WAJA Mathematics PMR
ALGEBRAIC EXPRESSIONS II
A.Find the product of each of the following.
1. 2 x a =
2. 2 x a x b =
3. 2 x a x a =
4. 2a x 2b =
5. 2a x 2a =
6. 2ab x 3bc =
7. – 4ab x 3ac =
8. 6ab x 3a²b =
B. Find the quotient of each of the following
1. 4y ÷ y =
2. 4y ÷ 4 =
3. 3p ÷ 12pq =
4. 4q² ÷ 12q =
5. 10xy ÷ 2y² =
6. -12ab²c ÷ 3ab² =
Page 1 of 4
Examples :
3a x 2b = x3 x 2 a x b
6 x ab
6ab
Examples :
4ab ÷ 6bc = x
x
6
4
bc
ab
3
2
c
a
c
a
3
2
WAJA Mathematics PMR
7. – 16xyz² ÷ ( - 8xz² ) =
8. 3abc x 4ab ÷ 12b²c =
C. Simplify each of the following expressions.
1. 8a – 6 =
2. 8a – 6a =
3. 8ab + 5a =
4. 3ab + ab + 2ab =
5. 3xy + 2 + 6xy =
6. 2ab² + ab + ab² - ab =
7. 5w + 2 – 3w =
8. 9m² - 3m – 3m + m² =
9. 4a² - 2ab + 2ab - b² =
10. p² - 6p – 6 – 8 + p =
Page 2 of 4
12
43×
bxbxc
axbxcxaxb
Examples :
9 – 6 = 3
9a – 6 = 9a – 6
9a – 6a = 3a
Examples :
a + a = 2a
a + b = a + b
ab + ab = 2ab
2ab + 3ab = 5ab
xy² + xy = xy² + xy
- 3xy + xy = - 2xy
WAJA Mathematics PMR
D. Simplify each of the following.
1. 3(2a – 3b + 4) =
2. -2( x + 2y – z) =
3. 4a( 2a – 2b + 5) =
4. 4x – (2x + 2y) =
5. 3a – 2(a – 3b) =
6.
2
1
( 8a – 6b + 2) =
7.
3
2
( 3x – 6y) =
8. 3( a + 3b) + 2( a – 4b) =
9. 4( x + 3y) – 2( 2x + 5y) =
10. 6( 2p + 3q) – 4( p + 4q) =
Page 3 of 4
Examples :
5(2a -3b + c) = (5 x 2a) – (5 x (-3b)) + (5 x c)
= 10a – 15b + 5c
Examples :
3
2
( 6a – 9) = (
3
2
x 6a) - (
3
2
x 9)
= 4a - 6
WAJA Mathematics PMR
Mastering practice
1. q( 2 + p)
2. 3( 2p – 5)
3. q(4p – q)
4. 3( 3m – n) – n( 3m – n)
5. p(p – 3) – 3( p – 3)
6. 2p( 2p – q) – q (2p – q)
7. -3(2y + z – 1)
8. -5a( a + 2b – 3)
9. 3a + 4b – 2(a + 2b)
10. 5xy – 3x² - x(3x +4y)
Page 4 of 4

F2 algebraic expression ii

  • 1.
    WAJA Mathematics PMR ALGEBRAICEXPRESSIONS II A.Find the product of each of the following. 1. 2 x a = 2. 2 x a x b = 3. 2 x a x a = 4. 2a x 2b = 5. 2a x 2a = 6. 2ab x 3bc = 7. – 4ab x 3ac = 8. 6ab x 3a²b = B. Find the quotient of each of the following 1. 4y ÷ y = 2. 4y ÷ 4 = 3. 3p ÷ 12pq = 4. 4q² ÷ 12q = 5. 10xy ÷ 2y² = 6. -12ab²c ÷ 3ab² = Page 1 of 4 Examples : 3a x 2b = x3 x 2 a x b 6 x ab 6ab Examples : 4ab ÷ 6bc = x x 6 4 bc ab 3 2 c a c a 3 2
  • 2.
    WAJA Mathematics PMR 7.– 16xyz² ÷ ( - 8xz² ) = 8. 3abc x 4ab ÷ 12b²c = C. Simplify each of the following expressions. 1. 8a – 6 = 2. 8a – 6a = 3. 8ab + 5a = 4. 3ab + ab + 2ab = 5. 3xy + 2 + 6xy = 6. 2ab² + ab + ab² - ab = 7. 5w + 2 – 3w = 8. 9m² - 3m – 3m + m² = 9. 4a² - 2ab + 2ab - b² = 10. p² - 6p – 6 – 8 + p = Page 2 of 4 12 43× bxbxc axbxcxaxb Examples : 9 – 6 = 3 9a – 6 = 9a – 6 9a – 6a = 3a Examples : a + a = 2a a + b = a + b ab + ab = 2ab 2ab + 3ab = 5ab xy² + xy = xy² + xy - 3xy + xy = - 2xy
  • 3.
    WAJA Mathematics PMR D.Simplify each of the following. 1. 3(2a – 3b + 4) = 2. -2( x + 2y – z) = 3. 4a( 2a – 2b + 5) = 4. 4x – (2x + 2y) = 5. 3a – 2(a – 3b) = 6. 2 1 ( 8a – 6b + 2) = 7. 3 2 ( 3x – 6y) = 8. 3( a + 3b) + 2( a – 4b) = 9. 4( x + 3y) – 2( 2x + 5y) = 10. 6( 2p + 3q) – 4( p + 4q) = Page 3 of 4 Examples : 5(2a -3b + c) = (5 x 2a) – (5 x (-3b)) + (5 x c) = 10a – 15b + 5c Examples : 3 2 ( 6a – 9) = ( 3 2 x 6a) - ( 3 2 x 9) = 4a - 6
  • 4.
    WAJA Mathematics PMR Masteringpractice 1. q( 2 + p) 2. 3( 2p – 5) 3. q(4p – q) 4. 3( 3m – n) – n( 3m – n) 5. p(p – 3) – 3( p – 3) 6. 2p( 2p – q) – q (2p – q) 7. -3(2y + z – 1) 8. -5a( a + 2b – 3) 9. 3a + 4b – 2(a + 2b) 10. 5xy – 3x² - x(3x +4y) Page 4 of 4