Sigid
Hariyadi
DO – BOD – COD
Dept. Manajemen Sumberdaya Perairan - IPB
TINGKAT JENUH (SATURASI) OKSIGEN TERLARUT:
Dissolved Oxygen (DO)
http://eesc.columbia.edu/courses/ees/slides/climate/gas_comp.gif
http://www.bbc.co.uk/schools/gcsebitesize/science/im
ages/50_composition_of_the_earth.gif
 Efek ketinggian (altitude) :
ketinggian bertambah,  tekanan parsial gas menurun,  kelarutan
gas berkurang
ketinggian tingkat berkurangnya kelarutan
 0 - 600 m 4 % per 300 m
 600 - 1500 m 3 % per 300 m
 1500 - 3000 m 2,5 % per 300 m
 Efek temperatur : temperatur meningkat -- kelarutan berkurang
 Efek salinitas : adanya berbagai mineral terlarut -- menurunkan
kelarutan gas.
 tk. kejenuhan gas dalam air laut, 18 - 20 % lebih rendah daripada dalam akuades.
FAKTOR KELARUTAN / TINGKAT SATURASI OKSIGEN:
S %o = 0,030 + 1,805 Cl (%o)
S (ppm) = 30 + 1,805 Cl (ppm)
atau
Kandungan chloride (Cl) dihitung
berdasarkan nilai salinitas :
TINGKAT SATURASI O2 DI
PERAIRANLAUT
Dissolved Oxygen (DO)
• Oksigen adalah gas terlarut dalam air
• bila sampel terekspose ke udara  DO bisa berkurang
atau bertambah dari seharusnya
• pengambilan sampel utk titrasi  perlu alat khusus
DISTRIBUSI VERTIKAL O2
dipengaruhi oleh:  kondisi kelarutan
 hidrodinamika -- pergerakan air
 input fotosintesis
 penggunaan oleh biota &
proses-proses kimia
Bottle train sampler
Sigid
Hariyadi
Prinsip penentuan DO (metode Winkler/Iodometri):
endapan coklat

• bila tidak ada Oksigen:
endapan putih

proporsional dg jumlah O2 yang ada
penambahan asam

indikator
biru
tak berwarna
Sigid
Hariyadi
Modifikasi metode Winkler/Iodometri:
 Flokulasi alum : 10% K2SO4Al2(SO4)3 & 35% NaOH
 bila air keruh
Sulfamic acid : NH2SO2OH  bila kadar nitrit tinggi
azide alsterberg : NaN3  bila kadar nitrit & bhn organik tinggi


Pomeroy – Kirscman – Alsterberg : penggunaan NaI (6 N)
dan NaOH (10N) sbg pengganti NaOH + KI
 bila kadar oksigen lewat jenuh (over saturated)

Sigid
Hariyadi
Pengukuran dgn DO-meter:
1. Warming up (on & biarkan bbrp menit)
2. Kalibrasi alat pada angka nol (zero adjustment)
3. Kalibrasi alat pada “red line” (red line adjusment)
4. Kalibrasi alat thd kadar O2 udara pada temperatur
dan tekanan udara (atau ketinggian tempat)
 Standardisasi dgn metode Winkler pd sampel yg sama (scr periodik)
Prinsip Pengukuran:
Tekanan O2
dlm air
Sensor/
membran
arus
Jarum penunjuk skala
/ digital
Sigid
Hariyadi
Botol BOD
Sigid
Hariyadi
probe DO-meter
BOD (Biochemical Oxygen Demand):
(Biological)
( DOi - DO5 ) mg/L
 Inkubasi sampel dlm botol BOD pada 20oC selama 5 hari
 shg O2 terlarut pd hari ke-5 masih ada & terukur
 Perlu pengenceran yg cermat & aerasi
Botol gelap
Inkubasi 20oC
5 hari
DO5
DOi
Sigid
Hariyadi
–
2005/2007
 Bahan beracun: Hg, Cr6+, Cl2
 Kurangnya nutrien
 Kurangnya mikroorganisme/bakteri
 pH < 6½ atau pH > 8½
 Senyawa pengganggu:
Sigid
Hariyadi
–
2005/2007
Sigid
Hariyadi
BOD decomposition rates vary widely
DO
Consumed
(mg/l)
Decaying phytoplanton
biomass
Black water
organic matter
Municipal,
industrial
BOD loads
Time 5 days
BOD5
Sigid
Hariyadi
BOD decomposition rates vary widely
Time 50 days
5 days
Black water
organic matter
Municipal,
industrial
BOD loads
DO
Consumed
(mg/l)
Decaying phytoplanton
biomass
Sigid
Hariyadi
Sigid
Hariyadi
Pre – treatment:
Penambahan
Nutrien
&
Pengenceran
Sigid
Hariyadi
BOD (Biochemical Oxygen Demand):
BOD3  inkubasi pada 30 oC selama 3 hari
 Jenis dan jumlah bahan organik terlarut &
tersuspensi (koloid)
 Jenis dan jumlah (komposisi) mikroorganisme
pengurai
 kecukupan oksigen
Nilai
BOD :
 upayakan nilai DO5(end) sekitar 1 mg/L
 sebaiknya selisih DO berkisar 5 – 7
mg/L
 mengubah pH, seluruh
aktivitas ionik
 mengubah aktivitas organik
 mengubah salinitas
lingkungan fisik-
kimia-
biologi air sampel
Pengenceran:
Sigid
Hariyadi
–
2005/2007
(Tropik)
From: DHV Consultants BV & DELFT HYDRAULICS, 1999. Training module # WQ - 15
Understanding biochemical oxygen demand test. Hydrology Project Technical Assistance. New Delhi
COD (Chemical Oxygen Demand):
 Bhn organik  dioksidasi dg K2Cr2O7 pada kondisi asam & panas
 Kelebihan K2Cr2O7  dititrasi dg FAS (back titration) dg indikator
feroin
potassium dichromate
Ferrous Ammonium Sulfate
 perlu larutan blanko
 senyawa pengganggu: Cl (air laut), NO2
-
sulfamic acid
+ HgSO4 (200 mg/L per 1000 mg/L chloride)
S %o = 0,030 + 1,805 Cl (%o)
S (ppm) = 30 + 1,805 Cl (ppm)
atau
S= 30 %o = 30 000 ppm  Cl = 16603,88 ppm  3,321 g HgSO4 per
liter sampel
Contoh :
Sigid
Hariyadi
–
2005/2008
Reflux,
untuk penentuan
COD
Sigid
Hariyadi
Wastewater type BOD5 (mg/L) COD (mg/L)
Tomato processing 450 - 1,600 650 - 2,300
Corn processing 1,600 - 4,700 3,400 -10,100
Cherry processing 660 - 1,900 1,200 - 3,800
Poultry plant processing 150 - 2,400 200 - 3,200
Milk plant processing 940 - 4,790 1,240 - 7,800
Becker, 2000. University of Maryland
Perairan-peruntukan BOD (mg/L) COD (mg/L)
Air tawar – Kelas I 2 10
Air tawar – Kelas II 3 25
Air tawar – Kelas III 6 50
Air tawar – Kelas IV 12 100
Air laut - Biota 20 -
Air laut - Wisata 10 -
Air laut - Pelabuhan - -
→ rekreasi air
→ budidaya ikan, ternak
→ air baku minum
→ irigasi pertanian
Sigid
Hariyadi
25
 COD menggambarkan jumlah bahan organik total, baik
yang mudah urai maupun yang sulit urai
Berdasarkan prinsip analisisnya, maka dapat dikatakan
bahwa:
 BOD menggambarkan bahan organik mudah urai
 Nilai permanganat (TOM-total organic matter) TIDAK
pernah lebih besar daripada nilai COD, karena oksidator
yang digunakan pada analisis COD lebih kuat
 TVS (total volatile solids) juga menggambarkan bahan
organik berdasarkan prinsip analisis pembakaran residu
organik sampel pada suhu tinggi (550oC) dan gravimetri
 Parameter bahan organik lainnya adalah TOC (total
organic carbon)
Sigid
Hariyadi
26
BOD
COD
/ rasio antara bahan organik mudah urai dgn
bahan organik total/sulit urai
COD ≥ BOD
COD ≥ TOM
Total Organic Matter
oxidator: KMnO4
TVS Total Volatile Solid
TOC Total Organic Carbon
 bahan organik dibakar
 tidak mengukur Oksigen ekuivalensi
 dapat dihubungkan dgn BOD
COD
BOD
TOM
Sigid
Hariyadi
27
Total Carbon (TC) – all the carbon in the sample, including both inorganic and organic carbon
Total Inorganic Carbon (TIC) – often referred to as inorganic carbon (IC), carbonate, bicarbonate, and dissolved carbon dioxide (CO2); a
material derived from non-living sources.
Total Organic Carbon (TOC) – material derived from decaying vegetation, bacterial growth, and metabolic activities of living organisms or
chemicals.
Non-Purgeable Organic Carbon (NPOC) – commonly referred to as TOC; organic carbon remaining in an acidified sample after purging
the sample with gas.
Purgeable (volatile) Organic Carbon (POC) – organic carbon that has been removed from a neutral , or acidified sample by purging with an
inert gas. These are the same compounds referred to as Volatile Organic Compounds (VOC) and usually determined by Purge and Trap Gas
Chromatography.
Dissolved Organic Carbon (DOC) – organic carbon remaining in a sample after filtering the sample, typically using a 0.45 micrometer
filter.
Suspended Organic Carbon – also called particulate organic carbon (PtOC); the carbon in particulate form that is too large to pass through a
filter.
TOC:
1. Acidification
2. Oxidation
3. Detection and Quantification
Analysis of TOC:
Acidification :
The removal and venting of IC and POC gases from the liquid sample by acidification and sparging occurs in the following manner.
Oxidation :
The second stage is the oxidation of the carbon in the remaining sample in the form of carbon dioxide (CO2) and other gases.
Modern TOC analyzers perform this oxidation step by several processes:
1. High Temperature Combustion
2. High temperature catalytic (HTCO) oxidation
3. Photo-oxidation alone
4. Thermo-chemical oxidation
5. Photo-chemical oxidation
6. Electrolytic Oxidation
High temperature combustion:
Prepared samples are combusted at 1,350o C in an oxygen-rich atmosphere. All carbon present converts to carbon dioxide,
flows through scrubber tubes to remove interferences such as chlorine gas, and water vapor, and the carbon dioxide is
measured either by absorption into a strong base then weighed, or using an Infrared Detector.[3] Most modern analyzers use
non-dispersive infrared (NDIR) for detection of the carbon dioxide.
Detection and quantification:
Accurate detection and quantification are the most vital components of the TOC analysis process. Conductivity and non-dispersive
infrared (NDIR) are the two common detection methods used in modern TOC analyzers.
TOC:
do, bod dan cod ppt ENVIRONMENTAL ENGINEERING
do, bod dan cod ppt ENVIRONMENTAL ENGINEERING

do, bod dan cod ppt ENVIRONMENTAL ENGINEERING

  • 1.
    Sigid Hariyadi DO – BOD– COD Dept. Manajemen Sumberdaya Perairan - IPB
  • 2.
    TINGKAT JENUH (SATURASI)OKSIGEN TERLARUT: Dissolved Oxygen (DO)
  • 3.
  • 4.
     Efek ketinggian(altitude) : ketinggian bertambah,  tekanan parsial gas menurun,  kelarutan gas berkurang ketinggian tingkat berkurangnya kelarutan  0 - 600 m 4 % per 300 m  600 - 1500 m 3 % per 300 m  1500 - 3000 m 2,5 % per 300 m  Efek temperatur : temperatur meningkat -- kelarutan berkurang  Efek salinitas : adanya berbagai mineral terlarut -- menurunkan kelarutan gas.  tk. kejenuhan gas dalam air laut, 18 - 20 % lebih rendah daripada dalam akuades. FAKTOR KELARUTAN / TINGKAT SATURASI OKSIGEN:
  • 5.
    S %o =0,030 + 1,805 Cl (%o) S (ppm) = 30 + 1,805 Cl (ppm) atau Kandungan chloride (Cl) dihitung berdasarkan nilai salinitas : TINGKAT SATURASI O2 DI PERAIRANLAUT
  • 7.
    Dissolved Oxygen (DO) •Oksigen adalah gas terlarut dalam air • bila sampel terekspose ke udara  DO bisa berkurang atau bertambah dari seharusnya • pengambilan sampel utk titrasi  perlu alat khusus DISTRIBUSI VERTIKAL O2 dipengaruhi oleh:  kondisi kelarutan  hidrodinamika -- pergerakan air  input fotosintesis  penggunaan oleh biota & proses-proses kimia Bottle train sampler Sigid Hariyadi
  • 8.
    Prinsip penentuan DO(metode Winkler/Iodometri): endapan coklat  • bila tidak ada Oksigen: endapan putih  proporsional dg jumlah O2 yang ada penambahan asam  indikator biru tak berwarna Sigid Hariyadi
  • 9.
    Modifikasi metode Winkler/Iodometri: Flokulasi alum : 10% K2SO4Al2(SO4)3 & 35% NaOH  bila air keruh Sulfamic acid : NH2SO2OH  bila kadar nitrit tinggi azide alsterberg : NaN3  bila kadar nitrit & bhn organik tinggi   Pomeroy – Kirscman – Alsterberg : penggunaan NaI (6 N) dan NaOH (10N) sbg pengganti NaOH + KI  bila kadar oksigen lewat jenuh (over saturated)  Sigid Hariyadi
  • 10.
    Pengukuran dgn DO-meter: 1.Warming up (on & biarkan bbrp menit) 2. Kalibrasi alat pada angka nol (zero adjustment) 3. Kalibrasi alat pada “red line” (red line adjusment) 4. Kalibrasi alat thd kadar O2 udara pada temperatur dan tekanan udara (atau ketinggian tempat)  Standardisasi dgn metode Winkler pd sampel yg sama (scr periodik) Prinsip Pengukuran: Tekanan O2 dlm air Sensor/ membran arus Jarum penunjuk skala / digital Sigid Hariyadi
  • 11.
  • 12.
  • 13.
    BOD (Biochemical OxygenDemand): (Biological) ( DOi - DO5 ) mg/L  Inkubasi sampel dlm botol BOD pada 20oC selama 5 hari  shg O2 terlarut pd hari ke-5 masih ada & terukur  Perlu pengenceran yg cermat & aerasi Botol gelap Inkubasi 20oC 5 hari DO5 DOi Sigid Hariyadi – 2005/2007
  • 14.
     Bahan beracun:Hg, Cr6+, Cl2  Kurangnya nutrien  Kurangnya mikroorganisme/bakteri  pH < 6½ atau pH > 8½  Senyawa pengganggu: Sigid Hariyadi – 2005/2007
  • 15.
  • 16.
    BOD decomposition ratesvary widely DO Consumed (mg/l) Decaying phytoplanton biomass Black water organic matter Municipal, industrial BOD loads Time 5 days BOD5 Sigid Hariyadi
  • 17.
    BOD decomposition ratesvary widely Time 50 days 5 days Black water organic matter Municipal, industrial BOD loads DO Consumed (mg/l) Decaying phytoplanton biomass Sigid Hariyadi
  • 18.
  • 19.
  • 20.
    BOD (Biochemical OxygenDemand): BOD3  inkubasi pada 30 oC selama 3 hari  Jenis dan jumlah bahan organik terlarut & tersuspensi (koloid)  Jenis dan jumlah (komposisi) mikroorganisme pengurai  kecukupan oksigen Nilai BOD :  upayakan nilai DO5(end) sekitar 1 mg/L  sebaiknya selisih DO berkisar 5 – 7 mg/L  mengubah pH, seluruh aktivitas ionik  mengubah aktivitas organik  mengubah salinitas lingkungan fisik- kimia- biologi air sampel Pengenceran: Sigid Hariyadi – 2005/2007 (Tropik)
  • 21.
    From: DHV ConsultantsBV & DELFT HYDRAULICS, 1999. Training module # WQ - 15 Understanding biochemical oxygen demand test. Hydrology Project Technical Assistance. New Delhi
  • 22.
    COD (Chemical OxygenDemand):  Bhn organik  dioksidasi dg K2Cr2O7 pada kondisi asam & panas  Kelebihan K2Cr2O7  dititrasi dg FAS (back titration) dg indikator feroin potassium dichromate Ferrous Ammonium Sulfate  perlu larutan blanko  senyawa pengganggu: Cl (air laut), NO2 - sulfamic acid + HgSO4 (200 mg/L per 1000 mg/L chloride) S %o = 0,030 + 1,805 Cl (%o) S (ppm) = 30 + 1,805 Cl (ppm) atau S= 30 %o = 30 000 ppm  Cl = 16603,88 ppm  3,321 g HgSO4 per liter sampel Contoh : Sigid Hariyadi – 2005/2008
  • 23.
  • 24.
    Wastewater type BOD5(mg/L) COD (mg/L) Tomato processing 450 - 1,600 650 - 2,300 Corn processing 1,600 - 4,700 3,400 -10,100 Cherry processing 660 - 1,900 1,200 - 3,800 Poultry plant processing 150 - 2,400 200 - 3,200 Milk plant processing 940 - 4,790 1,240 - 7,800 Becker, 2000. University of Maryland
  • 25.
    Perairan-peruntukan BOD (mg/L)COD (mg/L) Air tawar – Kelas I 2 10 Air tawar – Kelas II 3 25 Air tawar – Kelas III 6 50 Air tawar – Kelas IV 12 100 Air laut - Biota 20 - Air laut - Wisata 10 - Air laut - Pelabuhan - - → rekreasi air → budidaya ikan, ternak → air baku minum → irigasi pertanian Sigid Hariyadi 25
  • 26.
     COD menggambarkanjumlah bahan organik total, baik yang mudah urai maupun yang sulit urai Berdasarkan prinsip analisisnya, maka dapat dikatakan bahwa:  BOD menggambarkan bahan organik mudah urai  Nilai permanganat (TOM-total organic matter) TIDAK pernah lebih besar daripada nilai COD, karena oksidator yang digunakan pada analisis COD lebih kuat  TVS (total volatile solids) juga menggambarkan bahan organik berdasarkan prinsip analisis pembakaran residu organik sampel pada suhu tinggi (550oC) dan gravimetri  Parameter bahan organik lainnya adalah TOC (total organic carbon) Sigid Hariyadi 26
  • 27.
    BOD COD / rasio antarabahan organik mudah urai dgn bahan organik total/sulit urai COD ≥ BOD COD ≥ TOM Total Organic Matter oxidator: KMnO4 TVS Total Volatile Solid TOC Total Organic Carbon  bahan organik dibakar  tidak mengukur Oksigen ekuivalensi  dapat dihubungkan dgn BOD COD BOD TOM Sigid Hariyadi 27
  • 28.
    Total Carbon (TC)– all the carbon in the sample, including both inorganic and organic carbon Total Inorganic Carbon (TIC) – often referred to as inorganic carbon (IC), carbonate, bicarbonate, and dissolved carbon dioxide (CO2); a material derived from non-living sources. Total Organic Carbon (TOC) – material derived from decaying vegetation, bacterial growth, and metabolic activities of living organisms or chemicals. Non-Purgeable Organic Carbon (NPOC) – commonly referred to as TOC; organic carbon remaining in an acidified sample after purging the sample with gas. Purgeable (volatile) Organic Carbon (POC) – organic carbon that has been removed from a neutral , or acidified sample by purging with an inert gas. These are the same compounds referred to as Volatile Organic Compounds (VOC) and usually determined by Purge and Trap Gas Chromatography. Dissolved Organic Carbon (DOC) – organic carbon remaining in a sample after filtering the sample, typically using a 0.45 micrometer filter. Suspended Organic Carbon – also called particulate organic carbon (PtOC); the carbon in particulate form that is too large to pass through a filter. TOC:
  • 29.
    1. Acidification 2. Oxidation 3.Detection and Quantification Analysis of TOC: Acidification : The removal and venting of IC and POC gases from the liquid sample by acidification and sparging occurs in the following manner. Oxidation : The second stage is the oxidation of the carbon in the remaining sample in the form of carbon dioxide (CO2) and other gases. Modern TOC analyzers perform this oxidation step by several processes: 1. High Temperature Combustion 2. High temperature catalytic (HTCO) oxidation 3. Photo-oxidation alone 4. Thermo-chemical oxidation 5. Photo-chemical oxidation 6. Electrolytic Oxidation High temperature combustion: Prepared samples are combusted at 1,350o C in an oxygen-rich atmosphere. All carbon present converts to carbon dioxide, flows through scrubber tubes to remove interferences such as chlorine gas, and water vapor, and the carbon dioxide is measured either by absorption into a strong base then weighed, or using an Infrared Detector.[3] Most modern analyzers use non-dispersive infrared (NDIR) for detection of the carbon dioxide. Detection and quantification: Accurate detection and quantification are the most vital components of the TOC analysis process. Conductivity and non-dispersive infrared (NDIR) are the two common detection methods used in modern TOC analyzers. TOC: