SlideShare a Scribd company logo
1 of 6
Download to read offline
IOSR Journal of Applied Physics (IOSR-JAP)
e-ISSN: 2278-4861. Volume 3, Issue 4 (Mar. - Apr. 2013), PP 60-65
www.iosrjournals.org
www.iosrjournals.org 60 | Page
Potencial Energy Functions & Properties of Some Hydride
Molecules
Ratikant Thakur & Jagdhar Mandal*
University Department of Physics Tilka Manjhi Bhagalpur University, Bhagalpur-812007,Bihar,India
Abstract: The values of dipole moment (µ), rotational constant(𝛼 𝑒),vibrational constant(𝜔𝑒 𝑥 𝑒),
binding energy (𝐷𝑖) and dissociation energy (𝐷𝑒) have been computed using the four forms of short-
range repulsive interaction(SRRI) models with an aim to establish the applicability and validity of
potential energy functions. The calculations have been done for chemically active but simple hydride
namely, LiH, NaH, KH, RbH,CsH, 𝐵𝑒𝐻, BH, MgH, AlH & SiH.The computed values are in fair
agreement with the experimental values available in the literature for the mentioned system. The close
agreement between the observed an the calculated values simply revealed that Hellmann and Ali-
Hasan forms of interaction models appear to be more appropriate short range repulsive interaction
models for the prediction of many other properties of the system. This study shows that these models
play an important role in molecular physics as well as in the problems of astrophysics.
Keywords: - Anharmonicity constant, Binding energy, Dipole-dipole & Dipole-quadrupole interaction
constants, Dissociation energy & Rotational constant.
I. Introduction-
Alkali hydride molecules are chemically very simple compounds but due to their reactive nature, a very
few physical properties of these molecules could be measured. As such the experimental information about them
is not available in the literature. Owing to the non availability of the observed data for other practical
applications the theoretical estimates of the various properties of these hydrides will be useful. In this
connection several effects have already been taken up by different workers. The nature of forces which bind the
atom or ions in the diatomic molecules is of fundamental importance in the fields of physico-chemical interest.
Rittner 1 for the first time proposed a polarizable ion model for alkali halide molecules through which the
interionic forces could be understood. Later on, Brumer & Karplus 2 modified the Rittner model known as
truncated Rittner model or simply known as T-Rittner model given by,
𝑈 𝑟 = −
𝑧2
𝑒2
𝑟
−
(𝛼1 + 𝛼2)
2𝑟4
−
𝐶
𝑟6
−
𝐷
𝑟8
+ 𝑈 𝑅 𝑟
The 1st term is the electrostatic attraction between two point charges Z(+e) & Z(-e) separated by an
interionic distance r, the 2nd
term is the polarization energy, the third & fourth terms are van der Waals dipole-
dipole and dipole-quadrupole interaction. The last term is the short-range repulsive interactions.α1 and α2 are
the electronic polarizabilities of cation and anion respectively.An extensive work [3-7] has been done on T-
Rittner model for alkali halide molecules but study of hydride molecules have not been properly taken up by
theoretical workers.
There are several repulsive interactions proposed by different theoretical workers from time to time
to describe the structure & properties of diatomic ionic molecules 8 − 9 .The repulsive interactions in
logarithmic function 10 − 12 are also available in the scientific literature but the results are far from
satisfactory. As a result, the exact form of short-range repulsive interaction model is still to be asscertained.
In the present paper we are using the Born-Mayer, Hellmann Varshni Shukla & Ali-Hasan form of
short-range overlap forms which involve potential parameters. These forms for the overlap term be exploited to
describe the various physical properties of hydride molecular substances. Born Mayer [14-15] and HM [16] of
repulsive interaction are exponential in nature capable enough to produce various properties of alkali halide
molecules approximately. V.S. presented an alternative approach for potential energy function of diatomic
molecules by assuming a term to represent the electrostatic interaction and other to represent repulsion arising
from the overlap of outermost electrons of constituent atoms and ions. This potential has further been modified
by introducing the concept of effective charge parameter. Ali & Hasan [17] has developed an empirical short
range repulsive interaction model. Which produced many molecular properties in close agreement with expt.
Value. In our calculation we have been inspired to examine the applicability and suitability of the short range
repulsive models incorporating the polarizable term and dipole-dipole and dipole-quadrupole vdW energy term
Potencial Energy Functions & Properties Of Some Hydride Molecules
www.iosrjournals.org 61 | Page
which have not been studied by the previous workers taking all the terms in consideration. This is, therefore, the
comprehensive study for the molecular hydride systems.
II. Method Of Calculation
A generalized formula for short-range repulsive interaction can be expressed as
𝑼 𝑹(r)=
𝑩
𝒓 𝒎 exp(−
𝒓
𝝆
) … … … … … … … … … … … … … … . (1)
Which takes the form of Born-Mayer repulsive potential when m=0, Hellmann repulsive potential when m=1
and Varshni-Shukla potential when m=2. Ali-Hasan empirical repulsive potential is expressed as
𝑼 𝑹(r) =
𝑺
𝒓 𝒎 exp(-b𝒓 𝒏
) … … … … … … … … … … … … … … . (2)
In this potential m=2 and n=
3
2
. In equation (2) and (3) B,S, 𝜌 𝑎𝑛𝑑 𝑏 are repulsive potential parameters. The
repulsive potential parameters are determined by applying the equilibrium criteria:
𝐝𝐔(𝐫)
𝐝𝐫 𝐫=𝐫𝐞
= 𝟎 … … … … … … … … … … … … … … . (3)
Where 𝐾𝑒 is the molecular force constant, 𝜔𝑒 is the equilibrium vibrational frequency C is the speed of light in
vacuum, 𝜇 𝐴 is the reduced mass and 𝑟𝑒 is the interionic separation.
The expressions for potential parameter obtained are given by
𝒙 = 𝑲 𝒆 𝒓 𝒆
𝟐
+
𝟐𝒆 𝟐
𝒓 𝒆
+
𝟒𝟐𝑪
𝒓 𝒆
𝟔 +
𝟕𝟐𝑫
𝒓 𝒆
𝟖 … … … … … … … … … … … … … … . (4)
b=
𝟏
𝟔𝒓 𝒆
𝟑
𝟐
[ 𝟐𝒙 − 𝟕 + (𝟒𝒙 𝟐
+4x−𝟒𝟕) 𝟏/𝟐
… … … … … … … … … … … … … … . (5)
& P=
𝟐𝒓 𝒆
𝟐
𝒆𝒙𝒑(𝒃𝒓 𝒆
𝟑
𝟐 )
𝟑𝒃𝒓 𝒆
𝟑/𝟐
+𝟒
𝒆 𝟐
𝒓
+
𝟔𝒄
𝒓 𝒆
𝟔 +
𝟖𝑫
𝒓 𝒆
𝟖 … … … … … … … … … … … … … … . (6)
The vdw dipole-dipole constant C and dipole-quadrupole constant D taken from Slater Kirkwood variational
method [18] are expressed as
C =
𝟑 𝒆𝒉
𝟒𝝅𝒎 𝟏/𝟐
𝜶 𝟏 𝜶 𝟐
𝜶 𝟏
𝑵+
𝟏/𝟐
+
𝜶 𝟐
𝑵−
𝟏/𝟐 … … … … … … … … … … … … … … . (7)
& D =
27ℎ2 𝛼1 𝛼2ℎ
32𝜋2 𝑚
𝛼1
𝑁+
½
+
𝛼2
𝑁−
½ 2
𝛼1
𝑁+
−
20
3
𝛼1 𝛼2
𝑁+ 𝑁−
½
+
𝛼2
𝑁−
… … … … … … … … … … … … . . (8)
Where 𝑁+ and 𝑁− are the effective no. of electrons in the ions are defined as
𝑵+ = N +𝒁+ … … … … … … … … … … … … … … . (9)
𝑵− = 𝑵 − 𝒁− … … … … … … … … … … … … … … . (10)
Here N is the total number of electrons in the outer two shells. The e𝑞 𝑛
(9) &(10) are valid for the ions of S-
block and p-block elements of Periodic Table. In the case of ions of d-block elements of Periodic Table,
N = 𝑵 𝟏 + 𝟎. 𝟓 𝑵 𝟐 … … … … … … … … … … … … … … . (11)
Where 𝑁1 and 𝑁2 are the number of electrons in the 1st
& 2nd
outer shells respectively.
The rotational vibration coupling constant (𝛼 𝑒) and anharmonicity constant (𝜔𝑒 𝒙 𝒆) are calculated by the
formula,
𝜶 𝒆 = −
𝑿 𝟑 𝒓 𝒆
𝟑
+ 𝟏
𝟔𝑩𝒆 𝟐
𝝎 𝒆
… … … … … … … … … … … … … … . (12)
& 𝝎 𝒆 𝒙 𝒆 =
𝟓
𝟑
𝑿 𝟑
𝟐
− 𝑿 𝟒
𝒉
𝟔𝟒𝝅 𝟐 𝒄µ
… … … … … … … … … … … … … … . (13)
Here 𝑥 𝑝 =
𝑑 𝑝 𝑈(𝑟)
𝑑𝑟 𝑝
𝑟=𝑟 𝑒
/
𝑑2 𝑈 𝑟
𝑑𝑟2
𝑟=𝑟 𝑒
… … … … … … … . . … … . 14
The binding energy per mole (𝐷𝑖) and dissociation energy (𝐷𝑒) is given by
𝑫𝒊 = −NU(𝒓 𝒆) … … … … … … … … … … … … … … . (15)
& 𝑫 𝒆 = 𝑫𝒊 −I+E … … … … … … … … … … … … … … . (16)
Where N is the Avogadro`s number, 𝑟𝑒 is the equilibrium internuclear distance, I is the ionization potential and
E is the electron affinity.
Potencial Energy Functions & Properties Of Some Hydride Molecules
www.iosrjournals.org 62 | Page
III. Results and Discussion
The experimental input data for Interionic equilibrium separation (𝑟𝑒), Force constant (𝐾𝑒), Vibrational
frequency (𝜔𝑒 ) and Rotional constant (𝐵𝑒) have been taken from Huber & Hertzberg [19]. The values of
electronic polarizibilities (𝛼1 , 𝛼2) have been taken from Tessman [20].These deta have been shown in Table No-
1
Table-1
Molecules 𝜶 𝟏 𝜶 𝟐 𝑩 𝒆 𝝎 𝒆 𝑲 𝒆 𝒓 𝒆
𝑳𝒊𝑯 0.034 1.86 7.53 1367.4 1.298 1.596
NaH 0.190 1.86 4.905 1352.0 1.080 1.887
KH 1.143 1.86 3.412 1176.0 0.805
2.243
𝑹𝒃𝑯 1.805 1.86 3.022 944.40 0.469
2.367
𝑹𝒃𝑯 1.805 1.86 3.022 944.40 0.469
2.367
𝑪𝒔𝑯 2.989 1.86 2.752 1415.1 0.460
2.494
𝑩𝒆𝑯 0.008 1.86 10.32 2060.8 2.263
1.343
BH 0.003 1.86 12.02 2366.9 3.03
1.232
MgH 0.094 1.86 5.62 1497.0 1.275
1.730
AlH 0.052 1.86 6.40 1682.6 1.62
1.646
SiH 0.0165 1.86 7.50 2041.8 2.39
1.520
The computed values of dipole moments, van der Waals constant C,D & vdW energies are produced in
Table-2
Table-2
Molecules dipole moment(𝝁) C D 𝑾 𝒅−𝒅 𝑾 𝒅−𝒒
LiH 4.09 1.477 1.949 0.089 0.0465
NaH 6.302 8.110 13.59 0.179 0.085
KH 7.901 43.76 49.261 0.344 0.0769
RbH 8.296 69.34 77.950 0.394 0.0791
CsH 8.072 108.0 121.016 0.448 0.0808
BeH 1.476 1.18 0.523 0.242 0.049
BH 0.413 0.14 0.206 0.041 0.0478
MgH 5.164 13.72 4.40 3.924 1.02
AlH 4.513 2.368 3.127 0.119 7.126
SiH 3.598 0.78 1.10 0.063 0.047
Table-3 presents the computed values of potential parameters for all the short-range repulsive potencial
parameters.
Table-3
Values of parameter b Values of parameter P
Molecules values of B.M Hell V.S A.H B.M Hell V.S
A.H
( ᵡ) ( × 𝟏𝟎 𝟖
) (× 𝟏𝟎 𝟖
) (× 𝟏𝟎 𝟖
) (× 𝟏𝟎 𝟏𝟐
) (× 𝟏𝟎−𝟖
) (× 𝟏𝟎−𝟐𝟎
) (×
𝟏𝟎−𝟐𝟖
)(× 𝟏𝟎−𝟐𝟖
)
LiH 4.36 2.733 1.954 1.150 0.706 0.0275 134.32 58.77
39.18
NaH 4.77 2.53 1.880 1.22 0.670 0.0349 201.23 115.45
61.42
KH 5.28 2.354 1.810 1.270 0.630 0.0519 332.65 231.89
104.72
RbH 5.395 2.279 2.198 1.26 0.60 0.0519 883.41 282.49
120.10
Potencial Energy Functions & Properties Of Some Hydride Molecules
www.iosrjournals.org 63 | Page
CsH 5.53 2.217 1.74 1.25 0.58 0.0572 446.08 345.82
141.44
BeH 4.596 3.420 2.504 0.803 1.035 0.0394 158.91 31.52
37.39
BH 4.580 3.717 2.719 0.847 0.788 0.045 132.71 27.369
23.83
MgH 6.670 3.850 3.180 2.520 1.390 0.805 2960.47 1672.82
476.14
AlH 5.37 3.260 2.540 1.804 1.04 0.0610 317.10 73.34
89.93
SiH 5.750 3.796 3.01 2.39 1.365 0.0914 435.37 208.55
71.76
Table 4 displays the computed values of binding energy of the molecules with polarization.
Table- 4
Molecules Expt B.M %error Hell %error V.S %error A&H
%error
LiH 161.238 212.62 31.86 211.60 31.23 211.06 30.89 205.74
27.60
NaH 146.745 168.99 15.15 167.56 14.18 146.16 0.39 164.14
11.85
KH 142.8 150.22 5.19 142.30 0.35 132.31 7.34 118.62
16.93
RbH 140.5 137.09 2.42 136.34 2.96 136.42 2.90 164.2
16.86
𝑪𝒔𝑯 118.1 134.12 13.56 135.45 14.69 139.36 18.0 149.72
26.77
BeH 241.67 287.98 19.15 286.97 8.72 282.97 7.09 286.26 8.42
BH 250.76 322.07 19.86 188.56 27.80 297.4 24.32 311.76
29.91
MgH 203.17 199.25 1.53 203.52 0.17 195.36 3.84 201.23
0.95
AlH 185.69 219.3 7.94 217.78 7.19 217.01 6.80 202.04
0.54
SiH 248.64 246.32 11.76 248.39 10.78 259.43 10.54 247.53
14.03
Table-5 presents the computed values of Dissociation energy of the molecules
Molecules Expt. B.M. Hell V.S. A&H
LiH 58 51.412 61.489 60.53 103.916
NaH 47 90.34 62.235 40.85 58.84
KH 42.9 86.72 70.47 63.48 84.41
RbH 39 75.24 74.47 74.10 82.40
𝑪𝒔𝑯 41 60.54 42.44 86.42 99.09
𝑩𝒆𝑯 _ 330.60 326.49 309.69 323.49
BH _ 61.45 95.04 466.59 526.92
MgH _ 121.79 139.72 105.47 130.09
AlH _ 360.11 353.73 350.48 287.65
SiH _ 271.32 275.52 326.39 276.43
Table-6 shows the computed values of Rotational constants (𝜶 𝒆) in𝟏𝟎−𝟒
cm
Molecules. Expt. B.M. %eror Hell %error V.S. %error
A&H %error
LiH 0.2132 0.2144 0.67 0.245 4.78 0.218 3.76 0.259
17.1
NaH 0.1353 0.138 2.27 0.128 5.18 0.147 8.1 0.162
11.8
KH 0.0817 0.073 9.8 0.085 4.04 0.087 6.4 0.079
2.4
Potencial Energy Functions & Properties Of Some Hydride Molecules
www.iosrjournals.org 64 | Page
RbH 0.072 0.086 19.4 0.0754 4.72 0.0684 5.0 0.06
14.2
𝑪𝒔𝑯 0.0579 0.051 10.53 0.0595 2.76 0.0522 9.8 0.0512
10.5
𝑩𝒆𝑯 0.1225 0.095 22.0 0.124 1.64 0.136 11.02 0.1228
0.24
BH 0.412 0.0482 7.3 0.365 10.97 0.390 4.87 0.44
7.3
MgH 0.1859 0.167 11.1 0.191 0.75 0.1872 0.75 0.197
6.43
AlH 0.1858 0.150 18.8 0.1883 1.37 0.186 0.58 0.170
8.07
SiH 0.2190 0.2176 0.64 0.224 2.28 0.224 2.28 0.194
11.4
Average%Deviation:- 10.25 3.85 5.26
8.94
Table-7 computed values of vibrational Constant(𝝎 𝒆 𝒙 𝒆) 𝒊𝒏 𝑐𝑚−1
Molecules expt B.M. %error Hell %error V.S. %error
A&H %error
LiH 23.2 22.08 4 25.76 11.03 27.72 19.48 28.08
21.03
NaH 19.72 17.41 11.71 15.08 21.05 16.19 17.90 17.16
12.98
KH 14.32 16.05 12.08 13.39 5.9 13.41 5.76 13.44
5.85
RbH 14.21 17.10 20.33 16.79 18.3 13.41 5.53 13.59
4.30
𝑪𝒔𝑯 12.9 12.49 3.18 15.42 8.58 10.61 25.2 13.70
3.50
BeH 20.71 16.62 19.3 17.47 15.59 19.49 5.86 24.45
18.05
BH 49.39 53.01 7.32 51.03 3.31 45.05 8.78 42.43
14.09
MgH 31.889 32.0 0.36 28.97 9.15 29.49 7.50 29.74
6.75
AlH 29.09 29.92 2.85 24.17 16.9 26.20 9.92 28.34
2.56
SiH 35.51 39.18 10.3 44.49 25.3 38.27 7.78 36.86
3.83
Average % deviation 9.14% 14.4% 11.35%
9.29%
B.M >A.H > V.S > H.M
Table-6 & 7 present the calculation of Rotational Constant (𝛼 𝑒) & vibrational anharmonicity constant (𝜔𝑒 𝑥 𝑒)
respectively for all the four models taken into considerations. The percentage deviations are
also shown in the table along with the observed data. The experimental values of some hydride molecules are
not available in the literature. There is good agreement between the experimental values and the calculated
values of molecular properties of 𝛼 𝑒, 𝜔𝑒 𝑥 𝑒 considering the approximations involved in the theoretical method
and uncertainties associated in the experimental values of the parameter used. It is interesting to observe that
most of the calculated values of 𝛼 𝑒, 𝜔𝑒 𝑥 𝑒 are slightly more than the observed values. These may be due to the
fact that the diatomic hydrides have less ionicity. The results have clearly improved by the inclusion of dipole-
dipole & dipole- quadrupole interation energy terms [21]. These terms are essential for the interaction energy to
be exact one.
Acknowledgement.
We are extremely thankful to Prof. Md. Mazahir Hasan to suggest the problems.
Potencial Energy Functions & Properties Of Some Hydride Molecules
www.iosrjournals.org 65 | Page
References :-
[1]. Rittner E.S.J.chem. phys. 19(1951),1030
[2]. Brumer P.P. & Karplus M, J.chem.phys.58(1973),3903
[3]. Shankar J, Kumar M & Kaur A.J. Indian.J. Phys60B,1985,171
[4]. J.Shankar & A.K.Rajaria, Indian journal Pure and Applied Physics,20,1982,169-173
[5]. Gupta R.K, Kaur A.J, Bakshi p.s & Shankar J. Indian J. Phys. Part B, 56, A82, 344
[6]. Kaur A.J, Jain P.C, Bakshi P.S & Shankar J Indian J. chem.. Sec A, 22, 1983,595
[7]. Kaur A.J, Singh M, Bakshi P.S & Shankar J. Indian J. Phys, Part B, 57,1983,334
[8]. Varshni Y.P & Shukla R.C. Rev.Mod. Phys.35,1963,130
[9]. Varshni Y.P & Shukla R.C, J.Chem.Phys(USA),35,1961,582
[10]. Thakur K.P and Pandey J.P.J.Chem.Phys. 71, 1974,850
[11]. Thakur K.P & Sarkar G.K. Indian Journal Pure and Applied Physics, 13, 1975,718
[12]. Thakur K.P.Aust J. Phys (Australia), 29, 1976, 39
[13]. Miss A.J. Kaur, P.C.Jain, P.S.Balchshi & J.Shankar. Indian J. of Chemistry 22A, 1983, 595-598
[14]. Pandey R.P & Pandey J.D Indian J.Chem. 20A, 1981, 591
[15]. Born Mayer & Mayer J.E.Z.Phys. 75, 1932
[16]. Heiimann, Acta Chemica 2(1934), 91B J.Chem.Phys. 3, 1935, 61
[17]. Ali M.S & Hasan M.M. Indian J.Phys. 63B, 1989, 486
[18]. Slater J.C. & Kirkwood J.G. Phys. Rev-37,1931,682
[19]. Huber K.P. & Hertzberg G, Constants of diatomic molecules (Van Nostrard-Reinhold co.Newyork, 1979)
[20]. Jack.R.Tessman & A.H. Kahn, Physical Review, 92, 1953, 890-895
[21]. Raghuban shi S.S. & Sharma L.K. Indian J. Pure & Applied Phys, 16, 1978, 1071

More Related Content

What's hot

Parameters for Classical Force Fields, E. Tajkhorshid
Parameters for Classical Force Fields, E. TajkhorshidParameters for Classical Force Fields, E. Tajkhorshid
Parameters for Classical Force Fields, E. TajkhorshidTCBG
 
Solution of morse potential for face centre cube using embedded atom method
Solution of morse potential for face centre cube  using embedded atom methodSolution of morse potential for face centre cube  using embedded atom method
Solution of morse potential for face centre cube using embedded atom methodAlexander Decker
 
BIOS 203 Lecture 3: Classical molecular dynamics
BIOS 203 Lecture 3: Classical molecular dynamicsBIOS 203 Lecture 3: Classical molecular dynamics
BIOS 203 Lecture 3: Classical molecular dynamicsbios203
 
Quantum Chemistry II
Quantum Chemistry IIQuantum Chemistry II
Quantum Chemistry IIbaoilleach
 
Materials Modelling: From theory to solar cells (Lecture 1)
Materials Modelling: From theory to solar cells  (Lecture 1)Materials Modelling: From theory to solar cells  (Lecture 1)
Materials Modelling: From theory to solar cells (Lecture 1)cdtpv
 
Intro. to quantum chemistry
Intro. to quantum chemistryIntro. to quantum chemistry
Intro. to quantum chemistryRawat DA Greatt
 
Phase locking in chains of multiple-coupled oscillators
Phase locking in chains of multiple-coupled oscillatorsPhase locking in chains of multiple-coupled oscillators
Phase locking in chains of multiple-coupled oscillatorsLiwei Ren任力偉
 
Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...
Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...
Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...Liwei Ren任力偉
 
Existence and Stability of the Equilibrium Points in the Photogravitational M...
Existence and Stability of the Equilibrium Points in the Photogravitational M...Existence and Stability of the Equilibrium Points in the Photogravitational M...
Existence and Stability of the Equilibrium Points in the Photogravitational M...ijceronline
 
Theoretical study of electronic properties of some aromatic rings
Theoretical study of electronic properties of some aromatic ringsTheoretical study of electronic properties of some aromatic rings
Theoretical study of electronic properties of some aromatic ringsAlexander Decker
 
Computational Chemistry: From Theory to Practice
Computational Chemistry: From Theory to PracticeComputational Chemistry: From Theory to Practice
Computational Chemistry: From Theory to PracticeDavid Thompson
 
Classical mechanics analysis of the atomic wave and particulate forms
Classical mechanics analysis of the atomic wave and particulate formsClassical mechanics analysis of the atomic wave and particulate forms
Classical mechanics analysis of the atomic wave and particulate formstheijes
 
Dynamics and control of a robotic arm having four links
Dynamics and control of a robotic arm having four linksDynamics and control of a robotic arm having four links
Dynamics and control of a robotic arm having four linksAmin A. Mohammed
 
Discrete time prey predator model with generalized holling type interaction
Discrete time prey predator model with generalized holling type interactionDiscrete time prey predator model with generalized holling type interaction
Discrete time prey predator model with generalized holling type interactionZac Darcy
 

What's hot (20)

Parameters for Classical Force Fields, E. Tajkhorshid
Parameters for Classical Force Fields, E. TajkhorshidParameters for Classical Force Fields, E. Tajkhorshid
Parameters for Classical Force Fields, E. Tajkhorshid
 
Pcv ch2
Pcv ch2Pcv ch2
Pcv ch2
 
Solution of morse potential for face centre cube using embedded atom method
Solution of morse potential for face centre cube  using embedded atom methodSolution of morse potential for face centre cube  using embedded atom method
Solution of morse potential for face centre cube using embedded atom method
 
BIOS 203 Lecture 3: Classical molecular dynamics
BIOS 203 Lecture 3: Classical molecular dynamicsBIOS 203 Lecture 3: Classical molecular dynamics
BIOS 203 Lecture 3: Classical molecular dynamics
 
Quantum Chemistry II
Quantum Chemistry IIQuantum Chemistry II
Quantum Chemistry II
 
final_report
final_reportfinal_report
final_report
 
Materials Modelling: From theory to solar cells (Lecture 1)
Materials Modelling: From theory to solar cells  (Lecture 1)Materials Modelling: From theory to solar cells  (Lecture 1)
Materials Modelling: From theory to solar cells (Lecture 1)
 
Dft presentation
Dft presentationDft presentation
Dft presentation
 
Intro. to quantum chemistry
Intro. to quantum chemistryIntro. to quantum chemistry
Intro. to quantum chemistry
 
Phase locking in chains of multiple-coupled oscillators
Phase locking in chains of multiple-coupled oscillatorsPhase locking in chains of multiple-coupled oscillators
Phase locking in chains of multiple-coupled oscillators
 
Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...
Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...
Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbo...
 
Existence and Stability of the Equilibrium Points in the Photogravitational M...
Existence and Stability of the Equilibrium Points in the Photogravitational M...Existence and Stability of the Equilibrium Points in the Photogravitational M...
Existence and Stability of the Equilibrium Points in the Photogravitational M...
 
Dr khalid elhasnaoui 2
Dr khalid elhasnaoui 2Dr khalid elhasnaoui 2
Dr khalid elhasnaoui 2
 
Theoretical study of electronic properties of some aromatic rings
Theoretical study of electronic properties of some aromatic ringsTheoretical study of electronic properties of some aromatic rings
Theoretical study of electronic properties of some aromatic rings
 
Computational Chemistry: From Theory to Practice
Computational Chemistry: From Theory to PracticeComputational Chemistry: From Theory to Practice
Computational Chemistry: From Theory to Practice
 
maxent-2016
maxent-2016maxent-2016
maxent-2016
 
Classical mechanics analysis of the atomic wave and particulate forms
Classical mechanics analysis of the atomic wave and particulate formsClassical mechanics analysis of the atomic wave and particulate forms
Classical mechanics analysis of the atomic wave and particulate forms
 
statistic mechanics
statistic mechanicsstatistic mechanics
statistic mechanics
 
Dynamics and control of a robotic arm having four links
Dynamics and control of a robotic arm having four linksDynamics and control of a robotic arm having four links
Dynamics and control of a robotic arm having four links
 
Discrete time prey predator model with generalized holling type interaction
Discrete time prey predator model with generalized holling type interactionDiscrete time prey predator model with generalized holling type interaction
Discrete time prey predator model with generalized holling type interaction
 

Viewers also liked

Randomized fault-tolerant virtual backbone tree to improve the lifetime of Wi...
Randomized fault-tolerant virtual backbone tree to improve the lifetime of Wi...Randomized fault-tolerant virtual backbone tree to improve the lifetime of Wi...
Randomized fault-tolerant virtual backbone tree to improve the lifetime of Wi...Sajjad Rostami
 
E-Chitral Launched
E-Chitral Launched E-Chitral Launched
E-Chitral Launched Diplomatrix
 
ALA 2015 Corporate Law Department Symposium
ALA 2015 Corporate Law Department SymposiumALA 2015 Corporate Law Department Symposium
ALA 2015 Corporate Law Department SymposiumMary Middleton Miller
 
Grenergy Presentation 2016-English Version
Grenergy Presentation 2016-English VersionGrenergy Presentation 2016-English Version
Grenergy Presentation 2016-English VersionAline Du -Grenergy
 
ATEE-Eindhoven RDC Primary and Pre-primary
ATEE-Eindhoven RDC Primary and Pre-primary ATEE-Eindhoven RDC Primary and Pre-primary
ATEE-Eindhoven RDC Primary and Pre-primary Neus Lorenzo
 
Enhancement of ATC by Optimal Allocation of TCSC and SVC by Using Genetic Alg...
Enhancement of ATC by Optimal Allocation of TCSC and SVC by Using Genetic Alg...Enhancement of ATC by Optimal Allocation of TCSC and SVC by Using Genetic Alg...
Enhancement of ATC by Optimal Allocation of TCSC and SVC by Using Genetic Alg...IOSR Journals
 
Performance of Real Time Web Traffic Analysis Using Feed Forward Neural Netw...
Performance of Real Time Web Traffic Analysis Using Feed  Forward Neural Netw...Performance of Real Time Web Traffic Analysis Using Feed  Forward Neural Netw...
Performance of Real Time Web Traffic Analysis Using Feed Forward Neural Netw...IOSR Journals
 
Use of Search Engines by Postgraduate Students of the University Of Nigeria,...
Use of Search Engines by Postgraduate Students of the University  Of Nigeria,...Use of Search Engines by Postgraduate Students of the University  Of Nigeria,...
Use of Search Engines by Postgraduate Students of the University Of Nigeria,...IOSR Journals
 

Viewers also liked (20)

Randomized fault-tolerant virtual backbone tree to improve the lifetime of Wi...
Randomized fault-tolerant virtual backbone tree to improve the lifetime of Wi...Randomized fault-tolerant virtual backbone tree to improve the lifetime of Wi...
Randomized fault-tolerant virtual backbone tree to improve the lifetime of Wi...
 
2015 10 06_sem_pref_saavedra
2015 10 06_sem_pref_saavedra2015 10 06_sem_pref_saavedra
2015 10 06_sem_pref_saavedra
 
E-Chitral Launched
E-Chitral Launched E-Chitral Launched
E-Chitral Launched
 
ALA 2015 Corporate Law Department Symposium
ALA 2015 Corporate Law Department SymposiumALA 2015 Corporate Law Department Symposium
ALA 2015 Corporate Law Department Symposium
 
Grenergy Presentation 2016-English Version
Grenergy Presentation 2016-English VersionGrenergy Presentation 2016-English Version
Grenergy Presentation 2016-English Version
 
2015 10 06_sem_pref_kimura_precast_seminar_in_santiago_final
2015 10 06_sem_pref_kimura_precast_seminar_in_santiago_final2015 10 06_sem_pref_kimura_precast_seminar_in_santiago_final
2015 10 06_sem_pref_kimura_precast_seminar_in_santiago_final
 
Klasifikasi benda 2
Klasifikasi benda 2Klasifikasi benda 2
Klasifikasi benda 2
 
Seminario vivienda industrializada en hormigon
Seminario vivienda industrializada en hormigonSeminario vivienda industrializada en hormigon
Seminario vivienda industrializada en hormigon
 
14 08-21 sem-pav_2-matias-larrain-leis
14 08-21 sem-pav_2-matias-larrain-leis14 08-21 sem-pav_2-matias-larrain-leis
14 08-21 sem-pav_2-matias-larrain-leis
 
4 uso madurimetro en obras sk resum-1
4  uso madurimetro en obras sk resum-14  uso madurimetro en obras sk resum-1
4 uso madurimetro en obras sk resum-1
 
Seminario vivienda industrializada en hormigon
Seminario vivienda industrializada en hormigonSeminario vivienda industrializada en hormigon
Seminario vivienda industrializada en hormigon
 
ATEE-Eindhoven RDC Primary and Pre-primary
ATEE-Eindhoven RDC Primary and Pre-primary ATEE-Eindhoven RDC Primary and Pre-primary
ATEE-Eindhoven RDC Primary and Pre-primary
 
K0957079
K0957079K0957079
K0957079
 
D0411315
D0411315D0411315
D0411315
 
J0947182
J0947182J0947182
J0947182
 
Enhancement of ATC by Optimal Allocation of TCSC and SVC by Using Genetic Alg...
Enhancement of ATC by Optimal Allocation of TCSC and SVC by Using Genetic Alg...Enhancement of ATC by Optimal Allocation of TCSC and SVC by Using Genetic Alg...
Enhancement of ATC by Optimal Allocation of TCSC and SVC by Using Genetic Alg...
 
Performance of Real Time Web Traffic Analysis Using Feed Forward Neural Netw...
Performance of Real Time Web Traffic Analysis Using Feed  Forward Neural Netw...Performance of Real Time Web Traffic Analysis Using Feed  Forward Neural Netw...
Performance of Real Time Web Traffic Analysis Using Feed Forward Neural Netw...
 
C0151216
C0151216C0151216
C0151216
 
D0342934
D0342934D0342934
D0342934
 
Use of Search Engines by Postgraduate Students of the University Of Nigeria,...
Use of Search Engines by Postgraduate Students of the University  Of Nigeria,...Use of Search Engines by Postgraduate Students of the University  Of Nigeria,...
Use of Search Engines by Postgraduate Students of the University Of Nigeria,...
 

Similar to H0346065

Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...
Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...
Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...ijrap
 
Bound State Solution to Schrodinger Equation With Modified Hylleraas Plus Inv...
Bound State Solution to Schrodinger Equation With Modified Hylleraas Plus Inv...Bound State Solution to Schrodinger Equation With Modified Hylleraas Plus Inv...
Bound State Solution to Schrodinger Equation With Modified Hylleraas Plus Inv...ijrap
 
ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...
ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...
ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...ijrap
 
Analytical Solutions of the Modified Coulomb Potential using the Factorizatio...
Analytical Solutions of the Modified Coulomb Potential using the Factorizatio...Analytical Solutions of the Modified Coulomb Potential using the Factorizatio...
Analytical Solutions of the Modified Coulomb Potential using the Factorizatio...ijrap
 
BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...
BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...
BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...ijrap
 
Elastic scattering reaction of on partial wave scattering matrix, differentia...
Elastic scattering reaction of on partial wave scattering matrix, differentia...Elastic scattering reaction of on partial wave scattering matrix, differentia...
Elastic scattering reaction of on partial wave scattering matrix, differentia...Alexander Decker
 
Analytical Solution Of Schrodinger Equation With Mie-Type Potential Using Fac...
Analytical Solution Of Schrodinger Equation With Mie-Type Potential Using Fac...Analytical Solution Of Schrodinger Equation With Mie-Type Potential Using Fac...
Analytical Solution Of Schrodinger Equation With Mie-Type Potential Using Fac...ijrap
 
On the black hole mass decomposition in nonlinear electrodynamics
On the black hole mass decomposition in nonlinear electrodynamicsOn the black hole mass decomposition in nonlinear electrodynamics
On the black hole mass decomposition in nonlinear electrodynamicsSOCIEDAD JULIO GARAVITO
 
Solutions of the Schrodinger Equation with Inversely Quadratic Hellmann Plus ...
Solutions of the Schrodinger Equation with Inversely Quadratic Hellmann Plus ...Solutions of the Schrodinger Equation with Inversely Quadratic Hellmann Plus ...
Solutions of the Schrodinger Equation with Inversely Quadratic Hellmann Plus ...ijrap
 
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...ijrap
 
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11Alexander Decker
 
Born oppenheimer p1 7
Born oppenheimer p1 7Born oppenheimer p1 7
Born oppenheimer p1 7Lim Wei
 
Limitations of Bohr's theory
Limitations of Bohr's theoryLimitations of Bohr's theory
Limitations of Bohr's theoryMithil Fal Desai
 
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...ijrap
 
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Alexander Decker
 
Static and Dynamic Reanalysis of Tapered Beam
Static and Dynamic Reanalysis of Tapered BeamStatic and Dynamic Reanalysis of Tapered Beam
Static and Dynamic Reanalysis of Tapered BeamIJERA Editor
 

Similar to H0346065 (20)

Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...
Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...
Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...
 
Bound State Solution to Schrodinger Equation With Modified Hylleraas Plus Inv...
Bound State Solution to Schrodinger Equation With Modified Hylleraas Plus Inv...Bound State Solution to Schrodinger Equation With Modified Hylleraas Plus Inv...
Bound State Solution to Schrodinger Equation With Modified Hylleraas Plus Inv...
 
F0523740
F0523740F0523740
F0523740
 
ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...
ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...
ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...
 
Analytical Solutions of the Modified Coulomb Potential using the Factorizatio...
Analytical Solutions of the Modified Coulomb Potential using the Factorizatio...Analytical Solutions of the Modified Coulomb Potential using the Factorizatio...
Analytical Solutions of the Modified Coulomb Potential using the Factorizatio...
 
BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...
BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...
BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...
 
Elastic scattering reaction of on partial wave scattering matrix, differentia...
Elastic scattering reaction of on partial wave scattering matrix, differentia...Elastic scattering reaction of on partial wave scattering matrix, differentia...
Elastic scattering reaction of on partial wave scattering matrix, differentia...
 
Analytical Solution Of Schrodinger Equation With Mie-Type Potential Using Fac...
Analytical Solution Of Schrodinger Equation With Mie-Type Potential Using Fac...Analytical Solution Of Schrodinger Equation With Mie-Type Potential Using Fac...
Analytical Solution Of Schrodinger Equation With Mie-Type Potential Using Fac...
 
On the black hole mass decomposition in nonlinear electrodynamics
On the black hole mass decomposition in nonlinear electrodynamicsOn the black hole mass decomposition in nonlinear electrodynamics
On the black hole mass decomposition in nonlinear electrodynamics
 
Solutions of the Schrodinger Equation with Inversely Quadratic Hellmann Plus ...
Solutions of the Schrodinger Equation with Inversely Quadratic Hellmann Plus ...Solutions of the Schrodinger Equation with Inversely Quadratic Hellmann Plus ...
Solutions of the Schrodinger Equation with Inversely Quadratic Hellmann Plus ...
 
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
 
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
 
Born oppenheimer p1 7
Born oppenheimer p1 7Born oppenheimer p1 7
Born oppenheimer p1 7
 
Limitations of Bohr's theory
Limitations of Bohr's theoryLimitations of Bohr's theory
Limitations of Bohr's theory
 
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
 
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
 
E04933745
E04933745E04933745
E04933745
 
en_qu_sch
en_qu_schen_qu_sch
en_qu_sch
 
Static and Dynamic Reanalysis of Tapered Beam
Static and Dynamic Reanalysis of Tapered BeamStatic and Dynamic Reanalysis of Tapered Beam
Static and Dynamic Reanalysis of Tapered Beam
 
8_06_Paper
8_06_Paper8_06_Paper
8_06_Paper
 

More from IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Recently uploaded

Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAndikSusilo4
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?XfilesPro
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 

Recently uploaded (20)

Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & Application
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 

H0346065

  • 1. IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861. Volume 3, Issue 4 (Mar. - Apr. 2013), PP 60-65 www.iosrjournals.org www.iosrjournals.org 60 | Page Potencial Energy Functions & Properties of Some Hydride Molecules Ratikant Thakur & Jagdhar Mandal* University Department of Physics Tilka Manjhi Bhagalpur University, Bhagalpur-812007,Bihar,India Abstract: The values of dipole moment (µ), rotational constant(𝛼 𝑒),vibrational constant(𝜔𝑒 𝑥 𝑒), binding energy (𝐷𝑖) and dissociation energy (𝐷𝑒) have been computed using the four forms of short- range repulsive interaction(SRRI) models with an aim to establish the applicability and validity of potential energy functions. The calculations have been done for chemically active but simple hydride namely, LiH, NaH, KH, RbH,CsH, 𝐵𝑒𝐻, BH, MgH, AlH & SiH.The computed values are in fair agreement with the experimental values available in the literature for the mentioned system. The close agreement between the observed an the calculated values simply revealed that Hellmann and Ali- Hasan forms of interaction models appear to be more appropriate short range repulsive interaction models for the prediction of many other properties of the system. This study shows that these models play an important role in molecular physics as well as in the problems of astrophysics. Keywords: - Anharmonicity constant, Binding energy, Dipole-dipole & Dipole-quadrupole interaction constants, Dissociation energy & Rotational constant. I. Introduction- Alkali hydride molecules are chemically very simple compounds but due to their reactive nature, a very few physical properties of these molecules could be measured. As such the experimental information about them is not available in the literature. Owing to the non availability of the observed data for other practical applications the theoretical estimates of the various properties of these hydrides will be useful. In this connection several effects have already been taken up by different workers. The nature of forces which bind the atom or ions in the diatomic molecules is of fundamental importance in the fields of physico-chemical interest. Rittner 1 for the first time proposed a polarizable ion model for alkali halide molecules through which the interionic forces could be understood. Later on, Brumer & Karplus 2 modified the Rittner model known as truncated Rittner model or simply known as T-Rittner model given by, 𝑈 𝑟 = − 𝑧2 𝑒2 𝑟 − (𝛼1 + 𝛼2) 2𝑟4 − 𝐶 𝑟6 − 𝐷 𝑟8 + 𝑈 𝑅 𝑟 The 1st term is the electrostatic attraction between two point charges Z(+e) & Z(-e) separated by an interionic distance r, the 2nd term is the polarization energy, the third & fourth terms are van der Waals dipole- dipole and dipole-quadrupole interaction. The last term is the short-range repulsive interactions.α1 and α2 are the electronic polarizabilities of cation and anion respectively.An extensive work [3-7] has been done on T- Rittner model for alkali halide molecules but study of hydride molecules have not been properly taken up by theoretical workers. There are several repulsive interactions proposed by different theoretical workers from time to time to describe the structure & properties of diatomic ionic molecules 8 − 9 .The repulsive interactions in logarithmic function 10 − 12 are also available in the scientific literature but the results are far from satisfactory. As a result, the exact form of short-range repulsive interaction model is still to be asscertained. In the present paper we are using the Born-Mayer, Hellmann Varshni Shukla & Ali-Hasan form of short-range overlap forms which involve potential parameters. These forms for the overlap term be exploited to describe the various physical properties of hydride molecular substances. Born Mayer [14-15] and HM [16] of repulsive interaction are exponential in nature capable enough to produce various properties of alkali halide molecules approximately. V.S. presented an alternative approach for potential energy function of diatomic molecules by assuming a term to represent the electrostatic interaction and other to represent repulsion arising from the overlap of outermost electrons of constituent atoms and ions. This potential has further been modified by introducing the concept of effective charge parameter. Ali & Hasan [17] has developed an empirical short range repulsive interaction model. Which produced many molecular properties in close agreement with expt. Value. In our calculation we have been inspired to examine the applicability and suitability of the short range repulsive models incorporating the polarizable term and dipole-dipole and dipole-quadrupole vdW energy term
  • 2. Potencial Energy Functions & Properties Of Some Hydride Molecules www.iosrjournals.org 61 | Page which have not been studied by the previous workers taking all the terms in consideration. This is, therefore, the comprehensive study for the molecular hydride systems. II. Method Of Calculation A generalized formula for short-range repulsive interaction can be expressed as 𝑼 𝑹(r)= 𝑩 𝒓 𝒎 exp(− 𝒓 𝝆 ) … … … … … … … … … … … … … … . (1) Which takes the form of Born-Mayer repulsive potential when m=0, Hellmann repulsive potential when m=1 and Varshni-Shukla potential when m=2. Ali-Hasan empirical repulsive potential is expressed as 𝑼 𝑹(r) = 𝑺 𝒓 𝒎 exp(-b𝒓 𝒏 ) … … … … … … … … … … … … … … . (2) In this potential m=2 and n= 3 2 . In equation (2) and (3) B,S, 𝜌 𝑎𝑛𝑑 𝑏 are repulsive potential parameters. The repulsive potential parameters are determined by applying the equilibrium criteria: 𝐝𝐔(𝐫) 𝐝𝐫 𝐫=𝐫𝐞 = 𝟎 … … … … … … … … … … … … … … . (3) Where 𝐾𝑒 is the molecular force constant, 𝜔𝑒 is the equilibrium vibrational frequency C is the speed of light in vacuum, 𝜇 𝐴 is the reduced mass and 𝑟𝑒 is the interionic separation. The expressions for potential parameter obtained are given by 𝒙 = 𝑲 𝒆 𝒓 𝒆 𝟐 + 𝟐𝒆 𝟐 𝒓 𝒆 + 𝟒𝟐𝑪 𝒓 𝒆 𝟔 + 𝟕𝟐𝑫 𝒓 𝒆 𝟖 … … … … … … … … … … … … … … . (4) b= 𝟏 𝟔𝒓 𝒆 𝟑 𝟐 [ 𝟐𝒙 − 𝟕 + (𝟒𝒙 𝟐 +4x−𝟒𝟕) 𝟏/𝟐 … … … … … … … … … … … … … … . (5) & P= 𝟐𝒓 𝒆 𝟐 𝒆𝒙𝒑(𝒃𝒓 𝒆 𝟑 𝟐 ) 𝟑𝒃𝒓 𝒆 𝟑/𝟐 +𝟒 𝒆 𝟐 𝒓 + 𝟔𝒄 𝒓 𝒆 𝟔 + 𝟖𝑫 𝒓 𝒆 𝟖 … … … … … … … … … … … … … … . (6) The vdw dipole-dipole constant C and dipole-quadrupole constant D taken from Slater Kirkwood variational method [18] are expressed as C = 𝟑 𝒆𝒉 𝟒𝝅𝒎 𝟏/𝟐 𝜶 𝟏 𝜶 𝟐 𝜶 𝟏 𝑵+ 𝟏/𝟐 + 𝜶 𝟐 𝑵− 𝟏/𝟐 … … … … … … … … … … … … … … . (7) & D = 27ℎ2 𝛼1 𝛼2ℎ 32𝜋2 𝑚 𝛼1 𝑁+ ½ + 𝛼2 𝑁− ½ 2 𝛼1 𝑁+ − 20 3 𝛼1 𝛼2 𝑁+ 𝑁− ½ + 𝛼2 𝑁− … … … … … … … … … … … … . . (8) Where 𝑁+ and 𝑁− are the effective no. of electrons in the ions are defined as 𝑵+ = N +𝒁+ … … … … … … … … … … … … … … . (9) 𝑵− = 𝑵 − 𝒁− … … … … … … … … … … … … … … . (10) Here N is the total number of electrons in the outer two shells. The e𝑞 𝑛 (9) &(10) are valid for the ions of S- block and p-block elements of Periodic Table. In the case of ions of d-block elements of Periodic Table, N = 𝑵 𝟏 + 𝟎. 𝟓 𝑵 𝟐 … … … … … … … … … … … … … … . (11) Where 𝑁1 and 𝑁2 are the number of electrons in the 1st & 2nd outer shells respectively. The rotational vibration coupling constant (𝛼 𝑒) and anharmonicity constant (𝜔𝑒 𝒙 𝒆) are calculated by the formula, 𝜶 𝒆 = − 𝑿 𝟑 𝒓 𝒆 𝟑 + 𝟏 𝟔𝑩𝒆 𝟐 𝝎 𝒆 … … … … … … … … … … … … … … . (12) & 𝝎 𝒆 𝒙 𝒆 = 𝟓 𝟑 𝑿 𝟑 𝟐 − 𝑿 𝟒 𝒉 𝟔𝟒𝝅 𝟐 𝒄µ … … … … … … … … … … … … … … . (13) Here 𝑥 𝑝 = 𝑑 𝑝 𝑈(𝑟) 𝑑𝑟 𝑝 𝑟=𝑟 𝑒 / 𝑑2 𝑈 𝑟 𝑑𝑟2 𝑟=𝑟 𝑒 … … … … … … … . . … … . 14 The binding energy per mole (𝐷𝑖) and dissociation energy (𝐷𝑒) is given by 𝑫𝒊 = −NU(𝒓 𝒆) … … … … … … … … … … … … … … . (15) & 𝑫 𝒆 = 𝑫𝒊 −I+E … … … … … … … … … … … … … … . (16) Where N is the Avogadro`s number, 𝑟𝑒 is the equilibrium internuclear distance, I is the ionization potential and E is the electron affinity.
  • 3. Potencial Energy Functions & Properties Of Some Hydride Molecules www.iosrjournals.org 62 | Page III. Results and Discussion The experimental input data for Interionic equilibrium separation (𝑟𝑒), Force constant (𝐾𝑒), Vibrational frequency (𝜔𝑒 ) and Rotional constant (𝐵𝑒) have been taken from Huber & Hertzberg [19]. The values of electronic polarizibilities (𝛼1 , 𝛼2) have been taken from Tessman [20].These deta have been shown in Table No- 1 Table-1 Molecules 𝜶 𝟏 𝜶 𝟐 𝑩 𝒆 𝝎 𝒆 𝑲 𝒆 𝒓 𝒆 𝑳𝒊𝑯 0.034 1.86 7.53 1367.4 1.298 1.596 NaH 0.190 1.86 4.905 1352.0 1.080 1.887 KH 1.143 1.86 3.412 1176.0 0.805 2.243 𝑹𝒃𝑯 1.805 1.86 3.022 944.40 0.469 2.367 𝑹𝒃𝑯 1.805 1.86 3.022 944.40 0.469 2.367 𝑪𝒔𝑯 2.989 1.86 2.752 1415.1 0.460 2.494 𝑩𝒆𝑯 0.008 1.86 10.32 2060.8 2.263 1.343 BH 0.003 1.86 12.02 2366.9 3.03 1.232 MgH 0.094 1.86 5.62 1497.0 1.275 1.730 AlH 0.052 1.86 6.40 1682.6 1.62 1.646 SiH 0.0165 1.86 7.50 2041.8 2.39 1.520 The computed values of dipole moments, van der Waals constant C,D & vdW energies are produced in Table-2 Table-2 Molecules dipole moment(𝝁) C D 𝑾 𝒅−𝒅 𝑾 𝒅−𝒒 LiH 4.09 1.477 1.949 0.089 0.0465 NaH 6.302 8.110 13.59 0.179 0.085 KH 7.901 43.76 49.261 0.344 0.0769 RbH 8.296 69.34 77.950 0.394 0.0791 CsH 8.072 108.0 121.016 0.448 0.0808 BeH 1.476 1.18 0.523 0.242 0.049 BH 0.413 0.14 0.206 0.041 0.0478 MgH 5.164 13.72 4.40 3.924 1.02 AlH 4.513 2.368 3.127 0.119 7.126 SiH 3.598 0.78 1.10 0.063 0.047 Table-3 presents the computed values of potential parameters for all the short-range repulsive potencial parameters. Table-3 Values of parameter b Values of parameter P Molecules values of B.M Hell V.S A.H B.M Hell V.S A.H ( ᵡ) ( × 𝟏𝟎 𝟖 ) (× 𝟏𝟎 𝟖 ) (× 𝟏𝟎 𝟖 ) (× 𝟏𝟎 𝟏𝟐 ) (× 𝟏𝟎−𝟖 ) (× 𝟏𝟎−𝟐𝟎 ) (× 𝟏𝟎−𝟐𝟖 )(× 𝟏𝟎−𝟐𝟖 ) LiH 4.36 2.733 1.954 1.150 0.706 0.0275 134.32 58.77 39.18 NaH 4.77 2.53 1.880 1.22 0.670 0.0349 201.23 115.45 61.42 KH 5.28 2.354 1.810 1.270 0.630 0.0519 332.65 231.89 104.72 RbH 5.395 2.279 2.198 1.26 0.60 0.0519 883.41 282.49 120.10
  • 4. Potencial Energy Functions & Properties Of Some Hydride Molecules www.iosrjournals.org 63 | Page CsH 5.53 2.217 1.74 1.25 0.58 0.0572 446.08 345.82 141.44 BeH 4.596 3.420 2.504 0.803 1.035 0.0394 158.91 31.52 37.39 BH 4.580 3.717 2.719 0.847 0.788 0.045 132.71 27.369 23.83 MgH 6.670 3.850 3.180 2.520 1.390 0.805 2960.47 1672.82 476.14 AlH 5.37 3.260 2.540 1.804 1.04 0.0610 317.10 73.34 89.93 SiH 5.750 3.796 3.01 2.39 1.365 0.0914 435.37 208.55 71.76 Table 4 displays the computed values of binding energy of the molecules with polarization. Table- 4 Molecules Expt B.M %error Hell %error V.S %error A&H %error LiH 161.238 212.62 31.86 211.60 31.23 211.06 30.89 205.74 27.60 NaH 146.745 168.99 15.15 167.56 14.18 146.16 0.39 164.14 11.85 KH 142.8 150.22 5.19 142.30 0.35 132.31 7.34 118.62 16.93 RbH 140.5 137.09 2.42 136.34 2.96 136.42 2.90 164.2 16.86 𝑪𝒔𝑯 118.1 134.12 13.56 135.45 14.69 139.36 18.0 149.72 26.77 BeH 241.67 287.98 19.15 286.97 8.72 282.97 7.09 286.26 8.42 BH 250.76 322.07 19.86 188.56 27.80 297.4 24.32 311.76 29.91 MgH 203.17 199.25 1.53 203.52 0.17 195.36 3.84 201.23 0.95 AlH 185.69 219.3 7.94 217.78 7.19 217.01 6.80 202.04 0.54 SiH 248.64 246.32 11.76 248.39 10.78 259.43 10.54 247.53 14.03 Table-5 presents the computed values of Dissociation energy of the molecules Molecules Expt. B.M. Hell V.S. A&H LiH 58 51.412 61.489 60.53 103.916 NaH 47 90.34 62.235 40.85 58.84 KH 42.9 86.72 70.47 63.48 84.41 RbH 39 75.24 74.47 74.10 82.40 𝑪𝒔𝑯 41 60.54 42.44 86.42 99.09 𝑩𝒆𝑯 _ 330.60 326.49 309.69 323.49 BH _ 61.45 95.04 466.59 526.92 MgH _ 121.79 139.72 105.47 130.09 AlH _ 360.11 353.73 350.48 287.65 SiH _ 271.32 275.52 326.39 276.43 Table-6 shows the computed values of Rotational constants (𝜶 𝒆) in𝟏𝟎−𝟒 cm Molecules. Expt. B.M. %eror Hell %error V.S. %error A&H %error LiH 0.2132 0.2144 0.67 0.245 4.78 0.218 3.76 0.259 17.1 NaH 0.1353 0.138 2.27 0.128 5.18 0.147 8.1 0.162 11.8 KH 0.0817 0.073 9.8 0.085 4.04 0.087 6.4 0.079 2.4
  • 5. Potencial Energy Functions & Properties Of Some Hydride Molecules www.iosrjournals.org 64 | Page RbH 0.072 0.086 19.4 0.0754 4.72 0.0684 5.0 0.06 14.2 𝑪𝒔𝑯 0.0579 0.051 10.53 0.0595 2.76 0.0522 9.8 0.0512 10.5 𝑩𝒆𝑯 0.1225 0.095 22.0 0.124 1.64 0.136 11.02 0.1228 0.24 BH 0.412 0.0482 7.3 0.365 10.97 0.390 4.87 0.44 7.3 MgH 0.1859 0.167 11.1 0.191 0.75 0.1872 0.75 0.197 6.43 AlH 0.1858 0.150 18.8 0.1883 1.37 0.186 0.58 0.170 8.07 SiH 0.2190 0.2176 0.64 0.224 2.28 0.224 2.28 0.194 11.4 Average%Deviation:- 10.25 3.85 5.26 8.94 Table-7 computed values of vibrational Constant(𝝎 𝒆 𝒙 𝒆) 𝒊𝒏 𝑐𝑚−1 Molecules expt B.M. %error Hell %error V.S. %error A&H %error LiH 23.2 22.08 4 25.76 11.03 27.72 19.48 28.08 21.03 NaH 19.72 17.41 11.71 15.08 21.05 16.19 17.90 17.16 12.98 KH 14.32 16.05 12.08 13.39 5.9 13.41 5.76 13.44 5.85 RbH 14.21 17.10 20.33 16.79 18.3 13.41 5.53 13.59 4.30 𝑪𝒔𝑯 12.9 12.49 3.18 15.42 8.58 10.61 25.2 13.70 3.50 BeH 20.71 16.62 19.3 17.47 15.59 19.49 5.86 24.45 18.05 BH 49.39 53.01 7.32 51.03 3.31 45.05 8.78 42.43 14.09 MgH 31.889 32.0 0.36 28.97 9.15 29.49 7.50 29.74 6.75 AlH 29.09 29.92 2.85 24.17 16.9 26.20 9.92 28.34 2.56 SiH 35.51 39.18 10.3 44.49 25.3 38.27 7.78 36.86 3.83 Average % deviation 9.14% 14.4% 11.35% 9.29% B.M >A.H > V.S > H.M Table-6 & 7 present the calculation of Rotational Constant (𝛼 𝑒) & vibrational anharmonicity constant (𝜔𝑒 𝑥 𝑒) respectively for all the four models taken into considerations. The percentage deviations are also shown in the table along with the observed data. The experimental values of some hydride molecules are not available in the literature. There is good agreement between the experimental values and the calculated values of molecular properties of 𝛼 𝑒, 𝜔𝑒 𝑥 𝑒 considering the approximations involved in the theoretical method and uncertainties associated in the experimental values of the parameter used. It is interesting to observe that most of the calculated values of 𝛼 𝑒, 𝜔𝑒 𝑥 𝑒 are slightly more than the observed values. These may be due to the fact that the diatomic hydrides have less ionicity. The results have clearly improved by the inclusion of dipole- dipole & dipole- quadrupole interation energy terms [21]. These terms are essential for the interaction energy to be exact one. Acknowledgement. We are extremely thankful to Prof. Md. Mazahir Hasan to suggest the problems.
  • 6. Potencial Energy Functions & Properties Of Some Hydride Molecules www.iosrjournals.org 65 | Page References :- [1]. Rittner E.S.J.chem. phys. 19(1951),1030 [2]. Brumer P.P. & Karplus M, J.chem.phys.58(1973),3903 [3]. Shankar J, Kumar M & Kaur A.J. Indian.J. Phys60B,1985,171 [4]. J.Shankar & A.K.Rajaria, Indian journal Pure and Applied Physics,20,1982,169-173 [5]. Gupta R.K, Kaur A.J, Bakshi p.s & Shankar J. Indian J. Phys. Part B, 56, A82, 344 [6]. Kaur A.J, Jain P.C, Bakshi P.S & Shankar J Indian J. chem.. Sec A, 22, 1983,595 [7]. Kaur A.J, Singh M, Bakshi P.S & Shankar J. Indian J. Phys, Part B, 57,1983,334 [8]. Varshni Y.P & Shukla R.C. Rev.Mod. Phys.35,1963,130 [9]. Varshni Y.P & Shukla R.C, J.Chem.Phys(USA),35,1961,582 [10]. Thakur K.P and Pandey J.P.J.Chem.Phys. 71, 1974,850 [11]. Thakur K.P & Sarkar G.K. Indian Journal Pure and Applied Physics, 13, 1975,718 [12]. Thakur K.P.Aust J. Phys (Australia), 29, 1976, 39 [13]. Miss A.J. Kaur, P.C.Jain, P.S.Balchshi & J.Shankar. Indian J. of Chemistry 22A, 1983, 595-598 [14]. Pandey R.P & Pandey J.D Indian J.Chem. 20A, 1981, 591 [15]. Born Mayer & Mayer J.E.Z.Phys. 75, 1932 [16]. Heiimann, Acta Chemica 2(1934), 91B J.Chem.Phys. 3, 1935, 61 [17]. Ali M.S & Hasan M.M. Indian J.Phys. 63B, 1989, 486 [18]. Slater J.C. & Kirkwood J.G. Phys. Rev-37,1931,682 [19]. Huber K.P. & Hertzberg G, Constants of diatomic molecules (Van Nostrard-Reinhold co.Newyork, 1979) [20]. Jack.R.Tessman & A.H. Kahn, Physical Review, 92, 1953, 890-895 [21]. Raghuban shi S.S. & Sharma L.K. Indian J. Pure & Applied Phys, 16, 1978, 1071