⑤ニューラルネットワークの構造が進化させる
「NEAT」の技術
Mat Buckland, Chapter11, AI techniques for game programming, Premier Press, 2002
(実行ファイルとソースコードがCD-ROMにあります)
これまでニューラルネットは、最初に構造を定義した後は変化しなかった。
動的にニューラルネットの構造を変化させる技術
Neuron Evoluation of Augmenting Topologies (NEAT)
Unsupervised Representation Learningwith Deep Convolutional Generative Adversarial Networks
Alec Radford, Luke Metz, Soumith Chintala
(Submitted on 19 Nov 2015 (v1), last revised 7 Jan 2016 (this version, v2))
https://arxiv.org/abs/1511.06434
34.
Unsupervised Representation Learningwith Deep Convolutional Generative Adversarial Networks
Alec Radford, Luke Metz, Soumith Chintala
(Submitted on 19 Nov 2015 (v1), last revised 7 Jan 2016 (this version, v2))
https://arxiv.org/abs/1511.06434
2 第一次AIブーム(1960年代)
もし Aならば B
もし B ならば C
よって、
もし A ならば C
シンボルによる人工知能
(記号主義)
ニューラルネットによる人工知能
(コネクショニズム)
推論ベース ニューラルネット
誕生
49.
3 第二次AIブーム(1980年代)
IF (A)then B
IF (C) then D
IF (E) then F
IF (G) then H
IF ( I ) then J
シンボルによる人工知能
(記号主義)
ニューラルネットによる人工知能
(コネクショニズム)
ルールベース
新しい学習法=
逆伝搬法
Deep Q-Learning
Volodymyr Mnih,Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller (DeepMind Technologies)
Playing Atari with Deep Reinforcement Learning
http://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
画面を入力
操作はあらかじめ教える
スコアによる強化学習
学習過程解析
Volodymyr Mnih, KorayKavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller (DeepMind Technologies)
Playing Atari with Deep Reinforcement Learning
http://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
58.
• Pπ ロールアウトポリシー(ロールアウトで討つ手を決める。
Pπ(a|s)sという状態でaを討つ確率)
• Pσ Supervised Learning Network プロの討つ手からその
手を討つ確率を決める。Pσ(a|s)sという状態でaを討つ確
率。
• Pρ 強化学習ネットワーク。Pρ(学習済み)に初期化。
• Vθ(s’) 局面の状態 S’ を見たときに、勝敗の確率を予測
する関数。つまり、勝つか、負けるかを返します。
Mastering the game of Go with deep neural networks and tree search
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://deepmind.com/research/alphago/
Procedural Generation inWarFrame
• Warframe ではダンジョンが自動生成される。
Daniel Brewer, AI Postmortems: Assassin's Creed III, XCOM: Enemy Unknown, and Warframe (GDC2015)
http://www.gdcvault.com/play/1018223/AI-Postmortems-Assassin-s-Creed
74.
Black Combination inWarFrame
• ブロックを組み合わる
• 完全に零からの生成
ではない。
このような生成のことを
Semi-procedural と言う。
Daniel Brewer, AI Postmortems: Assassin's Creed III, XCOM: Enemy Unknown, and Warframe (GDC2015)
http://www.gdcvault.com/play/1018223/AI-Postmortems-Assassin-s-Creed
スタートポイント、出口、目的地の
自動生成
Daniel Brewer, AIPostmortems: Assassin's Creed III, XCOM: Enemy Unknown, and Warframe (GDC2015)
http://www.gdcvault.com/play/1018223/AI-Postmortems-Assassin-s-Creed
78.
ヒートマップ(影響マップ)を用いて
ゲーム中にプレイヤーの周囲を自動解析
Daniel Brewer, AIPostmortems: Assassin's Creed III, XCOM: Enemy Unknown, and Warframe (GDC2015)
http://www.gdcvault.com/play/1018223/AI-Postmortems-Assassin-s-Creed
ヒートマップ(影響マップ)とは、対象(ここではプレイヤー)を中心に、位置に温度(影響度)を
与える方法です。距離に応じて減衰します。また時間が経つと、周囲に熱が拡散します。
アクティブ・エリアセット(Active Are Set)
DanielBrewer, AI Postmortems: Assassin's Creed III, XCOM: Enemy Unknown, and Warframe (GDC2015)
http://www.gdcvault.com/play/1018223/AI-Postmortems-Assassin-s-Creed
アクティブ・エリアセットは、プレイヤーの周囲の領域で、
リアルタイムにメタAIがゲームを調整する領域
メタAIによる出会うモンスターの数の大域調整
Daniel Brewer, AIPostmortems: Assassin's Creed III, XCOM: Enemy Unknown, and Warframe (GDC2015)
http://www.gdcvault.com/play/1018223/AI-Postmortems-Assassin-s-Creed
プレイヤーのスタート地点から出口までの道のりで、
コンスタントにモンスターと出会うようにする。
86.
FarCry 4 の事例
JulienVarnier, Far Cry's AI: A Manifesto for Systemic Gameplay
http://archives.nucl.ai/recording/far-crys-ai-a-manifesto-for-systemic-gameplay/
87.
FarCry 4 の事例
JulienVarnier, Far Cry's AI: A Manifesto for Systemic Gameplay
http://archives.nucl.ai/recording/far-crys-ai-a-manifesto-for-systemic-gameplay/
88.
FarCry 4 の事例
JulienVarnier, Far Cry's AI: A Manifesto for Systemic Gameplay
http://archives.nucl.ai/recording/far-crys-ai-a-manifesto-for-systemic-gameplay/
89.
FarCry 4 の事例
JulienVarnier, Far Cry's AI: A Manifesto for Systemic Gameplay
http://archives.nucl.ai/recording/far-crys-ai-a-manifesto-for-systemic-gameplay/