This document discusses techniques for analyzing unstructured text data from computer data inspection. It discusses using clustering algorithms like K-means and hierarchical clustering to automatically group related documents without supervision. The goal is to help computer examiners analyze large amounts of text data more efficiently. Prior work on clustering ensembles, evolving gene expression clusters, self-organizing maps, and thematically clustering search results is reviewed as relevant to this problem. The problem is how to identify and cluster documents stored across multiple remote locations during computer inspections when existing algorithms make this difficult.