X SCr) X 0.85 Creatine Clearance
  • 23.
    • A 57year old African American female with a PMH of CKD, HTN, and DM is admitted to ICU for IV antibiotics to treat an infected ulcer on her right foot. Dr. Johnson has ordered Ceftazidime 1 g every 12 hours and vancomycin 1 g every 12 hours. • SCr: 2.51 mg/dL • Height: 65 inches • Weight: 68 kg Creatine Clearance Example
  • 24.
    • Step 1:Obtain the following information • Age: 57 • Height: 65 inches • Actual current weight: 68 kg • Most recent SCr: 2.51 mg/dL • Step 2: Calculate Ideal Body Weight (IBW) • Male: 50 + (2.3 X inches over 60 inches in height) • Female: 45.5 + (2.3 X inches over 60 inches in height) • IBW = 45.5 + (2.3 X 5) = 57 kg Creatine Clearance Example
  • 25.
    • Step 3:Determine dosing weight • Use total body weight to calculate CrCl if TBW< IBW • 68 kg /57 kg = 1.19 • Use adjusted body weight for obese patients • TBW > 1.3 times IBW • AdjBW: IBW +0.4 (TBW – IBW) • Step 4: Calculate estimated Creatine Clearance • Male: [(140-age) X IBW] / (72 X SCr) • Female: [(140-age) X IBW] / (72 X SCr) X 0.85 • CrCl = [140-57) X 57 kg]/(72 X 2.51 mg/dL) X 0.85 = 26.55 mL/min Creatine Clearance Example
  • 26.
    • Ceftazidime renaldosing • CrCl 31-50 mL/min: 1-2 g every 12 hours • CrCl 10-30 mL/min: 1-2 g every 24 hours • CrCl < 10 mL/min: 1-2 g every 48 hours • Based on the above information and her CrCl of 26.55 mL/min, did the doctor prescribe the correct dose of ceftazidime (1 g every 12 hours)? Creatine Clearance Example
  • 27.
    • Most drugdosing recommendations are based on CrCl • There are many equations to calculate CrCl • Cockcroft-Gault (adults) • Schwartz Equation (children) Using CrCl
  • 28.
    • Limitations: • CrClis just an estimate (“eCrCl”) • Creatinine levels dependent on many factors • Age • Sex • Muscle mass • Diet • Renal creatinine secretion (overestimation of kidney function) • Fluctuating renal function (e.g. ICU) • Multiple equations • Lack of standardization among manufacturers (FDA labeling and institution-specific implementation) Using CrCl
  • 29.
    • Step 1:Obtain the following information • Age • Sex • Ethnicity • Most recent SCr • Step 2: Calculate eGFR • GFR (mL/min/1.73 m2) = 175 × (Scr)-1.154 × (Age)-0.203 × (0.742 if female) × (1.212 if African American) Estimated Glomerular Filtration Rate (eGFR)
  • 30.
    • A 57year old African American female with a PMH of CKD, HTN, and DM is admitted to ICU for IV antibiotics to treat an infected ulcer on her right foot. Dr. Johnson has ordered Ceftazidime 1 g every 12 hours and vancomycin 1 g every 12 hours. • SCr: 2.51 mg/dL • Weight: 68 kg • Height: 65 inches eGFR example
  • 31.
    • Step 1:Obtain the following information • Age: 57 • Sex: Female • Ethnicity: African American • Most recent SCr: 2.51 mg/dL • Step 2: Calculate eGFR • GFR (mL/min/1.73 m2) = 175 × (Scr)-1.154 × (Age)-0.203 × (0.742 if female) × (1.212 if African American) • = 175 × (2.51)-1.154 × (57)-0.203 × (0.742 if female) × (1.212 if African American)= 25 mL/min/1.73m2 eGFR Example
  • 32.
    • Some drugdosing recommendations are based on eGFR • Basis for chronic kidney disease staging • Multiple equations: • Modification of Diet in Renal Disease (MDRD) • Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) • Limitations: • Less accurate in very large/small patients • Multiply eGFR by BSA Using eGFR
  • 33.
  • 34.
    What is ChronicKidney Disease? • Presence of kidney damage or a reduction in glomerular filtration rate for three months or longer • As CKD progresses, wastes can build to high levels in your blood. • Complications: high blood pressure, anemia, weak bones, poor nutritional health and nerve damage
  • 35.
    CKD staging GFR categoryGFR (mL/min/1.73m2) Terms G1 ≥90 Normal to high G2 60-89 Mild decreased G3a 45-59 Mild to moderate decrease G3b 30-44 Moderate to severe decrease G4 15-29 Severe decrease G5 <15 Kidney failure
  • 36.
  • 37.
    What is AKI? •Abrupt loss of kidney function • Accumulation of urea and nitrogenous waste • Inability to effectively regulate fluid and electrolytes • ICU patients considered high-risk for AKI • Occurs in up to ⅔ ICU patients • Consequences: • Prolonged hospital stay • Hospital-related adverse events • Development of CKD • Acute/chronic renal replacement therapy
  • 38.
  • 39.
  • 40.
    Risk factors fordrug-induced nephrotoxicity in the ICU Chronic risk factors - Older age (> 65 years) - CKD - Diabetes mellitus - Malignancy - Cardiovascular disease - Liver disease - Chronic pulmonary disease - HTN - Peripheral vascular disease Acute risk factors - Sepsis/infection - Volume depletion (true and effective) - Acute decompensated heart failure - Hypotension - Complex/major surgery - Trauma - Mechanical ventilationPerazella MA. Drug use and nephrotoxicity in the intensive care unit. Kidney International (2012) 81, 1172-1178; doi: 10.1038/ki.2010.475
  • 41.
    Drug-Induced Nephrotoxicity • Tubularepithelial cell damage • Hemodynamically-mediated kidney damage • Obstructive nephropathy • Glomerular disease • Tubulointerstitial disease • Renal vasculitis, thrombosis, and cholesterol emboli
  • 42.
    Tubular epithelial celldamage Acute tubular necrosis **Most common in inpatient setting** - Aminoglycoside antibiotics - Radiographic contrast media - Cisplatin, carboplatin - Amphotericin B - Cyclosporine, tacrolimus - Adefovir, cidofovir, tenofovir - Pentamidine - Foscarnet - Zoledronate Osmotic nephrosis - Mannitol - Dextran - Radiocontrast media - IV immunoglobulin - Drug vehicles (e.g. sucrose, polyethylene glycol) Drug-Induced Nephrotoxicity
  • 43.
    Aminiglycoside nephrotoxicity • Gentamycin,tobramycin, streptomycin, amikacin • 10-25% of patients treated with aminoglycoside • Critically ill: up to 58% • Accumulation of drug in proximal tubular epithelial cells  reactive oxygen species  cell apoptosis and proximal tubular necrosis Drug-Induced Nephrotoxicity
  • 44.
    Dose adjustment example: •Gentamycin: • Traditional dosing – increase dosing interval: • Initial dose given every [SCr x 8] hours • Traditional dosing – decrease dose: • Give usual initial dose, then reduce dose: [initial dose/SCr] and give every 8 hours • Once-daily dosing: • Give usual mg/kg dose and adjust initial interval based on CrCl (i.e. CrCl > 60 mL/min: every 24 h; CrCl 40-60 mL/min: every 36 h; CrCl 20-40 mL/min: every 48 h) Drug-Induced Nephrotoxicity
  • 45.
  • 46.
    References • Santiago C,et. al. Renal Dopamine Receptors, Oxidative Stress, and Hypertension. International Journal of Molecular Science. 2013 Sep: 14(9): 17553-17572 • Schmitz JM, et. al. Renal alpha-1 and alpha-2 adrenergic receptors: biochemical and pharmacological correlations. J Pharmacol Exp Ther. 1981 Nov;219(2):400-6. • Chunling Li, et. al. Molecular Mechanisms of Antidiuretic Effect on Oxytocin. Journal of the American Society Nephrology. 2008 Feb; 19(2):225-232 • Micromedex. Truven Health Analytics Inc. (online) Available at <http://www.micromedexsolutions.com.acphs.idm.oclc.org/micromedex2/librarian/ND_T/evidencexpert/ND_PR/evidencexpert/ CS/613E30/ND_AppProduct/evidencexpert/DUPLICATIONSHIELDSYNC/2F559D/ND_PG/evidencexpert/ND_B/evidencexpe rt/ND_P/evidencexpert/PFActionId/pf.HomePage?navitem=Logo#> (accessed 16 Sep 2015) • CKD and Drug Dosing: Information for Providers. National Kidney Disease Education Program. Revised Apr 2015. Available online at: www.nkdep.nih.gov • Perazella MA. Drug use and nephrotoxicity in the intensive care unit. Kidney International (2012) 81, 1172-1178; doi: 10.1038/ki.2010.475 • DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM: Pharmacotherapy: A Pathophysiologic Approach, Ninth Edition: www.accesspharmacy.com • KDIGO clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int Suppl. 2012 Dec;2(5):337-414.
  • 53.
    Radiographic contrast media-inducednephrotoxicity (CIN) • 3rd leading cause of hospital-acquired AKI • <2% in patients with normal renal function • Up to 50% in patients with CKD or diabetes • Systemic hypotension (i.e. renal hypoperfusion) + acute vasoconstriction  increased contrast media remaining in tubules  cytotoxicity Drug-Induced Nephrotoxicity
  • 54.
    Prevention of radiographicCIN: • Minimize contrast dose • Use non-iodinated and low-/iso-osmolar contrast media • Hydration! – before, during and after • Avoid other nephrotoxic drugs Drug-Induced Nephrotoxicity
  • 55.
    Tubular epithelial celldamage Acute tubular necrosis - Aminoglycoside antibiotics (gentamycin, tobramycin, etc.) - Radiographic contrast media - Cisplatin, carboplatin - Amphotericin B - Cyclosporine, tacrolimus - Adefovir, cidofovir, tenofovir - Pentamidine - Foscarnet - Zoledronate Osmotic nephrosis - Mannitol - Dextran - Radiocontrast media - IV immunoglobulin - Drug vehicles (e.g. sucrose, polyethylene glycol) Drug-Induced Nephrotoxicity
  • 56.
    Hemodynamically-mediated kidney injury -ARBs (lisinopril, enalopril, etc.) - ARBs (valsartan, candesartan, etc.) - NSAIDs - Cyclosporine, tacrolimus - OKT3 Drug-Induced Nephrotoxicity
  • 57.
    Obstructive neuropathy Intratubular obstruction -Acyclovir - Sulfonamides - Indinavir - Foscarnet - Methotrexate Nephrolithiasis - Sulfonamide - Triamterene - Indinavir Nephrocalcinosis - Oral sodium phosphate solution Drug-Induced Nephrotoxicity
  • 58.
    Glomerular disease - Gold -Lithium - NSAIDs, COX-2 inhibitors (i.e. celecoxib) Drug-Induced Nephrotoxicity
  • 59.
    Tubulointerstitial disease Allergic interstitialnephritis - Penicillins - Ciprofloxacin - NSAIDs, COX-2 inhibitors (i.e. celecoxib) - PPIs - Loop diuretics (furosemide, torsemide, bumetanide) Chronic interstitial nephritis - Cyclosporine - Lithium - Aristolochic acid Papillary necrosis - NSAIDs - Caffeine analgesics (e.g. Fiorecet, Fiorenol, Excedrin) Drug-Induced Nephrotoxicity
  • 60.
    Renal vasculitis, thrombosisand cholesterol emboli Vasculitis and thrombosis - Hydralazine - Propylthiouracil - Allopurinol - Penicillamine - Gemcitabine - Mitomycin C - Methamphetamines - Cyclosprine, tacrolimus - Adalimumab - Bevacizumab Cholesterol emboli - Warfarin - Thrombolytic agents Drug-Induced Nephrotoxicity

Editor's Notes

  • #6 http://classes.midlandstech.edu/carterp/Courses/bio211/chap25/chap25.htm
  • #9 MOA: decreases vasoactive prostaglandins
  • #11 Santiago C, et. al. Renal Dopamine Receptors, Oxidative Stress, and Hypertension. International Journal of Molecular Science. 2013 Sep: 14(9): 17553-17572 Schmitz JM, et. al. Renal alpha-1 and alpha-2 adrenergic receptors: biochemical and pharmacological correlations. J Pharmacol Exp Ther. 1981 Nov;219(2):400-6. Dopamine antagonists – ex: metoclopromide, atypical antipsychotics Alpha-1 agonists – block NE-mediated vasoconstriction
  • #12 NTG - increases guanosine 3'5' monophosphate (cyclic GMP) in smooth muscle and other tissues by stimulating guanylate cyclase through formation of free radical nitric oxide. This activity results in dephosphorylation of the light chain of myosin, which improves the contractile state in smooth muscle , and subsequent vasodilation (veins and arteries) Sodium nitroprusside – dilates peripheral arteries and veins (more so veins) Isosorbide - arteries and veins
  • #13 Micromedex: Carbonic anhydrase is an enzyme responsible for forming hydrogen and bicarbonate ions from carbon dioxide and water. By inhibiting this enzyme, methazolimide reduces the availability of these ions for active transport. Hydrogen ion concentrations in the renal tubule lumen are reduced by methazolamide, leading to alkaline urine and an increased excretion of bicarbonate, sodium, potassium, and water. A reduction in the plasma bicarbonate results in metabolic acidosis, which rapidly reverses the diuretic effect…”
  • #18 Chunling Li, et. al. Molecular Mechanisms of Antidiuretic Effect on Oxytocin. Journal of the American Society Nephrology. 2008 Feb; 19(2):225-232
  • #20 http://classes.midlandstech.edu/carterp/Courses/bio211/chap25/chap25.htm Hyralazine – vasodilation = increased blood flow; renin = increased blood volume
  • #28 CKD and Drug Dosing: Information for Providers. National Kidney Disease Education Program. Revised Apr 2015. Available online at: www.nkdep.nih.gov
  • #29 CKD and Drug Dosing: Information for Providers. National Kidney Disease Education Program. Revised Apr 2015. Available online at: www.nkdep.nih.gov
  • #33 CKD and Drug Dosing: Information for Providers. National Kidney Disease Education Program. Revised Apr 2015. Available online at: www.nkdep.nih.gov “Kidney function is proportional to kidney size, which is proportional to BSA” – 1.73 m^2 is the traditional average BSA…. Not so anymore (more like 1.84??) Can use exogenous filtration markers to measure actual GFR and CrCl for narrow therapeutic indicies, or very large/small patients
  • #39 DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM: Pharmacotherapy: A Pathophysiologic Approach, Ninth Edition: www.accesspharmacy.com
  • #43 Modified from: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM: Pharmacotherapy: A Pathophysiologic Approach, Ninth Edition: www.accesspharmacy.com
  • #48 http://thinkingwithcrit.blogspot.com/2009/07/back-when-cartoons-only-required.html
  • #49 http://classes.midlandstech.edu/carterp/Courses/bio211/chap25/chap25.htm
  • #50 http://classes.midlandstech.edu/carterp/Courses/bio211/chap25/chap25.htm
  • #51 http://classes.midlandstech.edu/carterp/Courses/bio211/chap25/chap25.htm
  • #52 http://classes.midlandstech.edu/carterp/Courses/bio211/chap25/chap25.htm
  • #53 http://classes.midlandstech.edu/carterp/Courses/bio211/chap25/chap25.htm
  • #56 Modified from: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM: Pharmacotherapy: A Pathophysiologic Approach, Ninth Edition: www.accesspharmacy.com
  • #57 Modified from: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM: Pharmacotherapy: A Pathophysiologic Approach, Ninth Edition: www.accesspharmacy.com
  • #58 Modified from: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM: Pharmacotherapy: A Pathophysiologic Approach, Ninth Edition: www.accesspharmacy.com
  • #59 Modified from: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM: Pharmacotherapy: A Pathophysiologic Approach, Ninth Edition: www.accesspharmacy.com
  • #60 Modified from: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM: Pharmacotherapy: A Pathophysiologic Approach, Ninth Edition: www.accesspharmacy.com
  • #61 Modified from: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM: Pharmacotherapy: A Pathophysiologic Approach, Ninth Edition: www.accesspharmacy.com