Factoring Non-
Perfect Square
Trinomials
In factoring Non-Perfect Square
Trinomial, consider to determine
the factors of the leading (square)
term; the factors of the last
(constant) term may be combined
to find the coefficient of the
middle term.
Trinomials of the form 𝒙 𝟐 + bx + c
are the products of two binomials.
Observe how the last term and the
middle term of the resulting
trinomial are generated.
( x + ___ ) ( x + ___ )
Factor Pairs of 6
1 x 6
2 x 3
Corresponding sum
1 + 6 = 7
2 + 3 = 5
𝒙 𝟐 + 5x + 6 = ( x + 2 ) ( x + 3 )
𝟐. 𝑭𝒂𝒄𝒕𝒐𝒓 𝒂 𝟐
+ 10a + 25
Factor Pairs of 25
1 x 25
5 x 5
Corresponding sum
1 + 25 = 26
5 + 5 = 10
𝒂 𝟐
+ 10a + 25 = 𝑎 + 5 (𝑎 + 5 )
𝟑. 𝑭𝒂𝒄𝒕𝒐𝒓 𝒎 𝟐
+ 10m + 21
Factor Pairs of 21
1 x 21
7 x 3
Corresponding sum
1 + 21 = 22
7+ 3 = 10
𝒎 𝟐
+ 10m + 21 = 𝑚 + 7 (𝑚 + 3)
𝑚 + 3 (𝑚 + 7)
𝑜𝑟
𝟒. 𝑭𝒂𝒄𝒕𝒐𝒓 𝒃 𝟐
+ 14b + 45
Factor Pairs of 21 Corresponding sum
𝒃 𝟐
+ 14b + 45 = 𝑏 + 9 (𝑚 + 5)
𝟓. 𝑭𝒂𝒄𝒕𝒐𝒓 𝒔 𝟐
+ 2s - 15
Factor Pairs of -15
5 x -3
-5 x 3
Corresponding sum
1 + -15 =
-1 + 15 =
𝒔 𝟐
+ 2s -15 = 𝑠 + 5 (𝑠 − 3)
𝑠 − 3 (𝑠 + 5)
𝑜𝑟
1 x -15
-1 x 15
-14
14
5 + -3 = 2
-5 + 3 = -2
7. Factor 𝒔 𝟐
- 4s - 45
Factor Pairs of -45
1 x - 45
-1 x 45
5 x - 9
-5 x 9
3 x - 15
-3 x 15
Corresponding sum
1 + - 45 = - 44
-1 + 45 = 44
5 + -9 = -4
-5 + 9 = 4
3 + - 15 = -12
-3 + 15 = 12
𝒔 𝟐 - 4s – 45 = (𝒔 + 5 ) (𝒔 - 9 ) 𝒐𝒓
𝒔 − 𝟗 (𝒔 + 𝟓 )
7. Factor 𝒛 𝟐
+ 5z - 24
Factor Pairs of -45
1 x - 24
-1 x 24
4 x - 6
-4 x 6
3 x - 8
-3 x 8
Corresponding sum
1 + - 24 = - 23
-1 + 24 = 23
4 + -6 = -2
-4 + 6 = 2
3 + - 8 = -5
-3 + 8 = 5
𝒛 𝟐 + 5z – 24 = (𝒛 - 3 ) (𝒛 + 8 ) 𝒐𝒓
𝒛 + 𝟖 (𝒛 − 𝟑 )
Fatoring Non Perfect Square Trinomial

Fatoring Non Perfect Square Trinomial

  • 1.
  • 2.
    In factoring Non-PerfectSquare Trinomial, consider to determine the factors of the leading (square) term; the factors of the last (constant) term may be combined to find the coefficient of the middle term.
  • 3.
    Trinomials of theform 𝒙 𝟐 + bx + c are the products of two binomials. Observe how the last term and the middle term of the resulting trinomial are generated.
  • 4.
    ( x +___ ) ( x + ___ ) Factor Pairs of 6 1 x 6 2 x 3 Corresponding sum 1 + 6 = 7 2 + 3 = 5 𝒙 𝟐 + 5x + 6 = ( x + 2 ) ( x + 3 )
  • 5.
    𝟐. 𝑭𝒂𝒄𝒕𝒐𝒓 𝒂𝟐 + 10a + 25 Factor Pairs of 25 1 x 25 5 x 5 Corresponding sum 1 + 25 = 26 5 + 5 = 10 𝒂 𝟐 + 10a + 25 = 𝑎 + 5 (𝑎 + 5 )
  • 6.
    𝟑. 𝑭𝒂𝒄𝒕𝒐𝒓 𝒎𝟐 + 10m + 21 Factor Pairs of 21 1 x 21 7 x 3 Corresponding sum 1 + 21 = 22 7+ 3 = 10 𝒎 𝟐 + 10m + 21 = 𝑚 + 7 (𝑚 + 3) 𝑚 + 3 (𝑚 + 7) 𝑜𝑟
  • 7.
    𝟒. 𝑭𝒂𝒄𝒕𝒐𝒓 𝒃𝟐 + 14b + 45 Factor Pairs of 21 Corresponding sum 𝒃 𝟐 + 14b + 45 = 𝑏 + 9 (𝑚 + 5)
  • 8.
    𝟓. 𝑭𝒂𝒄𝒕𝒐𝒓 𝒔𝟐 + 2s - 15 Factor Pairs of -15 5 x -3 -5 x 3 Corresponding sum 1 + -15 = -1 + 15 = 𝒔 𝟐 + 2s -15 = 𝑠 + 5 (𝑠 − 3) 𝑠 − 3 (𝑠 + 5) 𝑜𝑟 1 x -15 -1 x 15 -14 14 5 + -3 = 2 -5 + 3 = -2
  • 10.
    7. Factor 𝒔𝟐 - 4s - 45 Factor Pairs of -45 1 x - 45 -1 x 45 5 x - 9 -5 x 9 3 x - 15 -3 x 15 Corresponding sum 1 + - 45 = - 44 -1 + 45 = 44 5 + -9 = -4 -5 + 9 = 4 3 + - 15 = -12 -3 + 15 = 12 𝒔 𝟐 - 4s – 45 = (𝒔 + 5 ) (𝒔 - 9 ) 𝒐𝒓 𝒔 − 𝟗 (𝒔 + 𝟓 )
  • 11.
    7. Factor 𝒛𝟐 + 5z - 24 Factor Pairs of -45 1 x - 24 -1 x 24 4 x - 6 -4 x 6 3 x - 8 -3 x 8 Corresponding sum 1 + - 24 = - 23 -1 + 24 = 23 4 + -6 = -2 -4 + 6 = 2 3 + - 8 = -5 -3 + 8 = 5 𝒛 𝟐 + 5z – 24 = (𝒛 - 3 ) (𝒛 + 8 ) 𝒐𝒓 𝒛 + 𝟖 (𝒛 − 𝟑 )