Entity Relationships in
a Document Database
    MapReduce Views for SQL Users
Entity:
An object defined by its identity
and a thread of continuity[1]




             1. "Entity" Domain-driven Design Community <http://domaindrivendesign.org/node/109>.
Entity
Relationship
Model
Join vs. Collation
SQL Query Joining
Publishers and Books
SELECT
  `publisher`.`id`,
  `publisher`.`name`,
  `book`.`title`
FROM `publisher`
FULL OUTER JOIN `book`
  ON `publisher`.`id` = `book`.`publisher_id`
ORDER BY
  `publisher`.`id`,
  `book`.`title`;
Joined Result Set
publisher.id publisher.name          book.title
                              Building iPhone Apps with
  oreilly    O'Reilly Media
                              HTML, CSS, and JavaScript
                              CouchDB: The Definitive
  oreilly    O'Reilly Media
                                     Guide
                              DocBook: The Definitive
  oreilly    O'Reilly Media
                                     Guide

  oreilly    O'Reilly Media     RESTful Web Services
Joined Result Set
     Publisher (“left”)
publisher.id publisher.name          book.title
                              Building iPhone Apps with
  oreilly    O'Reilly Media
                              HTML, CSS, and JavaScript
                              CouchDB: The Definitive
  oreilly    O'Reilly Media
                                     Guide
                              DocBook: The Definitive
  oreilly    O'Reilly Media
                                     Guide

  oreilly    O'Reilly Media     RESTful Web Services
Joined Result Set
     Publisher (“left”)            Book “right”
publisher.id publisher.name          book.title
                              Building iPhone Apps with
  oreilly    O'Reilly Media
                              HTML, CSS, and JavaScript
                              CouchDB: The Definitive
  oreilly    O'Reilly Media
                                     Guide
                              DocBook: The Definitive
  oreilly    O'Reilly Media
                                     Guide

  oreilly    O'Reilly Media     RESTful Web Services
Collated Result Set
      key            id                 value

  ["oreilly",0]   "oreilly"        "O'Reilly Media"
                              "Building iPhone Apps with
  ["oreilly",1]   "oreilly"
                              HTML, CSS, and JavaScript"
                               "CouchDB: The Definitive
  ["oreilly",1]   "oreilly"
                                         Guide"
                               "DocBook: The Definitive
  ["oreilly",1]   "oreilly"
                                         Guide"
  ["oreilly",1]   "oreilly"    "RESTful Web Services"
Collated Result Set
    key            id                 value

["oreilly",0]   "oreilly"        "O'Reilly Media"        Publisher
                            "Building iPhone Apps with
["oreilly",1]   "oreilly"
                            HTML, CSS, and JavaScript"
                             "CouchDB: The Definitive
["oreilly",1]   "oreilly"
                                       Guide"
                             "DocBook: The Definitive
["oreilly",1]   "oreilly"
                                       Guide"
["oreilly",1]   "oreilly"    "RESTful Web Services"
Collated Result Set
    key            id                 value

["oreilly",0]   "oreilly"        "O'Reilly Media"        Publisher
                            "Building iPhone Apps with
["oreilly",1]   "oreilly"
                            HTML, CSS, and JavaScript"
                             "CouchDB: The Definitive
["oreilly",1]   "oreilly"
                                       Guide"
                                                          Books
                             "DocBook: The Definitive
["oreilly",1]   "oreilly"
                                       Guide"
["oreilly",1]   "oreilly"    "RESTful Web Services"
View Result Sets
Made up of columns and rows

Every row has the same three columns:
  • key
  • id
  • value
Columns can contain a mixture of logical data types
One to Many Relationships
Embedded Entities:
Nest related entities within a document
Embedded Entities
A single document represents the “one” entity

Nested entities (JSON Array) represents the “many” entities

Simplest way to create a one to many relationship
Example: Publisher
with Nested Books
{
  "_id":"oreilly",
  "collection":"publisher",
  "name":"O'Reilly Media",
  "books":[
    { "title":"CouchDB: The Definitive Guide" },
    { "title":"RESTful Web Services" },
    { "title":"DocBook: The Definitive Guide" },
    { "title":"Building iPhone Apps with HTML, CSS,
and JavaScript" }
  ]
}
Map Function
function(doc) {
  if ("publisher" == doc.collection) {
    emit([doc._id, 0], doc.name);
    for (var i in doc.books) {
      emit([doc._id, 1], doc.books[i].title);
    }
  }
}
Result Set
     key            id                 value

 ["oreilly",0]   "oreilly"        "O'Reilly Media"
                             "Building iPhone Apps with
 ["oreilly",1]   "oreilly"
                             HTML, CSS, and JavaScript"
                              "CouchDB: The Definitive
 ["oreilly",1]   "oreilly"
                                        Guide"
                              "DocBook: The Definitive
 ["oreilly",1]   "oreilly"
                                        Guide"
 ["oreilly",1]   "oreilly"    "RESTful Web Services"
Limitations
Only works if there aren’t a large number of related entities:
 • Too many nested entities can result in very large documents
 • Slow to transfer between client and server
 • Unwieldy to modify
 • Time-consuming to index
Related Documents:
Reference an entity by its identifier
Related Documents
A document representing the “one” entity

Separate documents for each “many” entity

Each “many” entity references its related
“one” entity by the “one” entity’s document identifier

Makes for smaller documents

Reduces the probability of document update conflicts
Example: Publisher
{
    "_id":"oreilly",
    "collection":"publisher",
    "name":"O'Reilly Media"
}
Example: Related Book
{
    "_id":"9780596155896",
    "collection":"book",
    "title":"CouchDB: The Definitive Guide",
    "publisher":"oreilly"
}
Map Function
function(doc) {
  if ("publisher" == doc.collection) {
    emit([doc._id, 0], doc.name);
  }
  if ("book" == doc.collection) {
    emit([doc.publisher, 1], doc.title);
  }
}
Result Set
      key                   id              value

["oreilly",0]   "oreilly"         "O'Reilly Media"
                                  "CouchDB: The Definitive
["oreilly",1]   "9780596155896"
                                  Guide"
["oreilly",1]   "9780596529260"   "RESTful Web Services"
                                  "Building iPhone Apps with
["oreilly",1]   "9780596805791"
                                  HTML, CSS, and JavaScript"
                                  "DocBook: The Definitive
["oreilly",1]   "9781565925809"
                                  Guide"
Limitations
When retrieving the entity on the “right” side of the relationship,
one cannot include any data from the entity on the “left” side of
the relationship without the use of an additional query

Only works for one to many relationships
Many to Many Relationships
List of Keys:
Reference entities by their identifiers
List of Keys
A document representing each “many” entity on the “left” side
of the relationship

Separate documents for each “many” entity on the “right” side
of the relationship

Each “many” entity on the “right” side of the relationship
maintains a list of document identifiers for its related “many”
entities on the “left” side of the relationship
Books and Related Authors
Example: Book
{
    "_id":"9780596805029",
    "collection":"book",
    "title":"DocBook 5: The Definitive Guide"
}
Example: Book
{
    "_id":"9781565920514",
    "collection":"book",
    "title":"Making TeX Work"
}
Example: Book
{
    "_id":"9781565925809",
    "collection":"book",
    "title":"DocBook: The Definitive Guide"
}
Example: Author
{
    "_id":"muellner",
    "collection":"author",
    "name":"Leonard Muellner",
    "books":[
      "9781565925809"
    ]
}
Example: Author
{
    "_id":"walsh",
    "collection":"author",
    "name":"Norman Walsh",
    "books":[
      "9780596805029",
      "9781565925809",
      "9781565920514"
    ]
}
Map Function
function(doc) {
  if ("book" == doc.collection) {
    emit([doc._id, 0], doc.title);
  }
  if ("author" == doc.collection) {
    for (var i in doc.books) {
      emit([doc.books[i], 1], doc.name);
    }
  }
}
Result Set
        key                   id                  value
["9780596805029",0] "9780596805029" "DocBook 5: The Definitive Guide"

["9780596805029",1] "walsh"          "Norman Walsh"

["9781565920514",0] "9781565920514" "Making TeX Work"

["9781565920514",1] "walsh"          "Norman Walsh"

["9781565925809",0] "9781565925809" "DocBook: The Definitive Guide"

["9781565925809",1] "muellner"       "Leonard Muellner"

["9781565925809",1] "walsh"          "Norman Walsh"
Authors and Related Books
Map Function
function(doc) {
  if ("author" == doc.collection) {
    emit([doc._id, 0], doc.name);
    for (var i in doc.books) {
      emit([doc._id, 1], {"_id":doc.books[i]});
    }
  }
}
Result Set
      key              id              value
["muellner",0]   "muellner"   "Leonard Muellner"

["muellner",1]   "muellner"   {"_id":"9781565925809"}

["walsh",0]      "walsh"      "Norman Walsh"

["walsh",1]      "walsh"      {"_id":"9780596805029"}

["walsh",1]      "walsh"      {"_id":"9781565920514"}

["walsh",1]      "walsh"      {"_id":"9781565925809"}
Including Docs
  include_docs=true
     key          id    value               doc (truncated)
["muellner",0] "muellner" …     {"name":"Leonard Muellner"}
["muellner",1] "muellner" …     {"title":"DocBook: The Definitive Guide"}
["walsh",0]   "walsh"   …       {"name":"Norman Walsh"}
["walsh",1]   "walsh"   …       {"title":"DocBook 5: The Definitive Guide"}
["walsh",1]   "walsh"   …       {"title":"Making TeX Work"}
["walsh",1]   "walsh"   …       {"title":"DocBook: The Definitive Guide"}
Or, we can reverse the references…
Example: Author
{
    "_id":"muellner",
    "collection":"author",
    "name":"Leonard Muellner"
}
Example: Author
{
    "_id":"walsh",
    "collection":"author",
    "name":"Norman Walsh"
}
Example: Book
{
    "_id":"9780596805029",
    "collection":"book",
    "title":"DocBook 5: The Definitive Guide",
    "authors":[
      "walsh"
    ]
}
Example: Book
{
    "_id":"9781565920514",
    "collection":"book",
    "title":"Making TeX Work",
    "authors":[
      "walsh"
    ]
}
Example: Book
{
    "_id":"9781565925809",
    "collection":"book",
    "title":"DocBook: The Definitive Guide",
    "authors":[
      "muellner",
      "walsh"
    ]
}
Map Function
function(doc) {
  if ("author" == doc.collection) {
    emit([doc._id, 0], doc.name);
  }
  if ("book" == doc.collection) {
    for (var i in doc.authors) {
      emit([doc.authors[i], 1], doc.title);
    }
  }
}
Result Set
     key                id                  value
["muellner",0] "muellner"     "Leonard Muellner"
["muellner",1] "9781565925809" "DocBook: The Definitive Guide"
["walsh",0]   "walsh"         "Norman Walsh"
["walsh",1]   "9780596805029" "DocBook 5: The Definitive Guide"
["walsh",1]   "9781565920514" "Making TeX Work"
["walsh",1]   "9781565925809" "DocBook: The Definitive Guide"
Limitations
Queries from the “right” side of the relationship cannot include
any data from entities on the “left” side of the relationship
(without the use of include_docs)

A document representing an entity with lots of relationships
could become quite large
Relationship Documents:
Create a document to represent each
individual relationship
Relationship Documents
A document representing each “many” entity on the “left” side
of the relationship

Separate documents for each “many” entity on the “right” side
of the relationship

Neither the “left” nor “right” side of the relationship contain any
direct references to each other

For each distinct relationship, a separate document includes the
document identifiers for both the “left” and “right” sides of the
relationship
Example: Book
{
    "_id":"9780596805029",
    "collection":"book",
    "title":"DocBook 5: The Definitive Guide"
}
Example: Book
{
    "_id":"9781565920514",
    "collection":"book",
    "title":"Making TeX Work"
}
Example: Book
{
    "_id":"9781565925809",
    "collection":"book",
    "title":"DocBook: The Definitive Guide"
}
Example: Author
{
    "_id":"muellner",
    "collection":"author",
    "name":"Leonard Muellner"
}
Example: Author
{
    "_id":"walsh",
    "collection":"author",
    "name":"Norman Walsh"
}
Example:
Relationship Document
{
    "_id":"44005f2c",
    "collection":"book-author",
    "book":"9780596805029",
    "author":"walsh"
}
Example:
Relationship Document
{
    "_id":"44005f72",
    "collection":"book-author",
    "book":"9781565920514",
    "author":"walsh"
}
Example:
Relationship Document
{
    "_id":"44006720",
    "collection":"book-author",
    "book":"9781565925809",
    "author":"muellner"
}
Example:
Relationship Document
{
    "_id":"44006b0d",
    "collection":"book-author",
    "book":"9781565925809",
    "author":"walsh"
}
Books and Related Authors
Map Function
function(doc) {
  if ("book" == doc.collection) {
    emit([doc._id, 0], doc.title);
  }
  if ("book-author" == doc.collection) {
    emit([doc.book, 1], {"_id":doc.author});
  }
}
Result Set
       key                 id                         value
["9780596805029",0] "9780596805029" "DocBook 5: The Definitive Guide"
["9780596805029",1] "44005f2c"      {"_id":"walsh"}
["9781565920514",0] "9781565920514" "Making TeX Work"
["9781565920514",1] "44005f72"      {"_id":"walsh"}
["9781565925809",0] "9781565925809" "DocBook: The Definitive Guide"
["9781565925809",1] "44006720"      {"_id":"muellner"}
["9781565925809",1] "44006b0d"      {"_id":"walsh"}
Including Docs
  include_docs=true
      key         id value               doc (truncated)
["9780596805029",0] … …      {"title":"DocBook 5: The Definitive Guide"}
["9780596805029",1] … …      {"name":"Norman Walsh"}
["9781565920514",0] … …      {"title":"Making TeX Work"}
["9781565920514",1] … …      {"author","name":"Norman Walsh"}
["9781565925809",0] … …      {"title":"DocBook: The Definitive Guide"}
["9781565925809",1] … …      {"name":"Leonard Muellner"}
["9781565925809",1] … …      {"name":"Norman Walsh"}
Authors and Related Books
Map Function
function(doc) {
  if ("author" == doc.collection) {
    emit([doc._id, 0], doc.name);
  }
  if ("book-author" == doc.collection) {
    emit([doc.author, 1], {"_id":doc.book});
  }
}
Result Set
      key              id              value
["muellner",0]   "muellner"   "Leonard Muellner"

["muellner",1]   "44006720"   {"_id":"9781565925809"}

["walsh",0]      "walsh"      "Norman Walsh"

["walsh",1]      "44005f2c"   {"_id":"9780596805029"}

["walsh",1]      "44005f72"   {"_id":"9781565920514"}

["walsh",1]      "44006b0d"   {"_id":"9781565925809"}
Including Docs
include_docs=true
     key       id value               doc (truncated)
["muellner",0] …   …      {"name":"Leonard Muellner"}
["muellner",1] …   …      {"title":"DocBook: The Definitive Guide"}
["walsh",0]   …    …      {"name":"Norman Walsh"}
["walsh",1]   …    …      {"title":"DocBook 5: The Definitive Guide"}
["walsh",1]   …    …      {"title":"Making TeX Work"}
["walsh",1]   …    …      {"title":"DocBook: The Definitive Guide"}
Limitations
Queries can only contain data from the “left” or “right” side of the
relationship (without the use of include_docs)

Maintaining relationship documents may require more work
Final Thoughts
Document Databases Compared
to Relational Databases
Document databases have no tables (and therefore no columns)

Indexes (views) are queried directly, instead of being used to
optimize more generalized queries

Result set columns can contain a mix of logical data types

No built-in concept of relationships between documents

Related entities can be embedded in a document, referenced from
a document, or both
Caveats
No referential integrity

No atomic transactions across document boundaries

Some patterns may involve denormalized (i.e. redundant) data

Data inconsistencies are inevitable (i.e. eventual consistency)

Consider the implications of replication—what may seem
consistent with one database may not be consistent across nodes
(e.g. referencing entities that don’t yet exist on the node)
Additional Techniques
Use the startkey and endkey parameters to retrieve one entity and
its related entities:
 startkey=["9781565925809"]&endkey=["9781565925809",{}]

Define a reduce function and use grouping levels

Use UUIDs rather than natural keys for better performance

Use the bulk document API when writing Relationship Documents

When using the List of Keys or Relationship Documents patterns,
denormalize data so that you can have data from the “right” and
“left” side of the relationship within your query results
Cheat Sheet
                  Embedded     Related                 Relationship
                                          List of Keys
                   Entities   Documents                Documents

 One to Many         ✓           ✓
Many to Many                                     ✓                       ✓
<= N* Relations      ✓                           ✓
> N* Relations                   ✓                                       ✓


                                             *   where N is a large number for your system
http://oreilly.com/catalog/9781449303129/   http://oreilly.com/catalog/9781449303433/
Thank You
                                  @BradleyHolt
                             http://bradley-holt.com
                           bradley.holt@foundline.com




Copyright © 2011-2012 Bradley Holt. All rights reserved.

Entity Relationships in a Document Database at CouchConf Boston

  • 1.
    Entity Relationships in aDocument Database MapReduce Views for SQL Users
  • 2.
    Entity: An object definedby its identity and a thread of continuity[1] 1. "Entity" Domain-driven Design Community <http://domaindrivendesign.org/node/109>.
  • 3.
  • 4.
  • 5.
    SQL Query Joining Publishersand Books SELECT `publisher`.`id`, `publisher`.`name`, `book`.`title` FROM `publisher` FULL OUTER JOIN `book` ON `publisher`.`id` = `book`.`publisher_id` ORDER BY `publisher`.`id`, `book`.`title`;
  • 6.
    Joined Result Set publisher.idpublisher.name book.title Building iPhone Apps with oreilly O'Reilly Media HTML, CSS, and JavaScript CouchDB: The Definitive oreilly O'Reilly Media Guide DocBook: The Definitive oreilly O'Reilly Media Guide oreilly O'Reilly Media RESTful Web Services
  • 7.
    Joined Result Set Publisher (“left”) publisher.id publisher.name book.title Building iPhone Apps with oreilly O'Reilly Media HTML, CSS, and JavaScript CouchDB: The Definitive oreilly O'Reilly Media Guide DocBook: The Definitive oreilly O'Reilly Media Guide oreilly O'Reilly Media RESTful Web Services
  • 8.
    Joined Result Set Publisher (“left”) Book “right” publisher.id publisher.name book.title Building iPhone Apps with oreilly O'Reilly Media HTML, CSS, and JavaScript CouchDB: The Definitive oreilly O'Reilly Media Guide DocBook: The Definitive oreilly O'Reilly Media Guide oreilly O'Reilly Media RESTful Web Services
  • 9.
    Collated Result Set key id value ["oreilly",0] "oreilly" "O'Reilly Media" "Building iPhone Apps with ["oreilly",1] "oreilly" HTML, CSS, and JavaScript" "CouchDB: The Definitive ["oreilly",1] "oreilly" Guide" "DocBook: The Definitive ["oreilly",1] "oreilly" Guide" ["oreilly",1] "oreilly" "RESTful Web Services"
  • 10.
    Collated Result Set key id value ["oreilly",0] "oreilly" "O'Reilly Media" Publisher "Building iPhone Apps with ["oreilly",1] "oreilly" HTML, CSS, and JavaScript" "CouchDB: The Definitive ["oreilly",1] "oreilly" Guide" "DocBook: The Definitive ["oreilly",1] "oreilly" Guide" ["oreilly",1] "oreilly" "RESTful Web Services"
  • 11.
    Collated Result Set key id value ["oreilly",0] "oreilly" "O'Reilly Media" Publisher "Building iPhone Apps with ["oreilly",1] "oreilly" HTML, CSS, and JavaScript" "CouchDB: The Definitive ["oreilly",1] "oreilly" Guide" Books "DocBook: The Definitive ["oreilly",1] "oreilly" Guide" ["oreilly",1] "oreilly" "RESTful Web Services"
  • 12.
    View Result Sets Madeup of columns and rows Every row has the same three columns: • key • id • value Columns can contain a mixture of logical data types
  • 13.
    One to ManyRelationships
  • 14.
    Embedded Entities: Nest relatedentities within a document
  • 15.
    Embedded Entities A singledocument represents the “one” entity Nested entities (JSON Array) represents the “many” entities Simplest way to create a one to many relationship
  • 16.
    Example: Publisher with NestedBooks { "_id":"oreilly", "collection":"publisher", "name":"O'Reilly Media", "books":[ { "title":"CouchDB: The Definitive Guide" }, { "title":"RESTful Web Services" }, { "title":"DocBook: The Definitive Guide" }, { "title":"Building iPhone Apps with HTML, CSS, and JavaScript" } ] }
  • 17.
    Map Function function(doc) { if ("publisher" == doc.collection) { emit([doc._id, 0], doc.name); for (var i in doc.books) { emit([doc._id, 1], doc.books[i].title); } } }
  • 18.
    Result Set key id value ["oreilly",0] "oreilly" "O'Reilly Media" "Building iPhone Apps with ["oreilly",1] "oreilly" HTML, CSS, and JavaScript" "CouchDB: The Definitive ["oreilly",1] "oreilly" Guide" "DocBook: The Definitive ["oreilly",1] "oreilly" Guide" ["oreilly",1] "oreilly" "RESTful Web Services"
  • 19.
    Limitations Only works ifthere aren’t a large number of related entities: • Too many nested entities can result in very large documents • Slow to transfer between client and server • Unwieldy to modify • Time-consuming to index
  • 20.
    Related Documents: Reference anentity by its identifier
  • 21.
    Related Documents A documentrepresenting the “one” entity Separate documents for each “many” entity Each “many” entity references its related “one” entity by the “one” entity’s document identifier Makes for smaller documents Reduces the probability of document update conflicts
  • 22.
    Example: Publisher { "_id":"oreilly", "collection":"publisher", "name":"O'Reilly Media" }
  • 23.
    Example: Related Book { "_id":"9780596155896", "collection":"book", "title":"CouchDB: The Definitive Guide", "publisher":"oreilly" }
  • 24.
    Map Function function(doc) { if ("publisher" == doc.collection) { emit([doc._id, 0], doc.name); } if ("book" == doc.collection) { emit([doc.publisher, 1], doc.title); } }
  • 25.
    Result Set key id value ["oreilly",0] "oreilly" "O'Reilly Media" "CouchDB: The Definitive ["oreilly",1] "9780596155896" Guide" ["oreilly",1] "9780596529260" "RESTful Web Services" "Building iPhone Apps with ["oreilly",1] "9780596805791" HTML, CSS, and JavaScript" "DocBook: The Definitive ["oreilly",1] "9781565925809" Guide"
  • 26.
    Limitations When retrieving theentity on the “right” side of the relationship, one cannot include any data from the entity on the “left” side of the relationship without the use of an additional query Only works for one to many relationships
  • 27.
    Many to ManyRelationships
  • 28.
    List of Keys: Referenceentities by their identifiers
  • 29.
    List of Keys Adocument representing each “many” entity on the “left” side of the relationship Separate documents for each “many” entity on the “right” side of the relationship Each “many” entity on the “right” side of the relationship maintains a list of document identifiers for its related “many” entities on the “left” side of the relationship
  • 30.
  • 31.
    Example: Book { "_id":"9780596805029", "collection":"book", "title":"DocBook 5: The Definitive Guide" }
  • 32.
    Example: Book { "_id":"9781565920514", "collection":"book", "title":"Making TeX Work" }
  • 33.
    Example: Book { "_id":"9781565925809", "collection":"book", "title":"DocBook: The Definitive Guide" }
  • 34.
    Example: Author { "_id":"muellner", "collection":"author", "name":"Leonard Muellner", "books":[ "9781565925809" ] }
  • 35.
    Example: Author { "_id":"walsh", "collection":"author", "name":"Norman Walsh", "books":[ "9780596805029", "9781565925809", "9781565920514" ] }
  • 36.
    Map Function function(doc) { if ("book" == doc.collection) { emit([doc._id, 0], doc.title); } if ("author" == doc.collection) { for (var i in doc.books) { emit([doc.books[i], 1], doc.name); } } }
  • 37.
    Result Set key id value ["9780596805029",0] "9780596805029" "DocBook 5: The Definitive Guide" ["9780596805029",1] "walsh" "Norman Walsh" ["9781565920514",0] "9781565920514" "Making TeX Work" ["9781565920514",1] "walsh" "Norman Walsh" ["9781565925809",0] "9781565925809" "DocBook: The Definitive Guide" ["9781565925809",1] "muellner" "Leonard Muellner" ["9781565925809",1] "walsh" "Norman Walsh"
  • 38.
  • 39.
    Map Function function(doc) { if ("author" == doc.collection) { emit([doc._id, 0], doc.name); for (var i in doc.books) { emit([doc._id, 1], {"_id":doc.books[i]}); } } }
  • 40.
    Result Set key id value ["muellner",0] "muellner" "Leonard Muellner" ["muellner",1] "muellner" {"_id":"9781565925809"} ["walsh",0] "walsh" "Norman Walsh" ["walsh",1] "walsh" {"_id":"9780596805029"} ["walsh",1] "walsh" {"_id":"9781565920514"} ["walsh",1] "walsh" {"_id":"9781565925809"}
  • 41.
    Including Docs include_docs=true key id value doc (truncated) ["muellner",0] "muellner" … {"name":"Leonard Muellner"} ["muellner",1] "muellner" … {"title":"DocBook: The Definitive Guide"} ["walsh",0] "walsh" … {"name":"Norman Walsh"} ["walsh",1] "walsh" … {"title":"DocBook 5: The Definitive Guide"} ["walsh",1] "walsh" … {"title":"Making TeX Work"} ["walsh",1] "walsh" … {"title":"DocBook: The Definitive Guide"}
  • 42.
    Or, we canreverse the references…
  • 43.
    Example: Author { "_id":"muellner", "collection":"author", "name":"Leonard Muellner" }
  • 44.
    Example: Author { "_id":"walsh", "collection":"author", "name":"Norman Walsh" }
  • 45.
    Example: Book { "_id":"9780596805029", "collection":"book", "title":"DocBook 5: The Definitive Guide", "authors":[ "walsh" ] }
  • 46.
    Example: Book { "_id":"9781565920514", "collection":"book", "title":"Making TeX Work", "authors":[ "walsh" ] }
  • 47.
    Example: Book { "_id":"9781565925809", "collection":"book", "title":"DocBook: The Definitive Guide", "authors":[ "muellner", "walsh" ] }
  • 48.
    Map Function function(doc) { if ("author" == doc.collection) { emit([doc._id, 0], doc.name); } if ("book" == doc.collection) { for (var i in doc.authors) { emit([doc.authors[i], 1], doc.title); } } }
  • 49.
    Result Set key id value ["muellner",0] "muellner" "Leonard Muellner" ["muellner",1] "9781565925809" "DocBook: The Definitive Guide" ["walsh",0] "walsh" "Norman Walsh" ["walsh",1] "9780596805029" "DocBook 5: The Definitive Guide" ["walsh",1] "9781565920514" "Making TeX Work" ["walsh",1] "9781565925809" "DocBook: The Definitive Guide"
  • 50.
    Limitations Queries from the“right” side of the relationship cannot include any data from entities on the “left” side of the relationship (without the use of include_docs) A document representing an entity with lots of relationships could become quite large
  • 51.
    Relationship Documents: Create adocument to represent each individual relationship
  • 52.
    Relationship Documents A documentrepresenting each “many” entity on the “left” side of the relationship Separate documents for each “many” entity on the “right” side of the relationship Neither the “left” nor “right” side of the relationship contain any direct references to each other For each distinct relationship, a separate document includes the document identifiers for both the “left” and “right” sides of the relationship
  • 53.
    Example: Book { "_id":"9780596805029", "collection":"book", "title":"DocBook 5: The Definitive Guide" }
  • 54.
    Example: Book { "_id":"9781565920514", "collection":"book", "title":"Making TeX Work" }
  • 55.
    Example: Book { "_id":"9781565925809", "collection":"book", "title":"DocBook: The Definitive Guide" }
  • 56.
    Example: Author { "_id":"muellner", "collection":"author", "name":"Leonard Muellner" }
  • 57.
    Example: Author { "_id":"walsh", "collection":"author", "name":"Norman Walsh" }
  • 58.
    Example: Relationship Document { "_id":"44005f2c", "collection":"book-author", "book":"9780596805029", "author":"walsh" }
  • 59.
    Example: Relationship Document { "_id":"44005f72", "collection":"book-author", "book":"9781565920514", "author":"walsh" }
  • 60.
    Example: Relationship Document { "_id":"44006720", "collection":"book-author", "book":"9781565925809", "author":"muellner" }
  • 61.
    Example: Relationship Document { "_id":"44006b0d", "collection":"book-author", "book":"9781565925809", "author":"walsh" }
  • 62.
  • 63.
    Map Function function(doc) { if ("book" == doc.collection) { emit([doc._id, 0], doc.title); } if ("book-author" == doc.collection) { emit([doc.book, 1], {"_id":doc.author}); } }
  • 64.
    Result Set key id value ["9780596805029",0] "9780596805029" "DocBook 5: The Definitive Guide" ["9780596805029",1] "44005f2c" {"_id":"walsh"} ["9781565920514",0] "9781565920514" "Making TeX Work" ["9781565920514",1] "44005f72" {"_id":"walsh"} ["9781565925809",0] "9781565925809" "DocBook: The Definitive Guide" ["9781565925809",1] "44006720" {"_id":"muellner"} ["9781565925809",1] "44006b0d" {"_id":"walsh"}
  • 65.
    Including Docs include_docs=true key id value doc (truncated) ["9780596805029",0] … … {"title":"DocBook 5: The Definitive Guide"} ["9780596805029",1] … … {"name":"Norman Walsh"} ["9781565920514",0] … … {"title":"Making TeX Work"} ["9781565920514",1] … … {"author","name":"Norman Walsh"} ["9781565925809",0] … … {"title":"DocBook: The Definitive Guide"} ["9781565925809",1] … … {"name":"Leonard Muellner"} ["9781565925809",1] … … {"name":"Norman Walsh"}
  • 66.
  • 67.
    Map Function function(doc) { if ("author" == doc.collection) { emit([doc._id, 0], doc.name); } if ("book-author" == doc.collection) { emit([doc.author, 1], {"_id":doc.book}); } }
  • 68.
    Result Set key id value ["muellner",0] "muellner" "Leonard Muellner" ["muellner",1] "44006720" {"_id":"9781565925809"} ["walsh",0] "walsh" "Norman Walsh" ["walsh",1] "44005f2c" {"_id":"9780596805029"} ["walsh",1] "44005f72" {"_id":"9781565920514"} ["walsh",1] "44006b0d" {"_id":"9781565925809"}
  • 69.
    Including Docs include_docs=true key id value doc (truncated) ["muellner",0] … … {"name":"Leonard Muellner"} ["muellner",1] … … {"title":"DocBook: The Definitive Guide"} ["walsh",0] … … {"name":"Norman Walsh"} ["walsh",1] … … {"title":"DocBook 5: The Definitive Guide"} ["walsh",1] … … {"title":"Making TeX Work"} ["walsh",1] … … {"title":"DocBook: The Definitive Guide"}
  • 70.
    Limitations Queries can onlycontain data from the “left” or “right” side of the relationship (without the use of include_docs) Maintaining relationship documents may require more work
  • 71.
  • 72.
    Document Databases Compared toRelational Databases Document databases have no tables (and therefore no columns) Indexes (views) are queried directly, instead of being used to optimize more generalized queries Result set columns can contain a mix of logical data types No built-in concept of relationships between documents Related entities can be embedded in a document, referenced from a document, or both
  • 73.
    Caveats No referential integrity Noatomic transactions across document boundaries Some patterns may involve denormalized (i.e. redundant) data Data inconsistencies are inevitable (i.e. eventual consistency) Consider the implications of replication—what may seem consistent with one database may not be consistent across nodes (e.g. referencing entities that don’t yet exist on the node)
  • 74.
    Additional Techniques Use thestartkey and endkey parameters to retrieve one entity and its related entities: startkey=["9781565925809"]&endkey=["9781565925809",{}] Define a reduce function and use grouping levels Use UUIDs rather than natural keys for better performance Use the bulk document API when writing Relationship Documents When using the List of Keys or Relationship Documents patterns, denormalize data so that you can have data from the “right” and “left” side of the relationship within your query results
  • 75.
    Cheat Sheet Embedded Related Relationship List of Keys Entities Documents Documents One to Many ✓ ✓ Many to Many ✓ ✓ <= N* Relations ✓ ✓ > N* Relations ✓ ✓ * where N is a large number for your system
  • 76.
    http://oreilly.com/catalog/9781449303129/ http://oreilly.com/catalog/9781449303433/
  • 77.
    Thank You @BradleyHolt http://bradley-holt.com bradley.holt@foundline.com Copyright © 2011-2012 Bradley Holt. All rights reserved.

Editor's Notes

  • #2 \n
  • #3 \n
  • #4 \n
  • #5 \n
  • #6 A full outer join effectively combines both left and right outer joins. If your relational database doesn&amp;#x2019;t support full outer joins then a left outer join is &amp;#x201C;close enough&amp;#x201D; for the following examples.\n
  • #7 Entities are joined together in a single row.\n
  • #8 Entities are joined together in a single row.\n
  • #9 Entities are joined together in a single row.\n
  • #10 Entities are collated together, but in separate rows.\nNote the use of compound keys.\n
  • #11 Entities are collated together, but in separate rows.\nNote the use of compound keys.\n
  • #12 Entities are collated together, but in separate rows.\nNote the use of compound keys.\n
  • #13 Result set may also include a doc column if include_docs is set to true.\n
  • #14 Result set may also include a doc column if include_docs is set to true.\n
  • #15 Result set may also include a doc column if include_docs is set to true.\n
  • #16 \n
  • #17 \n
  • #18 \n
  • #19 \n
  • #20 \n
  • #21 \n
  • #22 The &amp;#x201C;0&amp;#x201D; and &amp;#x201C;1&amp;#x201D; make publisher sort before the publisher&amp;#x2019;s books.\nNote the use of compound keys.\n
  • #23 \n
  • #24 \n
  • #25 \n
  • #26 \n
  • #27 \n
  • #28 \n
  • #29 \n
  • #30 \n
  • #31 \n
  • #32 \n
  • #33 \n
  • #34 \n
  • #35 \n
  • #36 \n
  • #37 \n
  • #38 Note that the keys are the same as with the embedded document approach, but the IDs are different.\n
  • #39 \n
  • #40 \n
  • #41 \n
  • #42 \n
  • #43 \n
  • #44 \n
  • #45 \n
  • #46 \n
  • #47 \n
  • #48 \n
  • #49 \n
  • #50 \n
  • #51 \n
  • #52 \n
  • #53 \n
  • #54 \n
  • #55 \n
  • #56 \n
  • #57 Note that the best we can do is emit the book IDs, as we don&amp;#x2019;t have access to any other book data.\n
  • #58 \n
  • #59 Note that it includes the doc having the referenced ID, not the doc from which the row was emitted.\nNote that the docs are truncated.\n
  • #60 \n
  • #61 \n
  • #62 \n
  • #63 \n
  • #64 \n
  • #65 \n
  • #66 \n
  • #67 \n
  • #68 \n
  • #69 \n
  • #70 \n
  • #71 \n
  • #72 \n
  • #73 \n
  • #74 \n
  • #75 \n
  • #76 Note that none of the entity documents contain any references to other entities.\n
  • #77 \n
  • #78 \n
  • #79 \n
  • #80 \n
  • #81 \n
  • #82 \n
  • #83 \n
  • #84 \n
  • #85 \n
  • #86 \n
  • #87 \n
  • #88 \n
  • #89 \n
  • #90 \n
  • #91 \n
  • #92 Note that the docs are truncated.\n
  • #93 \n
  • #94 \n
  • #95 \n
  • #96 Note that the docs are truncated.\n
  • #97 \n
  • #98 \n
  • #99 \n
  • #100 \n
  • #101 \n
  • #102 \n
  • #103 \n
  • #104 \n
  • #105 Note that these are trade-offs that provide associated benefits.\n
  • #106 Note that these are trade-offs that provide associated benefits.\n
  • #107 Note that these are trade-offs that provide associated benefits.\n
  • #108 Note that these are trade-offs that provide associated benefits.\n
  • #109 Note that these are trade-offs that provide associated benefits.\n
  • #110 Note that the startkey and endkey parameters need to be URL encoded.\nNote that one must account for the &amp;#x201C;left&amp;#x201D; entity when using grouping levels.\nNote that UUIDs are especially useful for Relationship Documents.\nNote that the bulk document API is not transactional!\n
  • #111 Note that the startkey and endkey parameters need to be URL encoded.\nNote that one must account for the &amp;#x201C;left&amp;#x201D; entity when using grouping levels.\nNote that UUIDs are especially useful for Relationship Documents.\nNote that the bulk document API is not transactional!\n
  • #112 Note that the startkey and endkey parameters need to be URL encoded.\nNote that one must account for the &amp;#x201C;left&amp;#x201D; entity when using grouping levels.\nNote that UUIDs are especially useful for Relationship Documents.\nNote that the bulk document API is not transactional!\n
  • #113 Note that the startkey and endkey parameters need to be URL encoded.\nNote that one must account for the &amp;#x201C;left&amp;#x201D; entity when using grouping levels.\nNote that UUIDs are especially useful for Relationship Documents.\nNote that the bulk document API is not transactional!\n
  • #114 Note that the startkey and endkey parameters need to be URL encoded.\nNote that one must account for the &amp;#x201C;left&amp;#x201D; entity when using grouping levels.\nNote that UUIDs are especially useful for Relationship Documents.\nNote that the bulk document API is not transactional!\n
  • #115 \n
  • #116 \n
  • #117 \n