Federated SPARQL Query Processing 
Over the Web of Data 
Muhammad Saleem, Axel-Cyrille Ngonga 
Ngomo 
Agile Knowledge Engineering and Semantic Web (AKSW), University of Leipzig, 
Germany, 25/11/2014
Agenda 
• SPARQL Query Federation Approaches 
• SPARQL Query Federation Optimization 
– Query Rewriting 
– Source Selection 
– Data Integration Options 
– Join Order Selection 
– Join Order Optimization 
– Join Implementations 
• Performance Metrics and Discussion
SPARQL Query Federation Approaches 
• SPARQL Endpoint Federation (SEF) 
• Linked Data Federation (LDF) 
• Distributed Hash Tables (DHTs) 
• Hybrid of SEF+LDF
SPARQL Endpoint Federation Approaches 
• Most commonly used approaches 
• Make use of SPARQL endpoints URLs 
• Fast query execution 
• RDF data needs to be exposed via SPARQL 
endpoints 
• E.g., HiBISCus, FedX, SPLENDID, ANAPSID, LHD etc.
Linked Data Federation Approaches 
• Data needs not be exposed via SPARQL endpoints 
• Uses URI lookups at runtime 
• Data should follow Linked Data principles 
• Slower as compared to previous approaches 
• E.g., LDQPS, SIHJoin, WoDQA etc.
Query federation on top of Distributed Hash Tables 
• Uses DHT indexing to federate SPARQL queries 
• Space efficient 
• Cannot deal with whole LOD 
• E.g., ATLAS
Hybrid of SEF+LDF 
• Federation over SPARQL endpoints and Linked 
Data 
• Can potentially deal with whole LOD 
• E.g., ADERIS-Hybrid
SPARQL Endpoint Federation 
Parsing/Rewriting 
Source Selection 
Federator Optimzer 
Integrator 
S1 S2 S3 S4 
RDF RDF RDF RDF 
Rewrite query 
and get Individual 
Triple Patterns 
Identify capable 
source against 
Individual Triple 
Patterns 
Generate 
optimized sub-query 
Exe. Plan 
Execute sub-queries 
Integrate sub-queries 
results
SPARQL Query Rewriting
SPARQL Query Rewriting 
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality ?nationality. 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
Filter (?nationality = dbpedia:United_States ) 
} 
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
Try to simplify/avoid SPARQL FILTER and REGEX expressions
Source Selection
Source Selection 
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
Jamendo 
RDF 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Source Selection 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
Jamendo 
RDF 
TP2 = S1 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Source Selection 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
TP3 = S1 
Jamendo 
RDF 
TP2 = S1 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Source Selection 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
TP3 = S1 TP4 = S4 
Jamendo 
RDF 
TP2 = S1 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Source Selection 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
TP3 = S1 TP4 = S4 
TP5 = S1 S2 S4-S9 
Total triple pattern-wise sources selected = 
Jamendo 
RDF 
TP2 = S1 
1+1+1+1+8 => 12 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
Types of Source Selection 
• Index-free 
– Using SPARQL ASK queries 
– No index maintenance required 
– Potentially ensures result set completeness 
– SPARQL ASK queries can be expensive 
– Can make use of the cache to store recent SPARQL ASK queries results 
– E.g., FedX 
• Index-only 
– Only make use of Index/data summaries 
– Less efficient but fast source selection 
– Result set completeness is not ensured 
– E.g., DARQ, LHD 
• Hybrid 
– Make use of index+SPARQL ASK 
– Most efficient 
– Result set completeness is not ensured 
– Can make use of the cache to store recent SPARQL ASK queries results 
– E.g., HiBISCuS, ANAPSID, SPLENDID
Index-free Source Selection 
Input: SPARQL query Q , set of all data sources D 
Output: Triple pattern to relevant data sources map M 
for each triple pattern ti in SPARQL query Q 
Ri = {}; // set of relevant data sources for triple pattern ti 
for each data source di in D 
if SPARQL ASK(di , ti) = true 
Ri = Ri U {di}; 
end if 
end for 
M = M U {Ri}; 
end for 
return M What is the total number of SPARQL ASK requests used? 
total number of triple patterns * total number of data sources
Index-free 
Source Selection 
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
Jamendo 
RDF 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Index-free 
Source Selection 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
Jamendo 
RDF 
TP2 = S1 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Index-free 
Source Selection 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
TP3 = S1 
Jamendo 
RDF 
TP2 = S1 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Index-free 
Source Selection 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
TP3 = S1 TP4 = S4 
Jamendo 
RDF 
TP2 = S1 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Index-free 
Source Selection 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
TP3 = S1 TP4 = S4 
TP5 = S1 S2 
S4-S9 
Total number of SPARQL ASK requests used = 45 
Total triple pattern-wise sources selected = 12 
Jamendo 
RDF 
TP2 = S1 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
Index-only Source Selection (LHD) 
Input: SPARQL query Q , set of all data sources D, data sources index I storing all distinct predicates for 
all data sources in D 
Output: Triple pattern to relevant data sources map M 
for each triple pattern ti in SPARQL query Q 
Ri = {}; // set of relevant data sources for triple pattern ti 
p = Pred(ti) // predicate of ti 
if (bound (p)) 
Ri = Lookup (I, p) // index lookup for predicate of ti 
else 
Ri = D ; // all data sources are relevant 
end if 
M = M U {Ri} ; 
end for 
return M Why it is the less efficient approach (i.e., greatly overestimate relevant data sources)? 
• Source selection is only based on predicate of triple patterns 
• Simply select all data sources for triple patterns having unbound predicates
Index-only 
Source Selection 
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Triple pattern-wise source selection 
TP1 = S1-S9 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
Jamendo 
RDF 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Index-only 
Source Selection 
Triple pattern-wise source selection 
TP1 = 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
S1-S9 TP2 = S1 
Jamendo 
RDF 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Index-only 
Source Selection 
Triple pattern-wise source selection 
TP1 = 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
S1-S9 
TP3 = S1 
Jamendo 
RDF 
TP2 = S1 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Index-only 
Source Selection 
Triple pattern-wise source selection 
TP1 = 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
S1-S9 
TP3 = S1 TP4 = S4 
Jamendo 
RDF 
TP2 = S1 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Index-only 
Source Selection 
Triple pattern-wise source selection 
TP1 = 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
S1-S9 
TP3 = S1 TP4 = S4 
TP5 = S1 S2 S4-S9 
Total number of SPARQL ASK requests used = 0 
Total triple pattern-wise sources selected = 20 
Jamendo 
RDF 
TP2 = S1 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
Hybrid Source Selection 
Input: SPARQL query Q , set of all data sources D, data sources index I storing all distinct predicates for all data 
sources in D 
Output: Triple pattern to relevant data sources map M 
for each triple pattern ti in SPARQL query Q 
Ri = {}; // set of relevant data sources for triple pattern ti 
s = Subj(ti) , p = Pred(ti) , o = Obj(ti) ; // subject, predicate, and object of ti 
if (!bound (p) || bound (s) || bound (o) ) 
for each data source di in D 
if SPARQL ASK(di , ti) = true 
Ri = RiU {di}; 
end if 
end for 
else 
Ri = Lookup (I, p) // index lookup for predicate of ti 
end if 
M = M U {Ri} 
end for 
return M 
What is the total number of SPARQL ASK requests used? 
total number of triple patterns with bound subject or bound object 
or unbound predicate * total number of data sources
Hybrid Source 
Selection 
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
Jamendo 
RDF 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Hybrid Source 
Selection 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
Jamendo 
RDF 
TP2 = S1 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Hybrid Source 
Selection 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
TP3 = S1 
Jamendo 
RDF 
TP2 = S1 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Hybrid Source 
Selection 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
TP3 = S1 TP4 = S4 
Jamendo 
RDF 
TP2 = S1 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
Anything still needs 
to be improved? 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Hybrid Source 
Selection 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
TP3 = S1 TP4 = S4 
TP5 = S1 S2 
S4-S9 
Total number of SPARQL ASK requests used = 18 
Total triple pattern-wise sources selected = 12 
Jamendo 
RDF 
TP2 = S1 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
Source Selection 
• Triple pattern-wise source selection 
– Ensures 100% recall 
– Can over-estimate capable sources 
– Can be expensive, e.g., total number of SPARQL ASK 
requests used 
– Performed by FedX, SPLENDID, LHD, DARQ, ADERIS etc. 
• Join-aware triple-pattern wise source selection 
– Ensures 100% recall 
– May selects optimal/close to optimal capable sources 
– Can be expensive, e.g., total number of SPARQL ASK 
requests used 
– Can significantly reduce the query execution time 
– Performed by ANAPSID, HiBISCuS
HiBISCuS: Hypergraph-Based Source Selection for 
SPARQL Endpoint Federation 
• Hybrid source selection 
• Join-aware triple-pattern wise source selection 
• Makes use of the hypergraph representation of 
SPARQL queries 
• Makes use of the URI authorities 
• Makes use of the cache to store recent SPARQL 
ASK queries results
Motivation 
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
Jamendo 
RDF 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
Motivation 
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
Jamendo 
RDF 
TP2 = S1 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
Motivation 
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
TP3 = S1 
Jamendo 
RDF 
TP2 = S1 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
Motivation 
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
TP3 = S1 TP4 = S4 
Jamendo 
RDF 
TP2 = S1 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
Motivation 
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
TP3 = S1 TP4 = S4 
TP5 = S1 S2 S4 S5 
Jamendo 
RDF 
TP2 = S1 
S6 S7 S8 S9 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
Motivation 
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
TP3 = S1 TP4 = S4 
TP5 = S1 S2 S4 S5 
Total triple pattern-wise selected sources = 12 
Total SPARQL ASK queries : 9*5 = 45 
Jamendo 
RDF 
TP2 = S1 
S6 S7 S8 S9 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
Motivation 
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Triple pattern-wise source selection 
TP1 = S1 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
TP3 = S1 TP4 = S4 
TP5 = S1 S2 S4 S5 
Total triple pattern-wise selected sources = 12 
Total SPARQL ASK queries : 9*5 = 45 
Jamendo 
RDF 
TP2 = S1 
S6 S7 S8 S9 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
Motivation 
FedBench (LD3): Return for all US presidents their party 
membership and news pages about them. 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
dbpedia 
RDF 
//TP3 
//TP4 
//TP5 
Source Selection Algorithm 
Triple pattern-wise source selection 
TP1 = S1 
TP3 = S1 
TP2 = S1 
TP4 = S4 
TP5 = S1 S2 S4 S5 
S6 S7 S8 S9 
Optimal triple pattern-wise selected sources 5 
KEGG 
RDF 
ChEBI 
RDF 
NYT 
RDF 
//TP1 
SWDF 
RDF 
//TP2 
LMDB 
RDF 
Jamendo 
RDF 
Geo 
Names 
RDF 
DrugBank 
RDF 
S1 S2 S3 S4 S5 S6 S7 S8 S9
Problem Statement 
• An overestimation of triple pattern-wise source selection can 
be expensive 
– Resources are wasted 
– Query runtime is increased 
– Extra traffic is generated 
• How do we perform join-aware triple pattern wise source 
selection in time efficient way?
HiBISCuS: Key Concept 
• Makes use of the URI’s authorities 
http://dbpedia.org/ontology/party 
Scheme Authority Path 
For URI details: http://tools.ietf.org/html/rfc3986
HiBISCuS: SPARQL Query as Hypergraph 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
?president 
rdf:type 
dbpedia: 
President
HiBISCuS: SPARQL Query as Hypergraph 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
?president 
rdf:type 
dbpedia: 
President 
dbpedia: 
United_S 
tates 
dbpedia: 
nationality
HiBISCuS: SPARQL Query as Hypergraph 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
?president 
rdf:type 
dbpedia: 
President 
dbpedia: 
United_S 
tates 
dbpedia: 
party 
dbpedia: 
nationality 
?party
HiBISCuS: SPARQL Query as Hypergraph 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
?president 
rdf:type 
dbpedia: 
President 
dbpedia: 
United_S 
tates 
dbpedia: 
party 
dbpedia: 
nationality 
?party 
?x 
nyt:topi 
cPage 
?page
HiBISCuS: SPARQL Query as Hypergraph 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
?president 
rdf:type 
dbpedia: 
President 
dbpedia: 
United_S 
tates 
dbpedia: 
party 
dbpedia: 
nationality 
?party 
?x 
nyt:topi 
cPage 
?page 
owl: 
SameAs
HiBISCuS: SPARQL Query as Hypergraph 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
?president 
rdf:type 
dbpedia: 
President 
dbpedia: 
United_S 
tates 
dbpedia: 
nationality 
?x 
owl: 
SameAs 
dbpedia: 
party 
?party 
nyt:topi 
cPage 
?page 
Star simple hybrid Tail of hyperedge
HiBISCuS: Data Summaries 
[] a ds:Service ; 
ds:endpointUrl <http://dbpedia.org/sparql> ; 
ds:capability [ 
ds:predicate dbpedia:party ; 
ds:sbjAuthority <http://dbpedia.org/> ; 
ds:objAuthority <http://dbpedia.org/> ; 
] ; 
ds:capability [ 
ds:predicate rdf:type ; 
ds:sbjAuthority <http://dbpedia.org/> ; 
ds:objAuthority owl:Thing, dbpedia:President; #we store all distinct 
classes 
] ; 
ds:capability [ 
ds:predicate dbpedia:postalCode ; 
ds:sbjAuthority <http://dbpedia.org/> ; 
#No objAuthority as the object value for dbpedia:postalCode is string 
] ;
HiBISCuS: Triple Pattern-wise Source Selection 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
?president 
rdf:type 
dbpedia: 
President 
dbpedia: 
United_ 
States 
dbpedia: 
nationality 
?x 
owl: 
SameAs 
dbpedia: 
party ?party 
nyt:topi 
cPage 
?page 
dbpedia KEGG NYT SWDF LMDB Geo DrgBnk Jamendo
HiBISCuS: Triple Pattern-wise Source Pruning 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
?president 
rdf:type 
dbpedia: 
President 
dbpedia: 
United_ 
States 
dbpedia: 
nationality 
?x 
owl: 
SameAs 
dbpedia: 
party ?party 
nyt:topi 
cPage 
?page 
dbpedia KEGG NYT SWDF 
DrgBnk LMDB Geo Jamendo 
Obj. 
auth. 
dbpedia 
Sbj. auth. 
Sbj. auth. 
KEGG 
Sbj. auth. 
NYT 
Sbj. auth. 
SWDF 
Sbj. auth. 
LMDB 
Sbj. auth. 
Geo 
Sbj. auth. 
DrgBnk 
Sbj. auth. 
Jamendo
HiBISCuS: Triple Pattern-wise Source Pruning 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
?president 
rdf:type 
dbpedia: 
President 
dbpedia: 
United_ 
States 
dbpedia: 
nationality 
?x 
owl: 
SameAs 
dbpedia: 
party ?party 
nyt:topi 
cPage 
?page 
dbpedia 
Sbj. auth. 
Sbj. auth. 
KEGG 
Sbj. auth. 
NYT 
Sbj. auth. 
SWDF 
Sbj. auth. 
LMDB 
Sbj. auth. 
Geo 
Sbj. auth. 
DrgBnk 
Sbj. auth. 
Jamendo 
dbpedia KEGG NYT SWDF 
DrgBnk LMDB Geo Jamendo 
Obj. 
auth.
HiBISCuS: Triple Pattern-wise Source Pruning 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
?president 
rdf:type 
dbpedia: 
President 
dbpedia: 
United_ 
States 
dbpedia: 
nationality 
?x 
owl: 
SameAs 
dbpedia: 
party ?party 
nyt:topi 
cPage 
?page 
dbpedia KEGG NYT SWDF 
DrgBnk LMDB Geo Jamendo 
Obj. 
auth.
HiBISCuS: Triple Pattern-wise Source Pruning 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
?president 
rdf:type 
dbpedia: 
President 
dbpedia: 
United_ 
States 
dbpedia: 
nationality 
?x 
owl: 
SameAs 
dbpedia: 
party ?party 
nyt:topi 
cPage 
?page 
NYT 
Obj. auth.
HiBISCuS: Triple Pattern-wise Source Pruning 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
?president 
rdf:type 
dbpedia: 
President 
dbpedia: 
United_ 
States 
dbpedia: 
nationality 
?x 
owl: 
SameAs 
dbpedia: 
party ?party 
nyt:topi 
cPage 
?page 
NYT 
Obj. auth.
HiBISCuS: Triple Pattern-wise Source Pruning 
SELECT ?president ?party ?page 
WHERE { 
?president rdf:type dbpedia:President . 
?president dbpedia:nationality dbpedia:United_States . 
?president dbpedia:party ?party . 
?x nyt:topicPage ?page . 
?x owl:sameAs ?president . 
} 
?president 
rdf:type 
dbpedia: 
President 
dbpedia: 
United_ 
States 
dbpedia: 
nationality 
?x 
owl: 
SameAs 
dbpedia: 
party ?party 
nyt:topi 
cPage 
?page 
Total triple pattern-wise selected sources = 5 
Total SPARQL ASK queries : 0
Data Integration Options
Complete Local Integration 
• Triple patterns are individually and completely 
evaluated against every endpoint 
• Triple pattern results are locally integrated using 
different join techniques, e.g., NLJ, Hash Join etc. 
• Less efficient if query contains common 
predicates such rdf:type and owl:sameAs 
• Large amount of potentially irrelevant 
intermediate results retrieval
Iterative Integration 
• Evaluate query iteratively pattern by pattern 
• Start with a single triple pattern 
• Substitute mappings from previous triple pattern 
in the subsequent evaluation 
• Evaluate query in a NLJ fashion 
• NLJ can cause many remote requests 
• Block NLJ fashion minimize the remote requests
Join Order Selection
Join Order Selection 
• Left-deep trees 
– Joins take place in a left-to-right sequential order 
– Result of the join is used as an outer input for the next join 
– Used in FedX, DARQ 
• Right-deep trees 
– Joins take place in a right-to-left sequential order 
– Result of the join is used as an inner input for the next join 
• Bushy trees 
– Joins take place in sub-tress both on left and right sides 
– Used in ANAPSID 
• Dynamic programming 
– Used in SPLENDID
Join Order Selection Example 
Compute Micronutrients using Drugbank and KEGG 
SELECT ?drug ?title WHERE { 
?drug drugbank:drugCategory drugbank-cat:micronutrient. // TP1 
?drug drugbank:casRegistryNumber ?id . // TP2 
?keggDrug rdf:type kegg:Drug . // TP3 
?keggDrug bio2rdf:xRef ?id . // TP4 
?keggDrug dc:title ?title . // TP5 
} 
67 
휋 ? 푑푟푢푔, ? 푡푖푡푙푒 
TP1 TP2 
TP3 
TP4 
TP5 
Left-deep tree 
휋 ? 푑푟푢푔, ? 푡푖푡푙푒 
TP1 TP2 
TP3 
TP4 
TP5 
Right-deep tree 
Bushy tree 
휋 ? 푑푟푢푔, ? 푡푖푡푙푒 
TP1 TP2 
TP3 TP5 
TP4 
Goal: Execute smallest cardinality joins first
Join Order Optimization
Join Order Optimization 
• Exclusive Groups 
– Group triple patterns with the same relevant data source 
– Evaluation in a single (remote) sub-query 
– Push join to the data source, i.e., endpoint 
• Variable count-heuristic 
– Iteratively determine the join order based on free variables 
count of triple patterns and groups 
– Consider “resolved ” variable mappings from earlier iteration 
• Using Selectivities 
– Store distinct predicates, avg. subject selectivities , and avg. 
object selectivities for each predicate in index 
– Use the predicate count, avg. subject selectivities , and avg. 
object selectivities to estimate the join cardinality
Exclusive Groups 
SELECT ?President ?Party ?TopicPage WHERE { 
?President rdf:type dbpedia-yago:PresidentsOfTheUnitedStates . 
?President dbpedia:party ?Party . 
?nytPresident owl:sameAs ?President . 
?nytPresident nytimes:topicPage ?TopicPage . 
} 
Source Selection 
@ DBpedia 
@ DBpedia 
@ DBpedia, NYTimes 
@ NYTimes 
Exclusive Group 
Advantage: 
Delegate joins to the endpoint by forming exclusive groups (i.e. executing the 
respective patterns in a single subquery) 
70
Exclusive Groups Join Order Optimization 
2 Unoptimized Internal Representation 
1 SPARQL Query 
Compute Micronutrients using Drugbank and KEGG 
SELECT ?drug ?title WHERE { 
?drug drugbank:drugCategory drugbank-cat:micronutrient . 
?drug drugbank:casRegistryNumber ?id . 
?keggDrug rdf:type kegg:Drug . 
?keggDrug bio2rdf:xRef ?id . 
?keggDrug dc:title ?title . 
} 
3 Optimized Internal Representation 
4x Local Join 
= 
4x NLJ 
Exlusive Group 
 Remote Join 
71
Selectivity Based Join Order Optimization 
[] a sd:Service ; 
sd:endpointUrl <http://localhost:8890/sparql> ; 
sd:capability [ 
sd:predicate diseasome:name ; 
sd:totalTriples 147 ; // Total number of triple patterns with predicate value sd:predicate 
sd:avgSbjSel ``0.0068'' ; // 1/ distinct subjects with predicate value sd:predicate 
sd:avgObjSel ``0.0069'' ; // 1/ distinct Objects with predicate value sd:predicate 
] ; 
sd:capability [ 
sd:predicate diseasome:chromosomalLocation ; 
sd:totalTtriples 160 ; 
sd:avgSbjSel ``0.0062'' ; 
sd:avgObjSel ``0.0072'' ; 
] ; 
S1 P O1 . 
S1 P O2 . 
S2 P O1 . 
S3 P O2 . 
totalTriples = 4 
avgSbjSel(p) = 1/3 
avgObjSel(p) =1/2
Selectivity Based Join Order Optimization 
• Triple pattern cardinality 
• Join Cardinality 
푝 = pred(tp) , 푇 = Total triple having predicate 푝 
퐶(푡푝) = 
푇 푖푓 푛푒푖푡ℎ푒푟 푠푢푏푗푒푐푡 푛표푟 표푏푗푒푐푡 푖푠 푏표푢푛푑 
푇 × 푎푣푔푆푏푗푆푒푙 푝 푖푓 푠푢푏푗푒푐푡 푖푠 푏표푢푛푑 
푇 × 푎푣푔푂푏푗푆푒푙 푝 푖푓표푏푗푒푐푡 푖푠 푏표푢푛푑 
퐶(퐽 푡푝1, 푡푝2 ) = 
퐶 푡푝1 × 퐶 푡푝2 × 푎푣푔푃푟푒푑퐽표푖푛푆푒푙 푡푝1 × 푎푣푔푃푟푒푑퐽표푖푛푆푒푙 푡푝2 푖푓 푝 − 푝 푗표푖푛 
퐶 푡푝1 × 퐶 푡푝2 × 푎푣푔푆푏푗퐽표푖푛푆푒푙 푡푝1 × 푎푣푔푆푏푗퐽표푖푛푆푒푙 푡푝2 푖푓 푠 − 푠 푗표푖푛 
퐶 푡푝1 × 퐶 푡푝2 × 푎푣푔푆푏푗퐽표푖푛푆푒푙 푡푝1 × 푎푣푔푂푏푗퐽표푖푛푆푒푙 푡푝2 푖푓 푠 − 표 푗표푖푛 
How to calculate avgPredJoinSel, avgSbjJoinSel, and avgObjJoinSel? 
DARQ selected 0.5 as the avgJoinSel value for all joins
Join Implementations
Join Implementations 
• Bound Joins 
– Start with a single triple pattern (lowest cardinality) 
– Substitute mappings from previous triple pattern in the 
subsequent evaluation 
– Bound Joins in NLJ fashion 
• Execute bound joins in nested loop join fashion 
• Too many remote requests 
– Bound Joins in Block NLJ fashion 
• Execute bound joins in block nested loop join fashion 
• Make use of SPARQL UNION construct 
• Remote requests are reduced by the block size 
• Other Join techniques 
– E.g, Hash Joins
Bound Joins in Block NLJ 
SELECT ?President ?Party ?TopicPage WHERE { 
?President rdf:type dbpedia:PresidentsOfTheUnitedStates . 
?President dbpedia:party ?Party . 
?nytPresident owl:sameAs ?President . 
?nytPresident nytimes:topicPage ?TopicPage . 
} 
Assume that the following intermediate results have been computed as input for the last triple pattern 
Block Input 
“Barack Obama” 
“George W. Bush” 
… 
Before (NLJ) 
SELECT ?TopicPage WHERE { “Barack Obama” nytimes:topicPage ?TopicPage } 
SELECT ?TopicPage WHERE { “George W. Bush” nytimes:topicPage ?TopicPage } 
… 
Now: Evaluation in a single remote request using a SPARQL UNION 
construct + local post processing (SPARQL 1.0) 
76
Parallelization and Pipelining 
• Execute sub-queries concurrently on different data 
sources 
• Multithreaded worker pool to execute the joins 
and UNION operators in parallel 
• Pipelining approach for intermediate results 
• See FedX and LHD implementations
Performance Metrics and Discussion
Performance Metrics 
• Efficient source selection in terms of 
– Total triple pattern-wise sources selected 
– Total number of SPARQL ASK requests used during source 
selection 
– Source selection time 
• Query execution time 
• Results completeness and correctness 
• Number of remote requests during query execution 
• Index compression ratio (1- index size/datadump size) 
• See https://code.google.com/p/bigrdfbench/
Evaluation Setup 
• Local dedicated network 
• Local SPARQL endpoints (One per machine) 
• Run each query 10 times and present the average results 
• Statistically analyzed the results, e.g., Wilcoxon signed rank 
test, student T-test
SPARQL Query Federation Engines 
• FedX 
• SPLENDID 
• HiBISCuS+FedX 
• HiBISCuS+SPLENDID 
• ANAPSID 
• LHD 
• DARQ 
81
AKSW SPARQL Federation Publications 
• HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation by Muhammad 
Saleem and Axel-Cyrille Ngonga Ngomo, in (ESWC, 2014) 
• DAW: Duplicate-AWare Federated Query Processing over the Web of Data by Muhammad 
Saleem Axel-Cyrille Ngonga Ngomo, Josiane Xavier Parreira , Helena Deus , and Manfred Hauswirth 
, in (ISWC 2013). 
• TopFed: TCGA Tailored Federated Query Processing and Linking to LOD by Muhammad Saleem, 
Shanmukha Sampath , Axel-Cyrille Ngonga Ngomo , Aftab Iqbal, Jonas Almeida , and Helena F. Deus 
, in (Journal of Biomedical Semantics, 2014). 
• A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems by Muhammad Saleem, Yasar 
Khan, Ali Hasnain, Ivan Ermilov, and Axel-Cyrille Ngonga Ngomo , in (Semantic Web Journal, 2014) 
• BigRDFBench: A Billion Triples Benchmark for SPARQL Query Federation by Muhammad Saleem, 
Ali Hasnain, Axel-Cyrille Ngonga Ngomo , in (submitted WWW, 2015). 
• SAFE: Policy-Aware SPARQL Query Federation Over RDF Data Cubes 
By Yasar Khan, Muhammed Saleem , Aftab Iqbal, Muntazir Mehdi, Aidan Hogan, Panagiotis 
Hasapis, Axel-Cyrille Ngonga Ngomo, Stefan Decker, and Ratnesh Sahay, in (SWAT4LS, 2014) 
• QFed: Query Set For Federated SPARQL Query Benchmark by Nur Aini Rakhmawati, Sarasi lithsena 
, Muhammad Saleem , Stefan Decker, in (iiWAS, 2014) 
82
Thanks 
{saleem,ngonga}@informatik.uni-leipzig.de 
AKSW, University of Leipzig, Germany

Federated SPARQL query processing over the Web of Data

  • 1.
    Federated SPARQL QueryProcessing Over the Web of Data Muhammad Saleem, Axel-Cyrille Ngonga Ngomo Agile Knowledge Engineering and Semantic Web (AKSW), University of Leipzig, Germany, 25/11/2014
  • 2.
    Agenda • SPARQLQuery Federation Approaches • SPARQL Query Federation Optimization – Query Rewriting – Source Selection – Data Integration Options – Join Order Selection – Join Order Optimization – Join Implementations • Performance Metrics and Discussion
  • 3.
    SPARQL Query FederationApproaches • SPARQL Endpoint Federation (SEF) • Linked Data Federation (LDF) • Distributed Hash Tables (DHTs) • Hybrid of SEF+LDF
  • 4.
    SPARQL Endpoint FederationApproaches • Most commonly used approaches • Make use of SPARQL endpoints URLs • Fast query execution • RDF data needs to be exposed via SPARQL endpoints • E.g., HiBISCus, FedX, SPLENDID, ANAPSID, LHD etc.
  • 5.
    Linked Data FederationApproaches • Data needs not be exposed via SPARQL endpoints • Uses URI lookups at runtime • Data should follow Linked Data principles • Slower as compared to previous approaches • E.g., LDQPS, SIHJoin, WoDQA etc.
  • 6.
    Query federation ontop of Distributed Hash Tables • Uses DHT indexing to federate SPARQL queries • Space efficient • Cannot deal with whole LOD • E.g., ATLAS
  • 7.
    Hybrid of SEF+LDF • Federation over SPARQL endpoints and Linked Data • Can potentially deal with whole LOD • E.g., ADERIS-Hybrid
  • 8.
    SPARQL Endpoint Federation Parsing/Rewriting Source Selection Federator Optimzer Integrator S1 S2 S3 S4 RDF RDF RDF RDF Rewrite query and get Individual Triple Patterns Identify capable source against Individual Triple Patterns Generate optimized sub-query Exe. Plan Execute sub-queries Integrate sub-queries results
  • 9.
  • 10.
    SPARQL Query Rewriting FedBench (LD3): Return for all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality ?nationality. ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . Filter (?nationality = dbpedia:United_States ) } FedBench (LD3): Return for all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } Try to simplify/avoid SPARQL FILTER and REGEX expressions
  • 11.
  • 12.
    Source Selection FedBench(LD3): Return for all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF Jamendo RDF Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 13.
    FedBench (LD3): Returnfor all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Source Selection Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF Jamendo RDF TP2 = S1 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 14.
    FedBench (LD3): Returnfor all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Source Selection Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF TP3 = S1 Jamendo RDF TP2 = S1 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 15.
    FedBench (LD3): Returnfor all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Source Selection Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF TP3 = S1 TP4 = S4 Jamendo RDF TP2 = S1 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 16.
    FedBench (LD3): Returnfor all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Source Selection Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF TP3 = S1 TP4 = S4 TP5 = S1 S2 S4-S9 Total triple pattern-wise sources selected = Jamendo RDF TP2 = S1 1+1+1+1+8 => 12 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 17.
    Types of SourceSelection • Index-free – Using SPARQL ASK queries – No index maintenance required – Potentially ensures result set completeness – SPARQL ASK queries can be expensive – Can make use of the cache to store recent SPARQL ASK queries results – E.g., FedX • Index-only – Only make use of Index/data summaries – Less efficient but fast source selection – Result set completeness is not ensured – E.g., DARQ, LHD • Hybrid – Make use of index+SPARQL ASK – Most efficient – Result set completeness is not ensured – Can make use of the cache to store recent SPARQL ASK queries results – E.g., HiBISCuS, ANAPSID, SPLENDID
  • 18.
    Index-free Source Selection Input: SPARQL query Q , set of all data sources D Output: Triple pattern to relevant data sources map M for each triple pattern ti in SPARQL query Q Ri = {}; // set of relevant data sources for triple pattern ti for each data source di in D if SPARQL ASK(di , ti) = true Ri = Ri U {di}; end if end for M = M U {Ri}; end for return M What is the total number of SPARQL ASK requests used? total number of triple patterns * total number of data sources
  • 19.
    Index-free Source Selection FedBench (LD3): Return for all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF Jamendo RDF Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 20.
    FedBench (LD3): Returnfor all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Index-free Source Selection Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF Jamendo RDF TP2 = S1 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 21.
    FedBench (LD3): Returnfor all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Index-free Source Selection Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF TP3 = S1 Jamendo RDF TP2 = S1 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 22.
    FedBench (LD3): Returnfor all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Index-free Source Selection Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF TP3 = S1 TP4 = S4 Jamendo RDF TP2 = S1 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 23.
    FedBench (LD3): Returnfor all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Index-free Source Selection Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF TP3 = S1 TP4 = S4 TP5 = S1 S2 S4-S9 Total number of SPARQL ASK requests used = 45 Total triple pattern-wise sources selected = 12 Jamendo RDF TP2 = S1 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 24.
    Index-only Source Selection(LHD) Input: SPARQL query Q , set of all data sources D, data sources index I storing all distinct predicates for all data sources in D Output: Triple pattern to relevant data sources map M for each triple pattern ti in SPARQL query Q Ri = {}; // set of relevant data sources for triple pattern ti p = Pred(ti) // predicate of ti if (bound (p)) Ri = Lookup (I, p) // index lookup for predicate of ti else Ri = D ; // all data sources are relevant end if M = M U {Ri} ; end for return M Why it is the less efficient approach (i.e., greatly overestimate relevant data sources)? • Source selection is only based on predicate of triple patterns • Simply select all data sources for triple patterns having unbound predicates
  • 25.
    Index-only Source Selection FedBench (LD3): Return for all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Triple pattern-wise source selection TP1 = S1-S9 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF Jamendo RDF Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 26.
    FedBench (LD3): Returnfor all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Index-only Source Selection Triple pattern-wise source selection TP1 = KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF S1-S9 TP2 = S1 Jamendo RDF Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 27.
    FedBench (LD3): Returnfor all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Index-only Source Selection Triple pattern-wise source selection TP1 = KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF S1-S9 TP3 = S1 Jamendo RDF TP2 = S1 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 28.
    FedBench (LD3): Returnfor all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Index-only Source Selection Triple pattern-wise source selection TP1 = KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF S1-S9 TP3 = S1 TP4 = S4 Jamendo RDF TP2 = S1 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 29.
    FedBench (LD3): Returnfor all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Index-only Source Selection Triple pattern-wise source selection TP1 = KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF S1-S9 TP3 = S1 TP4 = S4 TP5 = S1 S2 S4-S9 Total number of SPARQL ASK requests used = 0 Total triple pattern-wise sources selected = 20 Jamendo RDF TP2 = S1 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 30.
    Hybrid Source Selection Input: SPARQL query Q , set of all data sources D, data sources index I storing all distinct predicates for all data sources in D Output: Triple pattern to relevant data sources map M for each triple pattern ti in SPARQL query Q Ri = {}; // set of relevant data sources for triple pattern ti s = Subj(ti) , p = Pred(ti) , o = Obj(ti) ; // subject, predicate, and object of ti if (!bound (p) || bound (s) || bound (o) ) for each data source di in D if SPARQL ASK(di , ti) = true Ri = RiU {di}; end if end for else Ri = Lookup (I, p) // index lookup for predicate of ti end if M = M U {Ri} end for return M What is the total number of SPARQL ASK requests used? total number of triple patterns with bound subject or bound object or unbound predicate * total number of data sources
  • 31.
    Hybrid Source Selection FedBench (LD3): Return for all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF Jamendo RDF Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 32.
    FedBench (LD3): Returnfor all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Hybrid Source Selection Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF Jamendo RDF TP2 = S1 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 33.
    FedBench (LD3): Returnfor all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Hybrid Source Selection Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF TP3 = S1 Jamendo RDF TP2 = S1 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 34.
    FedBench (LD3): Returnfor all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Hybrid Source Selection Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF TP3 = S1 TP4 = S4 Jamendo RDF TP2 = S1 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 35.
    FedBench (LD3): Returnfor all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } Anything still needs to be improved? dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Hybrid Source Selection Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF TP3 = S1 TP4 = S4 TP5 = S1 S2 S4-S9 Total number of SPARQL ASK requests used = 18 Total triple pattern-wise sources selected = 12 Jamendo RDF TP2 = S1 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 36.
    Source Selection •Triple pattern-wise source selection – Ensures 100% recall – Can over-estimate capable sources – Can be expensive, e.g., total number of SPARQL ASK requests used – Performed by FedX, SPLENDID, LHD, DARQ, ADERIS etc. • Join-aware triple-pattern wise source selection – Ensures 100% recall – May selects optimal/close to optimal capable sources – Can be expensive, e.g., total number of SPARQL ASK requests used – Can significantly reduce the query execution time – Performed by ANAPSID, HiBISCuS
  • 37.
    HiBISCuS: Hypergraph-Based SourceSelection for SPARQL Endpoint Federation • Hybrid source selection • Join-aware triple-pattern wise source selection • Makes use of the hypergraph representation of SPARQL queries • Makes use of the URI authorities • Makes use of the cache to store recent SPARQL ASK queries results
  • 38.
    Motivation FedBench (LD3):Return for all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF Jamendo RDF Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 39.
    Motivation FedBench (LD3):Return for all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF Jamendo RDF TP2 = S1 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 40.
    Motivation FedBench (LD3):Return for all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF TP3 = S1 Jamendo RDF TP2 = S1 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 41.
    Motivation FedBench (LD3):Return for all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF TP3 = S1 TP4 = S4 Jamendo RDF TP2 = S1 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 42.
    Motivation FedBench (LD3):Return for all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF TP3 = S1 TP4 = S4 TP5 = S1 S2 S4 S5 Jamendo RDF TP2 = S1 S6 S7 S8 S9 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 43.
    Motivation FedBench (LD3):Return for all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF TP3 = S1 TP4 = S4 TP5 = S1 S2 S4 S5 Total triple pattern-wise selected sources = 12 Total SPARQL ASK queries : 9*5 = 45 Jamendo RDF TP2 = S1 S6 S7 S8 S9 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 44.
    Motivation FedBench (LD3):Return for all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Triple pattern-wise source selection TP1 = S1 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF TP3 = S1 TP4 = S4 TP5 = S1 S2 S4 S5 Total triple pattern-wise selected sources = 12 Total SPARQL ASK queries : 9*5 = 45 Jamendo RDF TP2 = S1 S6 S7 S8 S9 Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 45.
    Motivation FedBench (LD3):Return for all US presidents their party membership and news pages about them. SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } dbpedia RDF //TP3 //TP4 //TP5 Source Selection Algorithm Triple pattern-wise source selection TP1 = S1 TP3 = S1 TP2 = S1 TP4 = S4 TP5 = S1 S2 S4 S5 S6 S7 S8 S9 Optimal triple pattern-wise selected sources 5 KEGG RDF ChEBI RDF NYT RDF //TP1 SWDF RDF //TP2 LMDB RDF Jamendo RDF Geo Names RDF DrugBank RDF S1 S2 S3 S4 S5 S6 S7 S8 S9
  • 46.
    Problem Statement •An overestimation of triple pattern-wise source selection can be expensive – Resources are wasted – Query runtime is increased – Extra traffic is generated • How do we perform join-aware triple pattern wise source selection in time efficient way?
  • 47.
    HiBISCuS: Key Concept • Makes use of the URI’s authorities http://dbpedia.org/ontology/party Scheme Authority Path For URI details: http://tools.ietf.org/html/rfc3986
  • 48.
    HiBISCuS: SPARQL Queryas Hypergraph SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } ?president rdf:type dbpedia: President
  • 49.
    HiBISCuS: SPARQL Queryas Hypergraph SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } ?president rdf:type dbpedia: President dbpedia: United_S tates dbpedia: nationality
  • 50.
    HiBISCuS: SPARQL Queryas Hypergraph SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } ?president rdf:type dbpedia: President dbpedia: United_S tates dbpedia: party dbpedia: nationality ?party
  • 51.
    HiBISCuS: SPARQL Queryas Hypergraph SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } ?president rdf:type dbpedia: President dbpedia: United_S tates dbpedia: party dbpedia: nationality ?party ?x nyt:topi cPage ?page
  • 52.
    HiBISCuS: SPARQL Queryas Hypergraph SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } ?president rdf:type dbpedia: President dbpedia: United_S tates dbpedia: party dbpedia: nationality ?party ?x nyt:topi cPage ?page owl: SameAs
  • 53.
    HiBISCuS: SPARQL Queryas Hypergraph SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } ?president rdf:type dbpedia: President dbpedia: United_S tates dbpedia: nationality ?x owl: SameAs dbpedia: party ?party nyt:topi cPage ?page Star simple hybrid Tail of hyperedge
  • 54.
    HiBISCuS: Data Summaries [] a ds:Service ; ds:endpointUrl <http://dbpedia.org/sparql> ; ds:capability [ ds:predicate dbpedia:party ; ds:sbjAuthority <http://dbpedia.org/> ; ds:objAuthority <http://dbpedia.org/> ; ] ; ds:capability [ ds:predicate rdf:type ; ds:sbjAuthority <http://dbpedia.org/> ; ds:objAuthority owl:Thing, dbpedia:President; #we store all distinct classes ] ; ds:capability [ ds:predicate dbpedia:postalCode ; ds:sbjAuthority <http://dbpedia.org/> ; #No objAuthority as the object value for dbpedia:postalCode is string ] ;
  • 55.
    HiBISCuS: Triple Pattern-wiseSource Selection SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } ?president rdf:type dbpedia: President dbpedia: United_ States dbpedia: nationality ?x owl: SameAs dbpedia: party ?party nyt:topi cPage ?page dbpedia KEGG NYT SWDF LMDB Geo DrgBnk Jamendo
  • 56.
    HiBISCuS: Triple Pattern-wiseSource Pruning SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } ?president rdf:type dbpedia: President dbpedia: United_ States dbpedia: nationality ?x owl: SameAs dbpedia: party ?party nyt:topi cPage ?page dbpedia KEGG NYT SWDF DrgBnk LMDB Geo Jamendo Obj. auth. dbpedia Sbj. auth. Sbj. auth. KEGG Sbj. auth. NYT Sbj. auth. SWDF Sbj. auth. LMDB Sbj. auth. Geo Sbj. auth. DrgBnk Sbj. auth. Jamendo
  • 57.
    HiBISCuS: Triple Pattern-wiseSource Pruning SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } ?president rdf:type dbpedia: President dbpedia: United_ States dbpedia: nationality ?x owl: SameAs dbpedia: party ?party nyt:topi cPage ?page dbpedia Sbj. auth. Sbj. auth. KEGG Sbj. auth. NYT Sbj. auth. SWDF Sbj. auth. LMDB Sbj. auth. Geo Sbj. auth. DrgBnk Sbj. auth. Jamendo dbpedia KEGG NYT SWDF DrgBnk LMDB Geo Jamendo Obj. auth.
  • 58.
    HiBISCuS: Triple Pattern-wiseSource Pruning SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } ?president rdf:type dbpedia: President dbpedia: United_ States dbpedia: nationality ?x owl: SameAs dbpedia: party ?party nyt:topi cPage ?page dbpedia KEGG NYT SWDF DrgBnk LMDB Geo Jamendo Obj. auth.
  • 59.
    HiBISCuS: Triple Pattern-wiseSource Pruning SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } ?president rdf:type dbpedia: President dbpedia: United_ States dbpedia: nationality ?x owl: SameAs dbpedia: party ?party nyt:topi cPage ?page NYT Obj. auth.
  • 60.
    HiBISCuS: Triple Pattern-wiseSource Pruning SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } ?president rdf:type dbpedia: President dbpedia: United_ States dbpedia: nationality ?x owl: SameAs dbpedia: party ?party nyt:topi cPage ?page NYT Obj. auth.
  • 61.
    HiBISCuS: Triple Pattern-wiseSource Pruning SELECT ?president ?party ?page WHERE { ?president rdf:type dbpedia:President . ?president dbpedia:nationality dbpedia:United_States . ?president dbpedia:party ?party . ?x nyt:topicPage ?page . ?x owl:sameAs ?president . } ?president rdf:type dbpedia: President dbpedia: United_ States dbpedia: nationality ?x owl: SameAs dbpedia: party ?party nyt:topi cPage ?page Total triple pattern-wise selected sources = 5 Total SPARQL ASK queries : 0
  • 62.
  • 63.
    Complete Local Integration • Triple patterns are individually and completely evaluated against every endpoint • Triple pattern results are locally integrated using different join techniques, e.g., NLJ, Hash Join etc. • Less efficient if query contains common predicates such rdf:type and owl:sameAs • Large amount of potentially irrelevant intermediate results retrieval
  • 64.
    Iterative Integration •Evaluate query iteratively pattern by pattern • Start with a single triple pattern • Substitute mappings from previous triple pattern in the subsequent evaluation • Evaluate query in a NLJ fashion • NLJ can cause many remote requests • Block NLJ fashion minimize the remote requests
  • 65.
  • 66.
    Join Order Selection • Left-deep trees – Joins take place in a left-to-right sequential order – Result of the join is used as an outer input for the next join – Used in FedX, DARQ • Right-deep trees – Joins take place in a right-to-left sequential order – Result of the join is used as an inner input for the next join • Bushy trees – Joins take place in sub-tress both on left and right sides – Used in ANAPSID • Dynamic programming – Used in SPLENDID
  • 67.
    Join Order SelectionExample Compute Micronutrients using Drugbank and KEGG SELECT ?drug ?title WHERE { ?drug drugbank:drugCategory drugbank-cat:micronutrient. // TP1 ?drug drugbank:casRegistryNumber ?id . // TP2 ?keggDrug rdf:type kegg:Drug . // TP3 ?keggDrug bio2rdf:xRef ?id . // TP4 ?keggDrug dc:title ?title . // TP5 } 67 휋 ? 푑푟푢푔, ? 푡푖푡푙푒 TP1 TP2 TP3 TP4 TP5 Left-deep tree 휋 ? 푑푟푢푔, ? 푡푖푡푙푒 TP1 TP2 TP3 TP4 TP5 Right-deep tree Bushy tree 휋 ? 푑푟푢푔, ? 푡푖푡푙푒 TP1 TP2 TP3 TP5 TP4 Goal: Execute smallest cardinality joins first
  • 68.
  • 69.
    Join Order Optimization • Exclusive Groups – Group triple patterns with the same relevant data source – Evaluation in a single (remote) sub-query – Push join to the data source, i.e., endpoint • Variable count-heuristic – Iteratively determine the join order based on free variables count of triple patterns and groups – Consider “resolved ” variable mappings from earlier iteration • Using Selectivities – Store distinct predicates, avg. subject selectivities , and avg. object selectivities for each predicate in index – Use the predicate count, avg. subject selectivities , and avg. object selectivities to estimate the join cardinality
  • 70.
    Exclusive Groups SELECT?President ?Party ?TopicPage WHERE { ?President rdf:type dbpedia-yago:PresidentsOfTheUnitedStates . ?President dbpedia:party ?Party . ?nytPresident owl:sameAs ?President . ?nytPresident nytimes:topicPage ?TopicPage . } Source Selection @ DBpedia @ DBpedia @ DBpedia, NYTimes @ NYTimes Exclusive Group Advantage: Delegate joins to the endpoint by forming exclusive groups (i.e. executing the respective patterns in a single subquery) 70
  • 71.
    Exclusive Groups JoinOrder Optimization 2 Unoptimized Internal Representation 1 SPARQL Query Compute Micronutrients using Drugbank and KEGG SELECT ?drug ?title WHERE { ?drug drugbank:drugCategory drugbank-cat:micronutrient . ?drug drugbank:casRegistryNumber ?id . ?keggDrug rdf:type kegg:Drug . ?keggDrug bio2rdf:xRef ?id . ?keggDrug dc:title ?title . } 3 Optimized Internal Representation 4x Local Join = 4x NLJ Exlusive Group  Remote Join 71
  • 72.
    Selectivity Based JoinOrder Optimization [] a sd:Service ; sd:endpointUrl <http://localhost:8890/sparql> ; sd:capability [ sd:predicate diseasome:name ; sd:totalTriples 147 ; // Total number of triple patterns with predicate value sd:predicate sd:avgSbjSel ``0.0068'' ; // 1/ distinct subjects with predicate value sd:predicate sd:avgObjSel ``0.0069'' ; // 1/ distinct Objects with predicate value sd:predicate ] ; sd:capability [ sd:predicate diseasome:chromosomalLocation ; sd:totalTtriples 160 ; sd:avgSbjSel ``0.0062'' ; sd:avgObjSel ``0.0072'' ; ] ; S1 P O1 . S1 P O2 . S2 P O1 . S3 P O2 . totalTriples = 4 avgSbjSel(p) = 1/3 avgObjSel(p) =1/2
  • 73.
    Selectivity Based JoinOrder Optimization • Triple pattern cardinality • Join Cardinality 푝 = pred(tp) , 푇 = Total triple having predicate 푝 퐶(푡푝) = 푇 푖푓 푛푒푖푡ℎ푒푟 푠푢푏푗푒푐푡 푛표푟 표푏푗푒푐푡 푖푠 푏표푢푛푑 푇 × 푎푣푔푆푏푗푆푒푙 푝 푖푓 푠푢푏푗푒푐푡 푖푠 푏표푢푛푑 푇 × 푎푣푔푂푏푗푆푒푙 푝 푖푓표푏푗푒푐푡 푖푠 푏표푢푛푑 퐶(퐽 푡푝1, 푡푝2 ) = 퐶 푡푝1 × 퐶 푡푝2 × 푎푣푔푃푟푒푑퐽표푖푛푆푒푙 푡푝1 × 푎푣푔푃푟푒푑퐽표푖푛푆푒푙 푡푝2 푖푓 푝 − 푝 푗표푖푛 퐶 푡푝1 × 퐶 푡푝2 × 푎푣푔푆푏푗퐽표푖푛푆푒푙 푡푝1 × 푎푣푔푆푏푗퐽표푖푛푆푒푙 푡푝2 푖푓 푠 − 푠 푗표푖푛 퐶 푡푝1 × 퐶 푡푝2 × 푎푣푔푆푏푗퐽표푖푛푆푒푙 푡푝1 × 푎푣푔푂푏푗퐽표푖푛푆푒푙 푡푝2 푖푓 푠 − 표 푗표푖푛 How to calculate avgPredJoinSel, avgSbjJoinSel, and avgObjJoinSel? DARQ selected 0.5 as the avgJoinSel value for all joins
  • 74.
  • 75.
    Join Implementations •Bound Joins – Start with a single triple pattern (lowest cardinality) – Substitute mappings from previous triple pattern in the subsequent evaluation – Bound Joins in NLJ fashion • Execute bound joins in nested loop join fashion • Too many remote requests – Bound Joins in Block NLJ fashion • Execute bound joins in block nested loop join fashion • Make use of SPARQL UNION construct • Remote requests are reduced by the block size • Other Join techniques – E.g, Hash Joins
  • 76.
    Bound Joins inBlock NLJ SELECT ?President ?Party ?TopicPage WHERE { ?President rdf:type dbpedia:PresidentsOfTheUnitedStates . ?President dbpedia:party ?Party . ?nytPresident owl:sameAs ?President . ?nytPresident nytimes:topicPage ?TopicPage . } Assume that the following intermediate results have been computed as input for the last triple pattern Block Input “Barack Obama” “George W. Bush” … Before (NLJ) SELECT ?TopicPage WHERE { “Barack Obama” nytimes:topicPage ?TopicPage } SELECT ?TopicPage WHERE { “George W. Bush” nytimes:topicPage ?TopicPage } … Now: Evaluation in a single remote request using a SPARQL UNION construct + local post processing (SPARQL 1.0) 76
  • 77.
    Parallelization and Pipelining • Execute sub-queries concurrently on different data sources • Multithreaded worker pool to execute the joins and UNION operators in parallel • Pipelining approach for intermediate results • See FedX and LHD implementations
  • 78.
  • 79.
    Performance Metrics •Efficient source selection in terms of – Total triple pattern-wise sources selected – Total number of SPARQL ASK requests used during source selection – Source selection time • Query execution time • Results completeness and correctness • Number of remote requests during query execution • Index compression ratio (1- index size/datadump size) • See https://code.google.com/p/bigrdfbench/
  • 80.
    Evaluation Setup •Local dedicated network • Local SPARQL endpoints (One per machine) • Run each query 10 times and present the average results • Statistically analyzed the results, e.g., Wilcoxon signed rank test, student T-test
  • 81.
    SPARQL Query FederationEngines • FedX • SPLENDID • HiBISCuS+FedX • HiBISCuS+SPLENDID • ANAPSID • LHD • DARQ 81
  • 82.
    AKSW SPARQL FederationPublications • HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation by Muhammad Saleem and Axel-Cyrille Ngonga Ngomo, in (ESWC, 2014) • DAW: Duplicate-AWare Federated Query Processing over the Web of Data by Muhammad Saleem Axel-Cyrille Ngonga Ngomo, Josiane Xavier Parreira , Helena Deus , and Manfred Hauswirth , in (ISWC 2013). • TopFed: TCGA Tailored Federated Query Processing and Linking to LOD by Muhammad Saleem, Shanmukha Sampath , Axel-Cyrille Ngonga Ngomo , Aftab Iqbal, Jonas Almeida , and Helena F. Deus , in (Journal of Biomedical Semantics, 2014). • A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems by Muhammad Saleem, Yasar Khan, Ali Hasnain, Ivan Ermilov, and Axel-Cyrille Ngonga Ngomo , in (Semantic Web Journal, 2014) • BigRDFBench: A Billion Triples Benchmark for SPARQL Query Federation by Muhammad Saleem, Ali Hasnain, Axel-Cyrille Ngonga Ngomo , in (submitted WWW, 2015). • SAFE: Policy-Aware SPARQL Query Federation Over RDF Data Cubes By Yasar Khan, Muhammed Saleem , Aftab Iqbal, Muntazir Mehdi, Aidan Hogan, Panagiotis Hasapis, Axel-Cyrille Ngonga Ngomo, Stefan Decker, and Ratnesh Sahay, in (SWAT4LS, 2014) • QFed: Query Set For Federated SPARQL Query Benchmark by Nur Aini Rakhmawati, Sarasi lithsena , Muhammad Saleem , Stefan Decker, in (iiWAS, 2014) 82
  • 83.