SlideShare a Scribd company logo
HBase在hulu的使用和实践
张虔熙 @ hulu
qianxi.zhang@hulu.com
About hulu
About me
• 张虔熙
ü软件工程师@Hulu大数据平台组
ü专注于分布式计算和存储技术
ü热衷于参与开源社区贡献代码
üqianxi.zhang@hulu.com
Agenda
• Overview
• Audience Platform(用户画像系统)
• Auto Balance InputFormat and Snapshot
• Online Bill Storage(订单信息存储系统)
• Replication, RPC Queue and Replica
Agenda
• Overview
• Audience Platform(用户画像系统)
• Auto Balance InputFormat and Snapshot
• Online Bill Storage(订单信息存储系统)
• Replication, RPC Queue and Replica
Overview
• HBase version : 1.2.0
• Hadoop nodes :1000+
• HBase nodes:200+
• HBase table: 200+
• HBase data size:700TB
• Cluster:4
Scenario
• Audience Platform(用户画像系统)
• Log Storage(日志存储系统)
• Online Bill Storage(订单信息存储系统)
• OpenTSDB
Agenda
• Overview
• Audience Platform(用户画像系统)
• Auto Balance InputFormat and Snapshot
• Online Bill Storage(订单信息存储系统)
• Replication, RPC Queue and Replica
Audience Platform(用户画像系统)
• 用户画像:根据用户行为抽象出的一个标签化的用户模型
• Data
üProfile(基本属性)
üUser behavior(用户行为)
üThird party data(第三方数据)
üLabel(标签)
Audience Platform(用户画像系统)
• Data characteristic
üSparse(10^6 qualifier)
üMulti-version(User behavior)
• Purpose
üMarketing decision
üPersonalized recommendation
üAdvertisement
Audience Platform(用户画像系统)
Kafka
HDFS
DB
HBase
Service
Cache
HDFS
Spark
Streaming
Bulk Load
Spark
MapReduce
Audience Platform(用户画像系统)
• Key technology
üAuto balance InputFormat
üSnapshot
Agenda
• Overview
• Audience Platform(用户画像系统)
• Auto Balance InputFormat and Snapshot
• Online Bill Storage(订单信息存储系统)
• Replication, RPC Queue and Replica
Region Size Distribution
Application Performance
• Problem
üTask execution time in MapReduce and Spark is positive correlationwithRegion Size
üTask execution time varies wildly
• Resolve
üEnable TableInputFormat autobalance(hbase.mapreduce.input.autobalance)
üSplit large Region and merge small Region for InputFormat
• Bug
üHBASE-15357(Wrong split/middle key)
Snapshot
• Snapshot
üTable Meta
üHFile Link
• Why Snapshot?
üPerformance
üThe view of data at specific time
Snapshot
• Problem
üCreate one snapshot per application?
üHow to share snapshot between application?
• Snapshot Service
üManage snapshot lifecycle
üAssign the reasonable snapshot to the application
Agenda
• Overview
• Audience Platform(用户画像系统)
• Auto Balance InputFormat and Snapshot
• Online Bill Storage(订单信息存储系统)
• Replication, RPC Queue and Replica
Online Bill Storage(订单信息存储系统)
• Characteristic
üBill information
üOnline service
üWrite more, read less
üRead delay < 1s
Online Bill Storage(订单信息存储系统)
• Key technology
üReplication
üRPC Queue
üReplica
Agenda
• Overview
• Audience Platform(用户画像系统)
• Auto Balance InputFormat and Snapshot
• Online Bill Storage(订单信息存储系统)
• Replication, RPC Queue and Replica
Replication
• Two datacenter,Master-Master Replication
Cluster A Cluster B
Write Read Write Read
Replication
Replication
Replication
• Problem
üReplicationTable and CF configurationwill be wrong if the table name includes namespace
üPrevious design did not consider namespace
üUse “:” when parsing tables and family,such as “userTable:family1”
üBut Namespace and table segmentationis also “:”, such as “namespace1:userTable:faimly1”
• Resolve
üHBASE-11386, HBASE-11393(Use Protobuf insteadof string)
Replication
• Problem
üSome data couldn’t be replicated
üPeerClusterZnode under regionserver of removed peer may never be deleted
üIf some regionserver crash, other regionserver couldn’t take over the rest
replication work since the method “copyQueuesFromRSUsingMulti” fails
• Resolve
üHBASE-16135, HBASE-14476
RPC Queue
• Improve Performance
üMulti RPC Queue
üHBASE-11355
• More
üControlling Queue Delay(CoDel)
üHBASE-15136
Write Queue
Get Queue
Scan Queue
Replica
• Problem
üWhen a RegionServer crash, the region on it is unavailable for a period
• Resolve
üRegion replicas
üThere could be more than one replica for one region
üOne primary replica could accept write and read operation
üMulti secondary replica only accepts read operation
üHBASE-10070
Replica
WAL HFile-1 HFile-2HDFS
RegionServer
Region
(Primary)
RegionServer
Region
(Secondary)
HBase
Client
Read and Write Read Only
Replica
• Client strategy
üQuery primaryregion first
üIf don’t get the result in 10ms, add a query to the secondary replicas
üTake the first answer and cancel others
• Problem
üThe data in secondary replica may be stale.
• More
üHBASE-11568(Async WAL to secondary replica)
Future
• Multi-Tenancy(HBASE-10994)
• Strong schema
• High availability
Reference
• https://issues.apache.org/jira/browse/HBASE-15357
• https://issues.apache.org/jira/browse/HBASE-11386
• https://issues.apache.org/jira/browse/HBASE-11393
• https://issues.apache.org/jira/browse/HBASE-16135
• https://issues.apache.org/jira/browse/HBASE-14476
• https://issues.apache.org/jira/browse/HBASE-15136
• https://issues.apache.org/jira/browse/HBASE-10070
• https://issues.apache.org/jira/browse/HBASE-11568
• https://issues.apache.org/jira/browse/HBASE-10994
Thank you
qianxi.zhang@hulu.com

More Related Content

What's hot

HBaseCon 2015: HBase Operations at Xiaomi
HBaseCon 2015: HBase Operations at XiaomiHBaseCon 2015: HBase Operations at Xiaomi
HBaseCon 2015: HBase Operations at Xiaomi
HBaseCon
 
HBaseCon 2013: Streaming Data into Apache HBase using Apache Flume: Experienc...
HBaseCon 2013: Streaming Data into Apache HBase using Apache Flume: Experienc...HBaseCon 2013: Streaming Data into Apache HBase using Apache Flume: Experienc...
HBaseCon 2013: Streaming Data into Apache HBase using Apache Flume: Experienc...
Cloudera, Inc.
 
HBase: Where Online Meets Low Latency
HBase: Where Online Meets Low LatencyHBase: Where Online Meets Low Latency
HBase: Where Online Meets Low Latency
HBaseCon
 
HBase Accelerated: In-Memory Flush and Compaction
HBase Accelerated: In-Memory Flush and CompactionHBase Accelerated: In-Memory Flush and Compaction
HBase Accelerated: In-Memory Flush and Compaction
DataWorks Summit/Hadoop Summit
 
Real-time HBase: Lessons from the Cloud
Real-time HBase: Lessons from the CloudReal-time HBase: Lessons from the Cloud
Real-time HBase: Lessons from the Cloud
HBaseCon
 
HBaseCon 2012 | Base Metrics: What They Mean to You - Cloudera
HBaseCon 2012 | Base Metrics: What They Mean to You - ClouderaHBaseCon 2012 | Base Metrics: What They Mean to You - Cloudera
HBaseCon 2012 | Base Metrics: What They Mean to You - Cloudera
Cloudera, Inc.
 
HBase and HDFS: Understanding FileSystem Usage in HBase
HBase and HDFS: Understanding FileSystem Usage in HBaseHBase and HDFS: Understanding FileSystem Usage in HBase
HBase and HDFS: Understanding FileSystem Usage in HBase
enissoz
 
Digital Library Collection Management using HBase
Digital Library Collection Management using HBaseDigital Library Collection Management using HBase
Digital Library Collection Management using HBase
HBaseCon
 
Apache HBase, Accelerated: In-Memory Flush and Compaction
Apache HBase, Accelerated: In-Memory Flush and Compaction Apache HBase, Accelerated: In-Memory Flush and Compaction
Apache HBase, Accelerated: In-Memory Flush and Compaction
HBaseCon
 
HBase: Extreme Makeover
HBase: Extreme MakeoverHBase: Extreme Makeover
HBase: Extreme Makeover
HBaseCon
 
HBaseCon 2012 | Solbase - Kyungseog Oh, Photobucket
HBaseCon 2012 | Solbase - Kyungseog Oh, PhotobucketHBaseCon 2012 | Solbase - Kyungseog Oh, Photobucket
HBaseCon 2012 | Solbase - Kyungseog Oh, Photobucket
Cloudera, Inc.
 
HBaseCon 2015: HBase 2.0 and Beyond Panel
HBaseCon 2015: HBase 2.0 and Beyond PanelHBaseCon 2015: HBase 2.0 and Beyond Panel
HBaseCon 2015: HBase 2.0 and Beyond Panel
HBaseCon
 
Meet hbase 2.0
Meet hbase 2.0Meet hbase 2.0
Meet hbase 2.0
enissoz
 
HBaseCon 2015- HBase @ Flipboard
HBaseCon 2015- HBase @ FlipboardHBaseCon 2015- HBase @ Flipboard
HBaseCon 2015- HBase @ Flipboard
Matthew Blair
 
HBase at Bloomberg: High Availability Needs for the Financial Industry
HBase at Bloomberg: High Availability Needs for the Financial IndustryHBase at Bloomberg: High Availability Needs for the Financial Industry
HBase at Bloomberg: High Availability Needs for the Financial Industry
HBaseCon
 
Usage case of HBase for real-time application
Usage case of HBase for real-time applicationUsage case of HBase for real-time application
Usage case of HBase for real-time application
Edward Yoon
 
HBaseCon 2012 | Gap Inc Direct: Serving Apparel Catalog from HBase for Live W...
HBaseCon 2012 | Gap Inc Direct: Serving Apparel Catalog from HBase for Live W...HBaseCon 2012 | Gap Inc Direct: Serving Apparel Catalog from HBase for Live W...
HBaseCon 2012 | Gap Inc Direct: Serving Apparel Catalog from HBase for Live W...
Cloudera, Inc.
 
HBase Read High Availability Using Timeline Consistent Region Replicas
HBase  Read High Availability Using Timeline Consistent Region ReplicasHBase  Read High Availability Using Timeline Consistent Region Replicas
HBase Read High Availability Using Timeline Consistent Region Replicas
enissoz
 
HBaseCon 2012 | Content Addressable Storages for Fun and Profit - Berk Demir,...
HBaseCon 2012 | Content Addressable Storages for Fun and Profit - Berk Demir,...HBaseCon 2012 | Content Addressable Storages for Fun and Profit - Berk Demir,...
HBaseCon 2012 | Content Addressable Storages for Fun and Profit - Berk Demir,...
Cloudera, Inc.
 
Accordion HBaseCon 2017
Accordion HBaseCon 2017Accordion HBaseCon 2017
Accordion HBaseCon 2017
Edward Bortnikov
 

What's hot (20)

HBaseCon 2015: HBase Operations at Xiaomi
HBaseCon 2015: HBase Operations at XiaomiHBaseCon 2015: HBase Operations at Xiaomi
HBaseCon 2015: HBase Operations at Xiaomi
 
HBaseCon 2013: Streaming Data into Apache HBase using Apache Flume: Experienc...
HBaseCon 2013: Streaming Data into Apache HBase using Apache Flume: Experienc...HBaseCon 2013: Streaming Data into Apache HBase using Apache Flume: Experienc...
HBaseCon 2013: Streaming Data into Apache HBase using Apache Flume: Experienc...
 
HBase: Where Online Meets Low Latency
HBase: Where Online Meets Low LatencyHBase: Where Online Meets Low Latency
HBase: Where Online Meets Low Latency
 
HBase Accelerated: In-Memory Flush and Compaction
HBase Accelerated: In-Memory Flush and CompactionHBase Accelerated: In-Memory Flush and Compaction
HBase Accelerated: In-Memory Flush and Compaction
 
Real-time HBase: Lessons from the Cloud
Real-time HBase: Lessons from the CloudReal-time HBase: Lessons from the Cloud
Real-time HBase: Lessons from the Cloud
 
HBaseCon 2012 | Base Metrics: What They Mean to You - Cloudera
HBaseCon 2012 | Base Metrics: What They Mean to You - ClouderaHBaseCon 2012 | Base Metrics: What They Mean to You - Cloudera
HBaseCon 2012 | Base Metrics: What They Mean to You - Cloudera
 
HBase and HDFS: Understanding FileSystem Usage in HBase
HBase and HDFS: Understanding FileSystem Usage in HBaseHBase and HDFS: Understanding FileSystem Usage in HBase
HBase and HDFS: Understanding FileSystem Usage in HBase
 
Digital Library Collection Management using HBase
Digital Library Collection Management using HBaseDigital Library Collection Management using HBase
Digital Library Collection Management using HBase
 
Apache HBase, Accelerated: In-Memory Flush and Compaction
Apache HBase, Accelerated: In-Memory Flush and Compaction Apache HBase, Accelerated: In-Memory Flush and Compaction
Apache HBase, Accelerated: In-Memory Flush and Compaction
 
HBase: Extreme Makeover
HBase: Extreme MakeoverHBase: Extreme Makeover
HBase: Extreme Makeover
 
HBaseCon 2012 | Solbase - Kyungseog Oh, Photobucket
HBaseCon 2012 | Solbase - Kyungseog Oh, PhotobucketHBaseCon 2012 | Solbase - Kyungseog Oh, Photobucket
HBaseCon 2012 | Solbase - Kyungseog Oh, Photobucket
 
HBaseCon 2015: HBase 2.0 and Beyond Panel
HBaseCon 2015: HBase 2.0 and Beyond PanelHBaseCon 2015: HBase 2.0 and Beyond Panel
HBaseCon 2015: HBase 2.0 and Beyond Panel
 
Meet hbase 2.0
Meet hbase 2.0Meet hbase 2.0
Meet hbase 2.0
 
HBaseCon 2015- HBase @ Flipboard
HBaseCon 2015- HBase @ FlipboardHBaseCon 2015- HBase @ Flipboard
HBaseCon 2015- HBase @ Flipboard
 
HBase at Bloomberg: High Availability Needs for the Financial Industry
HBase at Bloomberg: High Availability Needs for the Financial IndustryHBase at Bloomberg: High Availability Needs for the Financial Industry
HBase at Bloomberg: High Availability Needs for the Financial Industry
 
Usage case of HBase for real-time application
Usage case of HBase for real-time applicationUsage case of HBase for real-time application
Usage case of HBase for real-time application
 
HBaseCon 2012 | Gap Inc Direct: Serving Apparel Catalog from HBase for Live W...
HBaseCon 2012 | Gap Inc Direct: Serving Apparel Catalog from HBase for Live W...HBaseCon 2012 | Gap Inc Direct: Serving Apparel Catalog from HBase for Live W...
HBaseCon 2012 | Gap Inc Direct: Serving Apparel Catalog from HBase for Live W...
 
HBase Read High Availability Using Timeline Consistent Region Replicas
HBase  Read High Availability Using Timeline Consistent Region ReplicasHBase  Read High Availability Using Timeline Consistent Region Replicas
HBase Read High Availability Using Timeline Consistent Region Replicas
 
HBaseCon 2012 | Content Addressable Storages for Fun and Profit - Berk Demir,...
HBaseCon 2012 | Content Addressable Storages for Fun and Profit - Berk Demir,...HBaseCon 2012 | Content Addressable Storages for Fun and Profit - Berk Demir,...
HBaseCon 2012 | Content Addressable Storages for Fun and Profit - Berk Demir,...
 
Accordion HBaseCon 2017
Accordion HBaseCon 2017Accordion HBaseCon 2017
Accordion HBaseCon 2017
 

Similar to hbaseconasia2017: HBase在Hulu的使用和实践

Introduction to Kudu - StampedeCon 2016
Introduction to Kudu - StampedeCon 2016Introduction to Kudu - StampedeCon 2016
Introduction to Kudu - StampedeCon 2016
StampedeCon
 
Aesop change data propagation
Aesop change data propagationAesop change data propagation
Aesop change data propagation
Regunath B
 
Introduction to Apache Kudu
Introduction to Apache KuduIntroduction to Apache Kudu
Introduction to Apache Kudu
Jeff Holoman
 
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kuberneteshbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
HBaseCon
 
ECS19 - Patrick Curran, Eric Shupps - SHAREPOINT 24X7X365: ARCHITECTING FOR H...
ECS19 - Patrick Curran, Eric Shupps - SHAREPOINT 24X7X365: ARCHITECTING FOR H...ECS19 - Patrick Curran, Eric Shupps - SHAREPOINT 24X7X365: ARCHITECTING FOR H...
ECS19 - Patrick Curran, Eric Shupps - SHAREPOINT 24X7X365: ARCHITECTING FOR H...
European Collaboration Summit
 
Swiss Big Data User Group - Introduction to Apache Drill
Swiss Big Data User Group - Introduction to Apache DrillSwiss Big Data User Group - Introduction to Apache Drill
Swiss Big Data User Group - Introduction to Apache Drill
MapR Technologies
 
Real-time Big Data Analytics Engine using Impala
Real-time Big Data Analytics Engine using ImpalaReal-time Big Data Analytics Engine using Impala
Real-time Big Data Analytics Engine using Impala
Jason Shih
 
Large-scale Web Apps @ Pinterest
Large-scale Web Apps @ PinterestLarge-scale Web Apps @ Pinterest
Large-scale Web Apps @ Pinterest
HBaseCon
 
Big Data Day LA 2016/ Big Data Track - How To Use Impala and Kudu To Optimize...
Big Data Day LA 2016/ Big Data Track - How To Use Impala and Kudu To Optimize...Big Data Day LA 2016/ Big Data Track - How To Use Impala and Kudu To Optimize...
Big Data Day LA 2016/ Big Data Track - How To Use Impala and Kudu To Optimize...
Data Con LA
 
Simplifying Hadoop: A Secure and Unified Data Access Path for Computer Framew...
Simplifying Hadoop: A Secure and Unified Data Access Path for Computer Framew...Simplifying Hadoop: A Secure and Unified Data Access Path for Computer Framew...
Simplifying Hadoop: A Secure and Unified Data Access Path for Computer Framew...
Dataconomy Media
 
First Hive Meetup London 2012-07-10 - Tomas Cervenka - VisualDNA
First Hive Meetup London 2012-07-10 - Tomas Cervenka - VisualDNAFirst Hive Meetup London 2012-07-10 - Tomas Cervenka - VisualDNA
First Hive Meetup London 2012-07-10 - Tomas Cervenka - VisualDNA
Tomas Cervenka
 
Using Kafka and Kudu for fast, low-latency SQL analytics on streaming data
Using Kafka and Kudu for fast, low-latency SQL analytics on streaming dataUsing Kafka and Kudu for fast, low-latency SQL analytics on streaming data
Using Kafka and Kudu for fast, low-latency SQL analytics on streaming data
Mike Percy
 
Productionizing Hadoop - New Lessons Learned
Productionizing Hadoop - New Lessons LearnedProductionizing Hadoop - New Lessons Learned
Productionizing Hadoop - New Lessons Learned
Cloudera, Inc.
 
HBase and Hadoop at Urban Airship
HBase and Hadoop at Urban AirshipHBase and Hadoop at Urban Airship
HBase and Hadoop at Urban Airship
dave_revell
 
Large-scale projects development (scaling LAMP)
Large-scale projects development (scaling LAMP)Large-scale projects development (scaling LAMP)
Large-scale projects development (scaling LAMP)
Alexey Rybak
 
Kudu austin oct 2015.pptx
Kudu austin oct 2015.pptxKudu austin oct 2015.pptx
Kudu austin oct 2015.pptx
Felicia Haggarty
 
Real time fraud detection at 1+M scale on hadoop stack
Real time fraud detection at 1+M scale on hadoop stackReal time fraud detection at 1+M scale on hadoop stack
Real time fraud detection at 1+M scale on hadoop stack
DataWorks Summit/Hadoop Summit
 
Hadoop Summit - Hausenblas 20 March
Hadoop Summit - Hausenblas 20 MarchHadoop Summit - Hausenblas 20 March
Hadoop Summit - Hausenblas 20 March
MapR Technologies
 
Understanding the Value and Architecture of Apache Drill
Understanding the Value and Architecture of Apache DrillUnderstanding the Value and Architecture of Apache Drill
Understanding the Value and Architecture of Apache Drill
DataWorks Summit
 
Impala Architecture presentation
Impala Architecture presentationImpala Architecture presentation
Impala Architecture presentation
hadooparchbook
 

Similar to hbaseconasia2017: HBase在Hulu的使用和实践 (20)

Introduction to Kudu - StampedeCon 2016
Introduction to Kudu - StampedeCon 2016Introduction to Kudu - StampedeCon 2016
Introduction to Kudu - StampedeCon 2016
 
Aesop change data propagation
Aesop change data propagationAesop change data propagation
Aesop change data propagation
 
Introduction to Apache Kudu
Introduction to Apache KuduIntroduction to Apache Kudu
Introduction to Apache Kudu
 
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kuberneteshbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
hbaseconasia2017: Building online HBase cluster of Zhihu based on Kubernetes
 
ECS19 - Patrick Curran, Eric Shupps - SHAREPOINT 24X7X365: ARCHITECTING FOR H...
ECS19 - Patrick Curran, Eric Shupps - SHAREPOINT 24X7X365: ARCHITECTING FOR H...ECS19 - Patrick Curran, Eric Shupps - SHAREPOINT 24X7X365: ARCHITECTING FOR H...
ECS19 - Patrick Curran, Eric Shupps - SHAREPOINT 24X7X365: ARCHITECTING FOR H...
 
Swiss Big Data User Group - Introduction to Apache Drill
Swiss Big Data User Group - Introduction to Apache DrillSwiss Big Data User Group - Introduction to Apache Drill
Swiss Big Data User Group - Introduction to Apache Drill
 
Real-time Big Data Analytics Engine using Impala
Real-time Big Data Analytics Engine using ImpalaReal-time Big Data Analytics Engine using Impala
Real-time Big Data Analytics Engine using Impala
 
Large-scale Web Apps @ Pinterest
Large-scale Web Apps @ PinterestLarge-scale Web Apps @ Pinterest
Large-scale Web Apps @ Pinterest
 
Big Data Day LA 2016/ Big Data Track - How To Use Impala and Kudu To Optimize...
Big Data Day LA 2016/ Big Data Track - How To Use Impala and Kudu To Optimize...Big Data Day LA 2016/ Big Data Track - How To Use Impala and Kudu To Optimize...
Big Data Day LA 2016/ Big Data Track - How To Use Impala and Kudu To Optimize...
 
Simplifying Hadoop: A Secure and Unified Data Access Path for Computer Framew...
Simplifying Hadoop: A Secure and Unified Data Access Path for Computer Framew...Simplifying Hadoop: A Secure and Unified Data Access Path for Computer Framew...
Simplifying Hadoop: A Secure and Unified Data Access Path for Computer Framew...
 
First Hive Meetup London 2012-07-10 - Tomas Cervenka - VisualDNA
First Hive Meetup London 2012-07-10 - Tomas Cervenka - VisualDNAFirst Hive Meetup London 2012-07-10 - Tomas Cervenka - VisualDNA
First Hive Meetup London 2012-07-10 - Tomas Cervenka - VisualDNA
 
Using Kafka and Kudu for fast, low-latency SQL analytics on streaming data
Using Kafka and Kudu for fast, low-latency SQL analytics on streaming dataUsing Kafka and Kudu for fast, low-latency SQL analytics on streaming data
Using Kafka and Kudu for fast, low-latency SQL analytics on streaming data
 
Productionizing Hadoop - New Lessons Learned
Productionizing Hadoop - New Lessons LearnedProductionizing Hadoop - New Lessons Learned
Productionizing Hadoop - New Lessons Learned
 
HBase and Hadoop at Urban Airship
HBase and Hadoop at Urban AirshipHBase and Hadoop at Urban Airship
HBase and Hadoop at Urban Airship
 
Large-scale projects development (scaling LAMP)
Large-scale projects development (scaling LAMP)Large-scale projects development (scaling LAMP)
Large-scale projects development (scaling LAMP)
 
Kudu austin oct 2015.pptx
Kudu austin oct 2015.pptxKudu austin oct 2015.pptx
Kudu austin oct 2015.pptx
 
Real time fraud detection at 1+M scale on hadoop stack
Real time fraud detection at 1+M scale on hadoop stackReal time fraud detection at 1+M scale on hadoop stack
Real time fraud detection at 1+M scale on hadoop stack
 
Hadoop Summit - Hausenblas 20 March
Hadoop Summit - Hausenblas 20 MarchHadoop Summit - Hausenblas 20 March
Hadoop Summit - Hausenblas 20 March
 
Understanding the Value and Architecture of Apache Drill
Understanding the Value and Architecture of Apache DrillUnderstanding the Value and Architecture of Apache Drill
Understanding the Value and Architecture of Apache Drill
 
Impala Architecture presentation
Impala Architecture presentationImpala Architecture presentation
Impala Architecture presentation
 

More from HBaseCon

hbaseconasia2017: HBase on Beam
hbaseconasia2017: HBase on Beamhbaseconasia2017: HBase on Beam
hbaseconasia2017: HBase on Beam
HBaseCon
 
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinteresthbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
HBaseCon
 
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
HBaseCon
 
hbaseconasia2017: 基于HBase的企业级大数据平台
hbaseconasia2017: 基于HBase的企业级大数据平台hbaseconasia2017: 基于HBase的企业级大数据平台
hbaseconasia2017: 基于HBase的企业级大数据平台
HBaseCon
 
hbaseconasia2017: HBase at JD.com
hbaseconasia2017: HBase at JD.comhbaseconasia2017: HBase at JD.com
hbaseconasia2017: HBase at JD.com
HBaseCon
 
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huaweihbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
HBaseCon
 
hbaseconasia2017: HBase Practice At XiaoMi
hbaseconasia2017: HBase Practice At XiaoMihbaseconasia2017: HBase Practice At XiaoMi
hbaseconasia2017: HBase Practice At XiaoMi
HBaseCon
 
HBaseCon2017 Democratizing HBase
HBaseCon2017 Democratizing HBaseHBaseCon2017 Democratizing HBase
HBaseCon2017 Democratizing HBase
HBaseCon
 
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBaseHBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
HBaseCon
 
HBaseCon2017 Transactions in HBase
HBaseCon2017 Transactions in HBaseHBaseCon2017 Transactions in HBase
HBaseCon2017 Transactions in HBase
HBaseCon
 
HBaseCon2017 Highly-Available HBase
HBaseCon2017 Highly-Available HBaseHBaseCon2017 Highly-Available HBase
HBaseCon2017 Highly-Available HBase
HBaseCon
 
HBaseCon2017 Apache HBase at Didi
HBaseCon2017 Apache HBase at DidiHBaseCon2017 Apache HBase at Didi
HBaseCon2017 Apache HBase at Didi
HBaseCon
 
HBaseCon2017 gohbase: Pure Go HBase Client
HBaseCon2017 gohbase: Pure Go HBase ClientHBaseCon2017 gohbase: Pure Go HBase Client
HBaseCon2017 gohbase: Pure Go HBase Client
HBaseCon
 
HBaseCon2017 Improving HBase availability in a multi tenant environment
HBaseCon2017 Improving HBase availability in a multi tenant environmentHBaseCon2017 Improving HBase availability in a multi tenant environment
HBaseCon2017 Improving HBase availability in a multi tenant environment
HBaseCon
 
HBaseCon2017 Spark HBase Connector: Feature Rich and Efficient Access to HBas...
HBaseCon2017 Spark HBase Connector: Feature Rich and Efficient Access to HBas...HBaseCon2017 Spark HBase Connector: Feature Rich and Efficient Access to HBas...
HBaseCon2017 Spark HBase Connector: Feature Rich and Efficient Access to HBas...
HBaseCon
 
HBaseCon2017 Efficient and portable data processing with Apache Beam and HBase
HBaseCon2017 Efficient and portable data processing with Apache Beam and HBaseHBaseCon2017 Efficient and portable data processing with Apache Beam and HBase
HBaseCon2017 Efficient and portable data processing with Apache Beam and HBase
HBaseCon
 
HBaseCon2017 HBase at Xiaomi
HBaseCon2017 HBase at XiaomiHBaseCon2017 HBase at Xiaomi
HBaseCon2017 HBase at Xiaomi
HBaseCon
 
HBaseCon2017 HBase/Phoenix @ Scale @ Salesforce
HBaseCon2017 HBase/Phoenix @ Scale @ SalesforceHBaseCon2017 HBase/Phoenix @ Scale @ Salesforce
HBaseCon2017 HBase/Phoenix @ Scale @ Salesforce
HBaseCon
 
HBaseCon2017 Community-Driven Graphs with JanusGraph
HBaseCon2017 Community-Driven Graphs with JanusGraphHBaseCon2017 Community-Driven Graphs with JanusGraph
HBaseCon2017 Community-Driven Graphs with JanusGraph
HBaseCon
 
HBaseCon2017 Warp 10, a novel approach to managing and analyzing time series ...
HBaseCon2017 Warp 10, a novel approach to managing and analyzing time series ...HBaseCon2017 Warp 10, a novel approach to managing and analyzing time series ...
HBaseCon2017 Warp 10, a novel approach to managing and analyzing time series ...
HBaseCon
 

More from HBaseCon (20)

hbaseconasia2017: HBase on Beam
hbaseconasia2017: HBase on Beamhbaseconasia2017: HBase on Beam
hbaseconasia2017: HBase on Beam
 
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinteresthbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
hbaseconasia2017: Removable singularity: a story of HBase upgrade in Pinterest
 
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
hbaseconasia2017: HareQL:快速HBase查詢工具的發展過程
 
hbaseconasia2017: 基于HBase的企业级大数据平台
hbaseconasia2017: 基于HBase的企业级大数据平台hbaseconasia2017: 基于HBase的企业级大数据平台
hbaseconasia2017: 基于HBase的企业级大数据平台
 
hbaseconasia2017: HBase at JD.com
hbaseconasia2017: HBase at JD.comhbaseconasia2017: HBase at JD.com
hbaseconasia2017: HBase at JD.com
 
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huaweihbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
hbaseconasia2017: Ecosystems with HBase and CloudTable service at Huawei
 
hbaseconasia2017: HBase Practice At XiaoMi
hbaseconasia2017: HBase Practice At XiaoMihbaseconasia2017: HBase Practice At XiaoMi
hbaseconasia2017: HBase Practice At XiaoMi
 
HBaseCon2017 Democratizing HBase
HBaseCon2017 Democratizing HBaseHBaseCon2017 Democratizing HBase
HBaseCon2017 Democratizing HBase
 
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBaseHBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
HBaseCon2017 Quanta: Quora's hierarchical counting system on HBase
 
HBaseCon2017 Transactions in HBase
HBaseCon2017 Transactions in HBaseHBaseCon2017 Transactions in HBase
HBaseCon2017 Transactions in HBase
 
HBaseCon2017 Highly-Available HBase
HBaseCon2017 Highly-Available HBaseHBaseCon2017 Highly-Available HBase
HBaseCon2017 Highly-Available HBase
 
HBaseCon2017 Apache HBase at Didi
HBaseCon2017 Apache HBase at DidiHBaseCon2017 Apache HBase at Didi
HBaseCon2017 Apache HBase at Didi
 
HBaseCon2017 gohbase: Pure Go HBase Client
HBaseCon2017 gohbase: Pure Go HBase ClientHBaseCon2017 gohbase: Pure Go HBase Client
HBaseCon2017 gohbase: Pure Go HBase Client
 
HBaseCon2017 Improving HBase availability in a multi tenant environment
HBaseCon2017 Improving HBase availability in a multi tenant environmentHBaseCon2017 Improving HBase availability in a multi tenant environment
HBaseCon2017 Improving HBase availability in a multi tenant environment
 
HBaseCon2017 Spark HBase Connector: Feature Rich and Efficient Access to HBas...
HBaseCon2017 Spark HBase Connector: Feature Rich and Efficient Access to HBas...HBaseCon2017 Spark HBase Connector: Feature Rich and Efficient Access to HBas...
HBaseCon2017 Spark HBase Connector: Feature Rich and Efficient Access to HBas...
 
HBaseCon2017 Efficient and portable data processing with Apache Beam and HBase
HBaseCon2017 Efficient and portable data processing with Apache Beam and HBaseHBaseCon2017 Efficient and portable data processing with Apache Beam and HBase
HBaseCon2017 Efficient and portable data processing with Apache Beam and HBase
 
HBaseCon2017 HBase at Xiaomi
HBaseCon2017 HBase at XiaomiHBaseCon2017 HBase at Xiaomi
HBaseCon2017 HBase at Xiaomi
 
HBaseCon2017 HBase/Phoenix @ Scale @ Salesforce
HBaseCon2017 HBase/Phoenix @ Scale @ SalesforceHBaseCon2017 HBase/Phoenix @ Scale @ Salesforce
HBaseCon2017 HBase/Phoenix @ Scale @ Salesforce
 
HBaseCon2017 Community-Driven Graphs with JanusGraph
HBaseCon2017 Community-Driven Graphs with JanusGraphHBaseCon2017 Community-Driven Graphs with JanusGraph
HBaseCon2017 Community-Driven Graphs with JanusGraph
 
HBaseCon2017 Warp 10, a novel approach to managing and analyzing time series ...
HBaseCon2017 Warp 10, a novel approach to managing and analyzing time series ...HBaseCon2017 Warp 10, a novel approach to managing and analyzing time series ...
HBaseCon2017 Warp 10, a novel approach to managing and analyzing time series ...
 

Recently uploaded

Connector Corner: Leveraging Snowflake Integration for Smarter Decision Making
Connector Corner: Leveraging Snowflake Integration for Smarter Decision MakingConnector Corner: Leveraging Snowflake Integration for Smarter Decision Making
Connector Corner: Leveraging Snowflake Integration for Smarter Decision Making
DianaGray10
 
kk vathada _digital transformation frameworks_2024.pdf
kk vathada _digital transformation frameworks_2024.pdfkk vathada _digital transformation frameworks_2024.pdf
kk vathada _digital transformation frameworks_2024.pdf
KIRAN KV
 
Acumatica vs. Sage Intacct _Construction_July (1).pptx
Acumatica vs. Sage Intacct _Construction_July (1).pptxAcumatica vs. Sage Intacct _Construction_July (1).pptx
Acumatica vs. Sage Intacct _Construction_July (1).pptx
BrainSell Technologies
 
Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...
Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...
Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...
shanihomely
 
EuroPython 2024 - Streamlining Testing in a Large Python Codebase
EuroPython 2024 - Streamlining Testing in a Large Python CodebaseEuroPython 2024 - Streamlining Testing in a Large Python Codebase
EuroPython 2024 - Streamlining Testing in a Large Python Codebase
Jimmy Lai
 
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptxMAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
janagijoythi
 
Tailored CRM Software Development for Enhanced Customer Insights
Tailored CRM Software Development for Enhanced Customer InsightsTailored CRM Software Development for Enhanced Customer Insights
Tailored CRM Software Development for Enhanced Customer Insights
SynapseIndia
 
Finetuning GenAI For Hacking and Defending
Finetuning GenAI For Hacking and DefendingFinetuning GenAI For Hacking and Defending
Finetuning GenAI For Hacking and Defending
Priyanka Aash
 
UX Webinar Series: Essentials for Adopting Passkeys as the Foundation of your...
UX Webinar Series: Essentials for Adopting Passkeys as the Foundation of your...UX Webinar Series: Essentials for Adopting Passkeys as the Foundation of your...
UX Webinar Series: Essentials for Adopting Passkeys as the Foundation of your...
FIDO Alliance
 
Uncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in LibrariesUncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in Libraries
Brian Pichman
 
Russian Girls Call Navi Mumbai 🎈🔥9920725232 🔥💋🎈 Provide Best And Top Girl Ser...
Russian Girls Call Navi Mumbai 🎈🔥9920725232 🔥💋🎈 Provide Best And Top Girl Ser...Russian Girls Call Navi Mumbai 🎈🔥9920725232 🔥💋🎈 Provide Best And Top Girl Ser...
Russian Girls Call Navi Mumbai 🎈🔥9920725232 🔥💋🎈 Provide Best And Top Girl Ser...
bellared2
 
Mule Experience Hub and Release Channel with Java 17
Mule Experience Hub and Release Channel with Java 17Mule Experience Hub and Release Channel with Java 17
Mule Experience Hub and Release Channel with Java 17
Bhajan Mehta
 
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
alexjohnson7307
 
The History of Embeddings & Multimodal Embeddings
The History of Embeddings & Multimodal EmbeddingsThe History of Embeddings & Multimodal Embeddings
The History of Embeddings & Multimodal Embeddings
Zilliz
 
What's New in Teams Calling, Meetings, Devices June 2024
What's New in Teams Calling, Meetings, Devices June 2024What's New in Teams Calling, Meetings, Devices June 2024
What's New in Teams Calling, Meetings, Devices June 2024
Stephanie Beckett
 
Accelerating Migrations = Recommendations
Accelerating Migrations = RecommendationsAccelerating Migrations = Recommendations
Accelerating Migrations = Recommendations
isBullShit
 
How UiPath Discovery Suite supports identification of Agentic Process Automat...
How UiPath Discovery Suite supports identification of Agentic Process Automat...How UiPath Discovery Suite supports identification of Agentic Process Automat...
How UiPath Discovery Suite supports identification of Agentic Process Automat...
DianaGray10
 
Keynote : AI & Future Of Offensive Security
Keynote : AI & Future Of Offensive SecurityKeynote : AI & Future Of Offensive Security
Keynote : AI & Future Of Offensive Security
Priyanka Aash
 
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Zilliz
 
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
sunilverma7884
 

Recently uploaded (20)

Connector Corner: Leveraging Snowflake Integration for Smarter Decision Making
Connector Corner: Leveraging Snowflake Integration for Smarter Decision MakingConnector Corner: Leveraging Snowflake Integration for Smarter Decision Making
Connector Corner: Leveraging Snowflake Integration for Smarter Decision Making
 
kk vathada _digital transformation frameworks_2024.pdf
kk vathada _digital transformation frameworks_2024.pdfkk vathada _digital transformation frameworks_2024.pdf
kk vathada _digital transformation frameworks_2024.pdf
 
Acumatica vs. Sage Intacct _Construction_July (1).pptx
Acumatica vs. Sage Intacct _Construction_July (1).pptxAcumatica vs. Sage Intacct _Construction_July (1).pptx
Acumatica vs. Sage Intacct _Construction_July (1).pptx
 
Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...
Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...
Premium Girls Call Mumbai 9920725232 Unlimited Short Providing Girls Service ...
 
EuroPython 2024 - Streamlining Testing in a Large Python Codebase
EuroPython 2024 - Streamlining Testing in a Large Python CodebaseEuroPython 2024 - Streamlining Testing in a Large Python Codebase
EuroPython 2024 - Streamlining Testing in a Large Python Codebase
 
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptxMAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
MAKE MONEY ONLINE Unlock Your Income Potential Today.pptx
 
Tailored CRM Software Development for Enhanced Customer Insights
Tailored CRM Software Development for Enhanced Customer InsightsTailored CRM Software Development for Enhanced Customer Insights
Tailored CRM Software Development for Enhanced Customer Insights
 
Finetuning GenAI For Hacking and Defending
Finetuning GenAI For Hacking and DefendingFinetuning GenAI For Hacking and Defending
Finetuning GenAI For Hacking and Defending
 
UX Webinar Series: Essentials for Adopting Passkeys as the Foundation of your...
UX Webinar Series: Essentials for Adopting Passkeys as the Foundation of your...UX Webinar Series: Essentials for Adopting Passkeys as the Foundation of your...
UX Webinar Series: Essentials for Adopting Passkeys as the Foundation of your...
 
Uncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in LibrariesUncharted Together- Navigating AI's New Frontiers in Libraries
Uncharted Together- Navigating AI's New Frontiers in Libraries
 
Russian Girls Call Navi Mumbai 🎈🔥9920725232 🔥💋🎈 Provide Best And Top Girl Ser...
Russian Girls Call Navi Mumbai 🎈🔥9920725232 🔥💋🎈 Provide Best And Top Girl Ser...Russian Girls Call Navi Mumbai 🎈🔥9920725232 🔥💋🎈 Provide Best And Top Girl Ser...
Russian Girls Call Navi Mumbai 🎈🔥9920725232 🔥💋🎈 Provide Best And Top Girl Ser...
 
Mule Experience Hub and Release Channel with Java 17
Mule Experience Hub and Release Channel with Java 17Mule Experience Hub and Release Channel with Java 17
Mule Experience Hub and Release Channel with Java 17
 
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
leewayhertz.com-Generative AI tech stack Frameworks infrastructure models and...
 
The History of Embeddings & Multimodal Embeddings
The History of Embeddings & Multimodal EmbeddingsThe History of Embeddings & Multimodal Embeddings
The History of Embeddings & Multimodal Embeddings
 
What's New in Teams Calling, Meetings, Devices June 2024
What's New in Teams Calling, Meetings, Devices June 2024What's New in Teams Calling, Meetings, Devices June 2024
What's New in Teams Calling, Meetings, Devices June 2024
 
Accelerating Migrations = Recommendations
Accelerating Migrations = RecommendationsAccelerating Migrations = Recommendations
Accelerating Migrations = Recommendations
 
How UiPath Discovery Suite supports identification of Agentic Process Automat...
How UiPath Discovery Suite supports identification of Agentic Process Automat...How UiPath Discovery Suite supports identification of Agentic Process Automat...
How UiPath Discovery Suite supports identification of Agentic Process Automat...
 
Keynote : AI & Future Of Offensive Security
Keynote : AI & Future Of Offensive SecurityKeynote : AI & Future Of Offensive Security
Keynote : AI & Future Of Offensive Security
 
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
Garbage In, Garbage Out: Why poor data curation is killing your AI models (an...
 
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
 

hbaseconasia2017: HBase在Hulu的使用和实践