SlideShare a Scribd company logo
Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN:
2278-0181
Vol. 5 Issue 07, July-2016
IJERTV5IS070313 www.ijert.org 1
(This work is licensed under a Creative Commons Attribution 4.0 International License.)
Diseño, Análisis y Optimización de Chasis de Coches
de Carreras por su Rendimiento Estructural
Chandan S N1
M.Tech., Student (Machine Design),
Department of Mechanical Engineering,
Nitte Meenakshi Institute of Technology,
Bangalore-64, India.
Sandeep G M2
Assistant Professor,
Department of Mechanical Engineering,
Nitte Meenakshi Institute of Technology,
Bangalore-64, India.
Vinayaka N3
Assistant Professor,
Department of Mechanical Engineering,
Nitte Meenakshi Institute of
Technology, Bangalore-64,
India.
Resumen- Las competiciones de Formula Student
Racing se llevan a cabo en varios circuitos de Fórmula
SAE a nivel mundial. El chasis sirve como el
componente importante en el diseño del coche de
carreras. Por lo tanto, se espera un análisis solícito
fuera del coche de fórmula. También se observa que el
peso del automóvil es inversamente proporcional al
rendimiento del automóvil, por lo tanto, necesita
optimización. Un sistema de protección de alta
velocidad juega un papel importante en el diseño del
coche de carreras, como el impacto frontal, el impacto
trasero, el impacto lateral y el análisis de vuelco.
Además, existe un problema de rigidez torsional en
cuanto a la dinámica se considera. Este documento
tiene como objetivo los aspectos de diseño y las ideas
de análisis del coche de carreras. El automóvil está
modelado de acuerdo con el percentil 95 macho que
puede caber dentro de la cabina del chasis. A medida
que el automóvil viaja a alta velocidad, la protección
se ha diseñado para el automóvil de tal manera que las
tensiones son mínimas y el rendimiento es máximo.
Los métodos de elementos finitos se utilizan para el
análisis y el diseño de experiencias ...
Palabras clave: Diseño, análisis de elementos finitos,
rigidez torsional, chasis de bastidor espacial tubular y
optimización
1. INTRODUCTION
El chasis es el miembro de soporte para todos los
componentes del automóvil. Soporta la carrocería, el
motor y otras partes que componen el vehículo. El
chasis proporciona el soporte completo del vehículo y
la rigidez. La propuesta del chasis automotriz es cuidar
la forma del vehículo y apoyar los cientos variados
aplicados para que la protección del chasis pueda ser
una faceta importante dentro del estilo, y se pueda
pensar en todas las etapas. El chasis se tiene en cuenta
para ser una entre las muchas estructuras de
automóviles asociados. A veces se fabrica a partir de
un marco de acero que sostiene el motor asociado a la
carrocería de un vehículo automotriz. Para ser
precisos, el chasis automotriz o el chasis del automóvil
podría ser un bastidor que atornilla numerosos
elementos mecánicos como el motor, los neumáticos,
los frenos, la dirección y los conjuntos de ejes. En
general, la clasificación esencial del chasis contiene la
columna vertebral, la escalera, el marco espacial y el
monocasco, los diferentes tipos de estilo de chasis dan
como resultado los diversos rendimientos.
2. DESIGN METHODOLOGY
Se eligió un chasis de bastidor espacial sobre una
variedad alternativa de chasis. El principio
fundamental de un diseño de chasis establece que el
Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181
Vol. 5 Issue 07, July-2016
IJERTV5IS070313 www.ijert.org 2
(This work is licensed under a Creative Commons Attribution 4.0 International License.)
chasis debe diseñarse para lograr la rigidez torsional y
el peso ligero con el fin de lograr un buen rendimiento
de manejo de un automóvil de carreras. Por definición,
la rigidez torsional se refiere a la capacidad del chasis
para resistir la fuerza de torsión o el par. En otras
palabras, la rigidez torsional es la cantidad de par
requerida para torcer el cuadro en un grado. Durante
la entrada en la esquina, si la rigidez torsional es
demasiado pequeña, el chasis se desprenderá. Si la
rigidez torsional es demasiado grande, entonces la
entrada en la curva es difícil y conduce a la tendencia
de la dirección inferior. Estos parámetros se aplican
conjuntamente al chasis del bastidor espacial.
Generalmente, el resultado de la rigidez torsional en el
marco espacial es totalmente diferente al monocasco,
gracias a su formato de construcción. El chasis del
bastidor espacial es liviano, ya que su fabricación es
rentable, requiere ...
2.1 Basic Design
Durante las etapas iniciales del estilo de chasis se
montaron cuatro secciones transversales principales
del chasis específicamente, el aro de balanceo
delantero, el aro de balanceo principal, el cabezal de
bulto delantero y, por lo tanto, el cabezal de granel
trasero. La posición del aro más rodado se montó
teniendo en cuenta los puntos de montaje del motor
y las posiciones del eje de transmisión que se
montaron anteriormente, se utilizó un área mínima en
blanco para el motor y, por lo tanto, los elementos del
tren de transmisión y proporcionó la mayor parte del
espacio dentro del espacio de la cabina del conductor
para una mayor comodidad.
El tamaño de la cabina se tomó del libro de reglas de
SAE con gran tolerancia para incorporar el conductor
masculino del percentil 95 y un espacio de cabina más
grande para mantener las baterías e instalar el tanque
de combustible. El primer y principal paso para el
aspecto del chasis es buscar las condiciones de
contorno y, por lo tanto, la colocación de los
elementos. Teniendo esto en cuenta, hemos
comenzado a dibujar diagramas de líneas, por lo que
los transferimos a un modelo CATIA. Aunque el
análisis estaba en el otro lado de nuestro horizonte en
este punto una vez varias iteraciones y discusión,
hemos vuelto con lo último estilo de chasis que tiene
la capacidad de poseer una tensión reducida (el
análisis una parte del informe puede concentrarse
mucho en la reducción de la tensión)
El diseño está modelado en el software Catia. El
chasis final obtenido es:
Figure 1: Final Chassis Tubing
3. MATERIAL SELECTION
La clave para el buen chasis es seleccionar buenos
materiales, de hecho, los mejores. Esto nos hizo
pensarlo dos veces antes de seleccionar el
material. Para este propósito hicimos una extensa
investigación sobre los materiales. Los principales
factores para nuestra comparación se basaron
completamente en la resistencia, el peso, el costo,
la disponibilidad, la resistencia a la corrosión y la
soldabilidad. Los dos materiales muy utilizados
para hacer el chasis del bastidor espacial son el
acero al cromo molibdeno (Chromoly) y SAE-AISI
1018. Ambos materiales fueron analizados para
diferentes parámetros. Basado en la resistencia y
disponibilidad de la soldadura. Por lo tanto, el
acero siempre es adecuado. Al recubrir el material
apropiado, se puede resistir la corrosión.
Descubrimos que AISI SAE 1018 es adecuado para
nuestra aplicación.
Las propiedades de los materiales elegidos son
Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181
Vol. 5 Issue 07, July-2016
IJERTV5IS070313 www.ijert.org 3
(This work is licensed under a Creative Commons Attribution 4.0 International License.)
Table 1: Material properties
Material SAE 1018
Tensile strength 630 MPa
Yield strength 385MPa
Poisson’s ratio 0.29
Modulus of elasticity 210 GPa
% elongation 27
Carbon 0.182%
Manganese 0.645%
Sulphur 0.64%
Phosphor 0.03
Geometry Circular Hallow tube
Weld ability Good
4. ANALYSIS
Los cálculos teóricos manuales de todo el chasis van a
ser extremadamente difíciles debido a la complejidad
en el manejo de las ecuaciones, para reducir el
esfuerzo humano, las formas de la máquina se utilizan
ampliamente para el análisis y la validación. El análisis
de elementos finitos es uno de los tipos prominentes
de métodos computacionales que están disponibles
en el mercado para uso comercial. El paquete de
software ANSYS APDL Mechanical 16.0 ha sido elegido
para intentar hacer análisis del chasis.
Types of Analysis:
1. Punto de recogida de la suspensión de
fijación de impacto delantero
2. Impacto lateral con la pared en el otro
extremo.
3. Roll over analysis
4. 4. Rear impact analysis. 5. Torsional
rigidity
6. Modal analysis.
General Steps done during the analysis:
The following steps are used for analysis
This procedure has been used for the analysis,
Sampling points used for design of experiments are
calculated by doing the sensitivity analysis.
4.1 Front Impact analysis
It has been assumed that the vehicle has front
collision with other stationary vehicle of 300kg,
considering our vehicle is moving at its maximum
speed 60 kph and stops at 0.1 sec. The force acting
on the vehicle is calculated and found 35312N or 12G
load.
Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN:
2278-0181
Vol. 5 Issue 07, July-2016
IJERTV5IS070313 www.ijert.org 4
(This work is licensed under a Creative Commons Attribution 4.0 International License.)
4.2 Rear Impact Analysis
It has been assumed that the vehicle collides
with other stationary vehicle of 300kg,
considering our vehicle is moving at its
maximum speed 60 kph and stops at 0.1 sec.
The force acting on the vehicle is calculated
and found 8829N or 3G load.
Table 3: Showing results of Rear impact analysis
Force acting 7357.5 N
Type To the side impact members
Fixing points Other side of side impact
members
Max von mises stress 193.112 MPa
Factor of safety 1.99
Maximum deflection 3.8628 mm
Mesh size divisions per line
Convergence criteria By varying space step(
Htype)
Force acting 8829 N
Type To the rear 4 key points
Fixing points Suspension pick up points in front
Max von mises stress 272.391MPa
Factor of safety 1.413
Table 2:Showing results of the front Impact.
Force acting N
35312
Type To the front 4 Nodes
Fixing points Suspension pick up
points
Max von mises stress MPa
202.87
Factor of safety 1.897
Max deflection 1.224 mm
Mesh size divisions per line
60
Convergence criteria By varying space step( H-type)
Figure 2: Von-mises stress
Figure 3: Von-mises stress
Side Impact of the Chassis
4.3
It has been assumed that the vehicle collides with other
stationary vehicle of 300kg, considering our vehicle is
moving at its maximum speed 60 kph and stops at 0.1 sec.
The force acting on the vehicle is calculated and found
N or 2.5G load.
7357.5
Table 4:Showing results of Side impact analysis
Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN:
2278-0181
Vol. 5 Issue 07, July-2016
IJERTV5IS070313 www.ijert.org 5
(This work is licensed under a Creative Commons Attribution 4.0 International License.)
Figure 4: von-mises stress
4.4 Roll over analysis
It has been assumed that the vehicle collides with
other stationary vehicle of 300kg, considering our
vehicle is moving at its maximum speed 60 kph and
stops at 0.1 sec. The force acting on the vehicle is
calculated and found 8829N or 3G load.
Table 5: Showing results of Roll over analysis
Force acting 8829 N
Type Acting on front and main roll hoop
Fixing points Bottom of the chassis
Max von mises stress 101.66 MPa
Factor of safety 3.787
Maximum deflection 0.4602 mm
Mesh size 60 divisions per line
Convergence criteria By varying space step( H-type)
Figure 5: von-mises stress
4.5 Torsional rigidity of chassis
Torsion is one of the main considerations while
designing chassis, torsional rigidity of the chassis is
found by applying the force at the front end as a
couple and fixing the rear end.
Maximum deflection 4.957mm
Mesh size 60 divisions per line
Convergence criteria By varying space step( H-type)
Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181
Vol. 5 Issue 07, July-2016
IJERTV5IS070313 www.ijert.org 6
(This work is licensed under a Creative Commons Attribution 4.0 International License.)
Force = 1000N
L = 560mm
Applying the force and getting deflection from Ansys,
taking the mean deflection as δ.
Mean deflection is half of the maximum deflection.
Then the torsional rigidity is found out to be
1463.37Nm/deg.
Figure 6: Deflection due to torsion.
The analysis results are shown in table
Table 6: Finite Element Analysis Results
Test
Maximum
deformation
(mm)
Maximum
Von Misses
Stress
(MPa)
Factor
of
Safety
Front impact
1.244 202.87 1.897
Rear impact
4.957 272.391 1.413
Side impact
3.8628 193.112 1.99
Roll over
0.4602 101.666 3.787
4.6 Modal Analysis
Modal analysis determines the vibration mode shapes
and corresponding frequencies. It is well known that
(mechanical) structures can resonate, i.e. that small
forces may end up in necessary deformation, and
presumably, harm will be elicited within the
structure. Resonance is often the cause of, or at
least a contributing factor to many of the vibration
and noise associated problems that occur in
structures and operating machinery. To better
understand any structural vibration problem, the
resonant frequencies of a structure ought to be
Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181
Vol. 5 Issue 07, July-2016
IJERTV5IS070313 www.ijert.org 7
(This work is licensed under a Creative Commons Attribution 4.0 International License.)
known and quantified. Today, modal analysis has
turn out to be a sizeable means of finding the modes
of vibration of a system or structure. Modal analysis
has been performed after creating the chassis finite
element model. The mode shapes are shown below
Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181
Vol. 5 Issue 07, July-2016
IJERTV5IS070313 www.ijert.org 8
(This work is licensed under a Creative Commons Attribution 4.0 International License.)
Figure 8: 2nd mode displacement at the 55.611Hz frequency
Figure 7: 1st
mode displacement at the 54.45Hz frequency
The first 10 modes of frequency are shown below
4.7Campbell diagram
A Campbell diagram plot represents a system's response
spectrum as a function of its oscillation regime.
Campbell diagram is a plot betweenthe excitation
frequency from the 0-max speed with
respect to the natural
forced vibrationof the chassis. The evolutions of the
natural frequencies corresponding to a mode are drawn in
function of the rotation speed of the shaft.
The 10,000rpm is the engine rpm at the max, usually
considering the idle speedof the engine is not at all
allowed as the engine speed is always changing. The
natural frequency of the chassis
doesn’tchange with respect
to the engine speed where it
have no control over hence the
chassis frequency is considered to be constant for all rpm.
Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181
Vol. 5 Issue 07, July-2016
IJERTV5IS070313 www.ijert.org 9
(This work is licensed under a Creative Commons Attribution 4.0 International License.)
Figure 9: 3rd
mode displacement at the 68.034Hz frequency Figure 10: Campbell diagram
It can be seen very clearly that the 1x mode is
resonating st with respect to the 1 mode at the
speed of 4800rpm th
and 5 mode at 93% speed. Also, till 4x speeds there
pose no danger to the natural frequency of the chassis
st
expect the 1 mode and the 1x resonance. But as the
resonating speed is 50% lesser than the operating
speed pose no danger to the overall structural
integrity of the system.
5. OPTIMIZATION
Choosing the best solution from the available solution.
Minitab software is used for the optimization here. DOE
is created using the factors influence for the stresses.
Design points are constructed as per the model.
Orthogonal arrays were proved to be more efficient
compared to the other arrays used in screening but are
more tedious. L9, L16, L25, L36 … can be used for the
optimisation purpose depending on the inputs. It is
noted that the design points are again iterations carried
out in Ansys. L16 array would be good and sufficient
enough to determine the best solution with least error
and residuals. Hence L16 array is considered and each
of the design samples for each type of analysis is
tabulated here.
From the sampling points, the optimisation can be
done. Orthogonal regression model uses the algebraic
equations for creation of the continuity between
thickness, Diameter and stress. If the thickness is
chosen is chosen to be as the continuous predictor then
the model is called as the horizontal continuous model.
If the radius is chosen as the continuous predictor then
the model is called as the vertical continuous model.
In the poisons regression is used instead of the
orthogonal model then the equations used are not of
linear form but are logarithmic. And thus obtaining the
continuity. A target value of 200MPa is chosen as the
desired stress value for the optimisation.
This method gives the optimisation and the results
of sampling points and the optimised results in all
the models.
Front Impact Design points and optimization:
Figure 11: contour plot of the variation of stress with R4 and T4.
Observation Table 7:
Model Orthogonal
Horizontal
Orthogonal
Vertical
Poisons
Horizontal
Poisons
Vertical
R square
Value
97.40% 93.83% 99.50% 98.91%
R adjusted
value
96.46% 91.58% 98.54% 97.95%
Radius
Value(mm)
14.7 13.5160 12.7 13.9652
Thickness
Value(mm)
1.05035 1.4 1.47983 1.2
Side Impact Design points and optimisation:
Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181
Vol. 5 Issue 07, July-2016
IJERTV5IS070313 www.ijert.org 10
(This work is licensed under a Creative Commons Attribution 4.0 International License.)
Figure 12: contour plot of the variation of stress with R1 and T1.
Observation Table 8:
Model Orthogonal
Horizontal
Orthogo
nal
Vertical
Poisons
Horizontal
Poisons
Vertical
R square
Value
96.63% 94.04% 98.11% 97.16%
R adjusted
value
95.41% 91.88% 96.36% 95.41%
Radius
Value(mm)
16.7 16.6867 16.7 15.3366
Thickness
Value(mm)
1.34635 1.2 1.3470 1.6
Rear Impact Design points and optimisation:
Figure 13: Contour plot of the variation of stress with R4 and T4.
Observation Table 9:
Model Orthogonal
Horizontal
Orthogonal
Vertical
Poisons
Horizontal
Poisons
Vertical
R square
Value
98.50% 96.05% 99.86% 99.60%
R adjusted
value
97.95% 94.61% 99.05% 98.01%
Radius
Value(mm)
16.7 16.2659 14.7 14.6354
Thickness
Value(mm)
1.2252 1.2 1.5436 1.6
Roll over Design points and optimisation:
Observation Table 10:
Model Orthogonal
Horizontal
Orthogonal
Vertical
Poisons
Horizontal
Poisons
Vertical
R square
Value
99.19% 98.31% 99.71% 99.76%
R adjusted
value
98.89% 97.69% 97.58% 97.63%
Radius
Value(mm)
10.7 13.0471 12.7 11.6922
Thickness
Value(mm)
1.4737 1.0 1.0114 1.2
Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181
Vol. 5 Issue 07, July-2016
IJERTV5IS070313 www.ijert.org 11
(This work is licensed under a Creative Commons Attribution 4.0 International License.)
Figure 14: Contour plot of the variation of stress with R1 and T1.
6. CONCLUSION
From the above table it is clear the model having the
highest accuracy that is R-Square value will have
reduced root mean square error. From the
optimisation, these values are concluded as the best
possible results for the chassis with the reduced stress
and the weight with target stress values.
Table 11: Optimum solution
Radius Value(mm) Thickness
(mm)
Value(mm)
R4(Front) 13.30 T4(Front) 1.35
R4(Rear) 13.10 T4(rear) 1.98
R1 13.10 T1 1.45
R2 13.10 T2 1.4
R3 12.7 T3 1.4
REFERENCES
[1] Mohd hanif Mat, Amir Radzi Ab. Ghani “Design and analysis of “Eco” car
chassis” Automotive research and testing centre (ARTeC), Univeristi
teknologi MARA shah Alam, Malaysia. International Symposium on
Robotics and Intelligent Sensors 2012 (IRIS 2012). Procedia
Engineering 41 (2012) 1756 – 1760, Elsevier
[2] Mohammad Al bukhari mazuki, Mohd Arzo Abu bukar,
Mohammad Firdaus Mohammed Azmi “ designing space frame
Race car chassis structure using natural frequencies Data from
ansys mode shape results analysis”, international journal of
information systems and engineering, Volume 1(No 1), April 2015
ISSN 2289-2265
[3] Ravinder pal Singh, “Structural performance analysis of formula
SAE car” Journal Mekanikal No 31, 46-61
[4] Simonetta Boria, university of Pisa. “Numerical simulation of
crashTest for a formula SAE car” has claimed about the crash test
of FSAE car chassis. Paper number 09-0152
[5] Brendan J Waterman, university of Western Australia, Master
thesis “Design and construction of a space frame chassis”
[6] Jannis D.G van kelchoven, Master’s thesis, Technische universiteit
Eindhoven “Design of a formula student race car chassis”
[7] AA Faieza, S.M sapun, MKA Ariffin, BTHT Baharudin and EE
Supeni in the paper “Design and fabrication of a student
competition based racing car” Scientific research and Essay Vol
4 (5) pp. 361366, ISSN 1992-2248, Academic journal.
[8] Abrams, Ryan, “Formula SAE race car analysis-simulation &
testing of the engine as a structural member”, F2008-SC-005. [9]
The book “Machine Design” by NORTON.

More Related Content

What's hot

Structural Simulation of Car Rim using Finite Element Method
Structural Simulation of Car Rim using Finite Element MethodStructural Simulation of Car Rim using Finite Element Method
Structural Simulation of Car Rim using Finite Element Method
IRJET Journal
 
O044067073
O044067073O044067073
O044067073
IJERA Editor
 
DESIGN AND FINITE ELEMENT ANALYSIS FOR STATIC AND DYNAMIC BEHAVIOR OF COMPOSI...
DESIGN AND FINITE ELEMENT ANALYSIS FOR STATIC AND DYNAMIC BEHAVIOR OF COMPOSI...DESIGN AND FINITE ELEMENT ANALYSIS FOR STATIC AND DYNAMIC BEHAVIOR OF COMPOSI...
DESIGN AND FINITE ELEMENT ANALYSIS FOR STATIC AND DYNAMIC BEHAVIOR OF COMPOSI...
Salim Malik
 
J012518692
J012518692J012518692
J012518692
IOSR Journals
 
Optimization of chassis ansys
Optimization of chassis ansysOptimization of chassis ansys
Optimization of chassis ansys
CADmantra Technologies
 
Stress analysis and optimization of crankshaft under dynamic loading 2
Stress analysis and optimization of crankshaft under dynamic loading 2Stress analysis and optimization of crankshaft under dynamic loading 2
Stress analysis and optimization of crankshaft under dynamic loading 2IAEME Publication
 
Fatigue simulation of automobile antiroll bars
Fatigue simulation of automobile antiroll barsFatigue simulation of automobile antiroll bars
Fatigue simulation of automobile antiroll bars
Padmanabhan Krishnan
 
FE Analysis of Hollow Propeller Shaft using Steel and Composite Material then...
FE Analysis of Hollow Propeller Shaft using Steel and Composite Material then...FE Analysis of Hollow Propeller Shaft using Steel and Composite Material then...
FE Analysis of Hollow Propeller Shaft using Steel and Composite Material then...
ijsrd.com
 
Optimum design of automotive composite drive shaft
Optimum design of automotive composite drive shaftOptimum design of automotive composite drive shaft
Optimum design of automotive composite drive shaftiaemedu
 
Static Analysis of Mobile Launch Pedestal
Static Analysis of Mobile Launch PedestalStatic Analysis of Mobile Launch Pedestal
Static Analysis of Mobile Launch Pedestal
inventionjournals
 
Driveshaft presentation 03
Driveshaft presentation 03Driveshaft presentation 03
Driveshaft presentation 03Franco Pezza
 
Structural and Fatigue Analysis of Two Wheeler Lighter Weight Alloy Wheel
Structural and Fatigue Analysis of Two Wheeler Lighter Weight Alloy WheelStructural and Fatigue Analysis of Two Wheeler Lighter Weight Alloy Wheel
Structural and Fatigue Analysis of Two Wheeler Lighter Weight Alloy Wheel
IOSR Journals
 
Finite Element Analysis and Design Optimization of Connecting Rod
Finite Element Analysis and Design Optimization of Connecting RodFinite Element Analysis and Design Optimization of Connecting Rod
Finite Element Analysis and Design Optimization of Connecting Rod
IJERA Editor
 
Modeling, simulation and optimization analysis of steering knuckle component ...
Modeling, simulation and optimization analysis of steering knuckle component ...Modeling, simulation and optimization analysis of steering knuckle component ...
Modeling, simulation and optimization analysis of steering knuckle component ...
eSAT Journals
 
Design analysis of the roll cage for all terrain
Design analysis of the roll cage for all   terrainDesign analysis of the roll cage for all   terrain
Design analysis of the roll cage for all terraineSAT Publishing House
 
design and analysis of composite leaf spring for light weight vehicle
 design and analysis of composite leaf spring for light weight vehicle design and analysis of composite leaf spring for light weight vehicle
design and analysis of composite leaf spring for light weight vehicle
Er Deepak Sharma
 
IRJET- Study of Hollow Corrugated Columns with Perforations
IRJET-  	  Study of Hollow Corrugated Columns with PerforationsIRJET-  	  Study of Hollow Corrugated Columns with Perforations
IRJET- Study of Hollow Corrugated Columns with Perforations
IRJET Journal
 
Finite Element Analysis of Fire Truck Chassis for Steel and Carbon Fiber Mate...
Finite Element Analysis of Fire Truck Chassis for Steel and Carbon Fiber Mate...Finite Element Analysis of Fire Truck Chassis for Steel and Carbon Fiber Mate...
Finite Element Analysis of Fire Truck Chassis for Steel and Carbon Fiber Mate...
IJERA Editor
 
Static and Dynamic analysis of a composite leaf spring
Static and Dynamic analysis of a composite leaf springStatic and Dynamic analysis of a composite leaf spring
Static and Dynamic analysis of a composite leaf spring
Himanshu Arun Raut
 

What's hot (19)

Structural Simulation of Car Rim using Finite Element Method
Structural Simulation of Car Rim using Finite Element MethodStructural Simulation of Car Rim using Finite Element Method
Structural Simulation of Car Rim using Finite Element Method
 
O044067073
O044067073O044067073
O044067073
 
DESIGN AND FINITE ELEMENT ANALYSIS FOR STATIC AND DYNAMIC BEHAVIOR OF COMPOSI...
DESIGN AND FINITE ELEMENT ANALYSIS FOR STATIC AND DYNAMIC BEHAVIOR OF COMPOSI...DESIGN AND FINITE ELEMENT ANALYSIS FOR STATIC AND DYNAMIC BEHAVIOR OF COMPOSI...
DESIGN AND FINITE ELEMENT ANALYSIS FOR STATIC AND DYNAMIC BEHAVIOR OF COMPOSI...
 
J012518692
J012518692J012518692
J012518692
 
Optimization of chassis ansys
Optimization of chassis ansysOptimization of chassis ansys
Optimization of chassis ansys
 
Stress analysis and optimization of crankshaft under dynamic loading 2
Stress analysis and optimization of crankshaft under dynamic loading 2Stress analysis and optimization of crankshaft under dynamic loading 2
Stress analysis and optimization of crankshaft under dynamic loading 2
 
Fatigue simulation of automobile antiroll bars
Fatigue simulation of automobile antiroll barsFatigue simulation of automobile antiroll bars
Fatigue simulation of automobile antiroll bars
 
FE Analysis of Hollow Propeller Shaft using Steel and Composite Material then...
FE Analysis of Hollow Propeller Shaft using Steel and Composite Material then...FE Analysis of Hollow Propeller Shaft using Steel and Composite Material then...
FE Analysis of Hollow Propeller Shaft using Steel and Composite Material then...
 
Optimum design of automotive composite drive shaft
Optimum design of automotive composite drive shaftOptimum design of automotive composite drive shaft
Optimum design of automotive composite drive shaft
 
Static Analysis of Mobile Launch Pedestal
Static Analysis of Mobile Launch PedestalStatic Analysis of Mobile Launch Pedestal
Static Analysis of Mobile Launch Pedestal
 
Driveshaft presentation 03
Driveshaft presentation 03Driveshaft presentation 03
Driveshaft presentation 03
 
Structural and Fatigue Analysis of Two Wheeler Lighter Weight Alloy Wheel
Structural and Fatigue Analysis of Two Wheeler Lighter Weight Alloy WheelStructural and Fatigue Analysis of Two Wheeler Lighter Weight Alloy Wheel
Structural and Fatigue Analysis of Two Wheeler Lighter Weight Alloy Wheel
 
Finite Element Analysis and Design Optimization of Connecting Rod
Finite Element Analysis and Design Optimization of Connecting RodFinite Element Analysis and Design Optimization of Connecting Rod
Finite Element Analysis and Design Optimization of Connecting Rod
 
Modeling, simulation and optimization analysis of steering knuckle component ...
Modeling, simulation and optimization analysis of steering knuckle component ...Modeling, simulation and optimization analysis of steering knuckle component ...
Modeling, simulation and optimization analysis of steering knuckle component ...
 
Design analysis of the roll cage for all terrain
Design analysis of the roll cage for all   terrainDesign analysis of the roll cage for all   terrain
Design analysis of the roll cage for all terrain
 
design and analysis of composite leaf spring for light weight vehicle
 design and analysis of composite leaf spring for light weight vehicle design and analysis of composite leaf spring for light weight vehicle
design and analysis of composite leaf spring for light weight vehicle
 
IRJET- Study of Hollow Corrugated Columns with Perforations
IRJET-  	  Study of Hollow Corrugated Columns with PerforationsIRJET-  	  Study of Hollow Corrugated Columns with Perforations
IRJET- Study of Hollow Corrugated Columns with Perforations
 
Finite Element Analysis of Fire Truck Chassis for Steel and Carbon Fiber Mate...
Finite Element Analysis of Fire Truck Chassis for Steel and Carbon Fiber Mate...Finite Element Analysis of Fire Truck Chassis for Steel and Carbon Fiber Mate...
Finite Element Analysis of Fire Truck Chassis for Steel and Carbon Fiber Mate...
 
Static and Dynamic analysis of a composite leaf spring
Static and Dynamic analysis of a composite leaf springStatic and Dynamic analysis of a composite leaf spring
Static and Dynamic analysis of a composite leaf spring
 

Similar to Diseño, análisis y optimización de chasis de coches de carreras por su rendimiento estructural

IRJET- Design Analysis and Optimization of Two-Wheeler Chassis for Weight Red...
IRJET- Design Analysis and Optimization of Two-Wheeler Chassis for Weight Red...IRJET- Design Analysis and Optimization of Two-Wheeler Chassis for Weight Red...
IRJET- Design Analysis and Optimization of Two-Wheeler Chassis for Weight Red...
IRJET Journal
 
Design and Analysis of Brat Scramble Motorcycles A Review
Design and Analysis of Brat Scramble Motorcycles A ReviewDesign and Analysis of Brat Scramble Motorcycles A Review
Design and Analysis of Brat Scramble Motorcycles A Review
IRJET Journal
 
Structural Analysis of Ladder Chassis Frame for Jeep Using Ansys
Structural Analysis of Ladder Chassis Frame for Jeep Using  Ansys Structural Analysis of Ladder Chassis Frame for Jeep Using  Ansys
Structural Analysis of Ladder Chassis Frame for Jeep Using Ansys
IJMER
 
A Review Design of Effective Braking and Efficient Transmission System
A Review Design of Effective Braking and Efficient Transmission SystemA Review Design of Effective Braking and Efficient Transmission System
A Review Design of Effective Braking and Efficient Transmission System
ijtsrd
 
IRJET- Design and Analysis of Steering Knuckle for Electric ATV
IRJET- Design and Analysis of Steering Knuckle for Electric ATVIRJET- Design and Analysis of Steering Knuckle for Electric ATV
IRJET- Design and Analysis of Steering Knuckle for Electric ATV
IRJET Journal
 
https://irjet.net/archives/V4/i7/IRJET-V4I7551.pdf
https://irjet.net/archives/V4/i7/IRJET-V4I7551.pdfhttps://irjet.net/archives/V4/i7/IRJET-V4I7551.pdf
https://irjet.net/archives/V4/i7/IRJET-V4I7551.pdf
IRJET Journal
 
Design of Chassis for Automated Road Cleaning Vehicle
Design of Chassis for Automated Road Cleaning VehicleDesign of Chassis for Automated Road Cleaning Vehicle
Design of Chassis for Automated Road Cleaning Vehicle
IRJET Journal
 
Structural Analysis of Go-kart Chassis using different materials to find the ...
Structural Analysis of Go-kart Chassis using different materials to find the ...Structural Analysis of Go-kart Chassis using different materials to find the ...
Structural Analysis of Go-kart Chassis using different materials to find the ...
IRJET Journal
 
[IJET V2I5P11] Authors: P. R. SHINDE , Dr. K. B. KALE
[IJET V2I5P11] Authors: P. R. SHINDE , Dr. K. B. KALE[IJET V2I5P11] Authors: P. R. SHINDE , Dr. K. B. KALE
[IJET V2I5P11] Authors: P. R. SHINDE , Dr. K. B. KALE
IJET - International Journal of Engineering and Techniques
 
Optimization of Engine Mounting Bracket of Tata Ace Mini Truck
Optimization of Engine Mounting Bracket of Tata Ace Mini TruckOptimization of Engine Mounting Bracket of Tata Ace Mini Truck
Optimization of Engine Mounting Bracket of Tata Ace Mini Truck
IRJET Journal
 
Design And Optimization Of Chassis Of All Terrain Vehicle
Design And Optimization Of Chassis Of All Terrain VehicleDesign And Optimization Of Chassis Of All Terrain Vehicle
Design And Optimization Of Chassis Of All Terrain Vehicle
IRJET Journal
 
IRJET - Design and Analysis of Brake System of a Single Seat Race Car
IRJET -  	  Design and Analysis of Brake System of a Single Seat Race CarIRJET -  	  Design and Analysis of Brake System of a Single Seat Race Car
IRJET - Design and Analysis of Brake System of a Single Seat Race Car
IRJET Journal
 
Design and Development of All-Terrain Vehicle : Volume 1
Design and Development of All-Terrain Vehicle : Volume 1Design and Development of All-Terrain Vehicle : Volume 1
Design and Development of All-Terrain Vehicle : Volume 1
IRJET Journal
 
Design and Analysis of Go Kart Chassis for Front, Side and Rear Impact
Design and Analysis of Go Kart Chassis for Front, Side and Rear ImpactDesign and Analysis of Go Kart Chassis for Front, Side and Rear Impact
Design and Analysis of Go Kart Chassis for Front, Side and Rear Impact
ijtsrd
 
Optimization Of Car Rim
Optimization Of Car RimOptimization Of Car Rim
Optimization Of Car Rim
IJERA Editor
 
IRJET- Design and Analysis of Alloy Wheel for Multi-Purpose Vehicle
IRJET- Design and Analysis of Alloy Wheel for Multi-Purpose VehicleIRJET- Design and Analysis of Alloy Wheel for Multi-Purpose Vehicle
IRJET- Design and Analysis of Alloy Wheel for Multi-Purpose Vehicle
IRJET Journal
 
DESIGN AND FABRICATION OF AN INDIAN ARMY VEHICLE (A CAR FOR THE CIVIL AREA WA...
DESIGN AND FABRICATION OF AN INDIAN ARMY VEHICLE (A CAR FOR THE CIVIL AREA WA...DESIGN AND FABRICATION OF AN INDIAN ARMY VEHICLE (A CAR FOR THE CIVIL AREA WA...
DESIGN AND FABRICATION OF AN INDIAN ARMY VEHICLE (A CAR FOR THE CIVIL AREA WA...
ijmech
 
Design And Manufacturing Of Motorsports Vehicle
Design And Manufacturing Of Motorsports VehicleDesign And Manufacturing Of Motorsports Vehicle
Design And Manufacturing Of Motorsports Vehicle
IJERA Editor
 
Design Modification for Weight Reduction and Structural Analysis of Automotiv...
Design Modification for Weight Reduction and Structural Analysis of Automotiv...Design Modification for Weight Reduction and Structural Analysis of Automotiv...
Design Modification for Weight Reduction and Structural Analysis of Automotiv...
IRJET Journal
 
Consequence of Reinforced Concrete Slab Subjected to Blast Load
Consequence of Reinforced Concrete Slab Subjected to Blast LoadConsequence of Reinforced Concrete Slab Subjected to Blast Load
Consequence of Reinforced Concrete Slab Subjected to Blast Load
IRJET Journal
 

Similar to Diseño, análisis y optimización de chasis de coches de carreras por su rendimiento estructural (20)

IRJET- Design Analysis and Optimization of Two-Wheeler Chassis for Weight Red...
IRJET- Design Analysis and Optimization of Two-Wheeler Chassis for Weight Red...IRJET- Design Analysis and Optimization of Two-Wheeler Chassis for Weight Red...
IRJET- Design Analysis and Optimization of Two-Wheeler Chassis for Weight Red...
 
Design and Analysis of Brat Scramble Motorcycles A Review
Design and Analysis of Brat Scramble Motorcycles A ReviewDesign and Analysis of Brat Scramble Motorcycles A Review
Design and Analysis of Brat Scramble Motorcycles A Review
 
Structural Analysis of Ladder Chassis Frame for Jeep Using Ansys
Structural Analysis of Ladder Chassis Frame for Jeep Using  Ansys Structural Analysis of Ladder Chassis Frame for Jeep Using  Ansys
Structural Analysis of Ladder Chassis Frame for Jeep Using Ansys
 
A Review Design of Effective Braking and Efficient Transmission System
A Review Design of Effective Braking and Efficient Transmission SystemA Review Design of Effective Braking and Efficient Transmission System
A Review Design of Effective Braking and Efficient Transmission System
 
IRJET- Design and Analysis of Steering Knuckle for Electric ATV
IRJET- Design and Analysis of Steering Knuckle for Electric ATVIRJET- Design and Analysis of Steering Knuckle for Electric ATV
IRJET- Design and Analysis of Steering Knuckle for Electric ATV
 
https://irjet.net/archives/V4/i7/IRJET-V4I7551.pdf
https://irjet.net/archives/V4/i7/IRJET-V4I7551.pdfhttps://irjet.net/archives/V4/i7/IRJET-V4I7551.pdf
https://irjet.net/archives/V4/i7/IRJET-V4I7551.pdf
 
Design of Chassis for Automated Road Cleaning Vehicle
Design of Chassis for Automated Road Cleaning VehicleDesign of Chassis for Automated Road Cleaning Vehicle
Design of Chassis for Automated Road Cleaning Vehicle
 
Structural Analysis of Go-kart Chassis using different materials to find the ...
Structural Analysis of Go-kart Chassis using different materials to find the ...Structural Analysis of Go-kart Chassis using different materials to find the ...
Structural Analysis of Go-kart Chassis using different materials to find the ...
 
[IJET V2I5P11] Authors: P. R. SHINDE , Dr. K. B. KALE
[IJET V2I5P11] Authors: P. R. SHINDE , Dr. K. B. KALE[IJET V2I5P11] Authors: P. R. SHINDE , Dr. K. B. KALE
[IJET V2I5P11] Authors: P. R. SHINDE , Dr. K. B. KALE
 
Optimization of Engine Mounting Bracket of Tata Ace Mini Truck
Optimization of Engine Mounting Bracket of Tata Ace Mini TruckOptimization of Engine Mounting Bracket of Tata Ace Mini Truck
Optimization of Engine Mounting Bracket of Tata Ace Mini Truck
 
Design And Optimization Of Chassis Of All Terrain Vehicle
Design And Optimization Of Chassis Of All Terrain VehicleDesign And Optimization Of Chassis Of All Terrain Vehicle
Design And Optimization Of Chassis Of All Terrain Vehicle
 
IRJET - Design and Analysis of Brake System of a Single Seat Race Car
IRJET -  	  Design and Analysis of Brake System of a Single Seat Race CarIRJET -  	  Design and Analysis of Brake System of a Single Seat Race Car
IRJET - Design and Analysis of Brake System of a Single Seat Race Car
 
Design and Development of All-Terrain Vehicle : Volume 1
Design and Development of All-Terrain Vehicle : Volume 1Design and Development of All-Terrain Vehicle : Volume 1
Design and Development of All-Terrain Vehicle : Volume 1
 
Design and Analysis of Go Kart Chassis for Front, Side and Rear Impact
Design and Analysis of Go Kart Chassis for Front, Side and Rear ImpactDesign and Analysis of Go Kart Chassis for Front, Side and Rear Impact
Design and Analysis of Go Kart Chassis for Front, Side and Rear Impact
 
Optimization Of Car Rim
Optimization Of Car RimOptimization Of Car Rim
Optimization Of Car Rim
 
IRJET- Design and Analysis of Alloy Wheel for Multi-Purpose Vehicle
IRJET- Design and Analysis of Alloy Wheel for Multi-Purpose VehicleIRJET- Design and Analysis of Alloy Wheel for Multi-Purpose Vehicle
IRJET- Design and Analysis of Alloy Wheel for Multi-Purpose Vehicle
 
DESIGN AND FABRICATION OF AN INDIAN ARMY VEHICLE (A CAR FOR THE CIVIL AREA WA...
DESIGN AND FABRICATION OF AN INDIAN ARMY VEHICLE (A CAR FOR THE CIVIL AREA WA...DESIGN AND FABRICATION OF AN INDIAN ARMY VEHICLE (A CAR FOR THE CIVIL AREA WA...
DESIGN AND FABRICATION OF AN INDIAN ARMY VEHICLE (A CAR FOR THE CIVIL AREA WA...
 
Design And Manufacturing Of Motorsports Vehicle
Design And Manufacturing Of Motorsports VehicleDesign And Manufacturing Of Motorsports Vehicle
Design And Manufacturing Of Motorsports Vehicle
 
Design Modification for Weight Reduction and Structural Analysis of Automotiv...
Design Modification for Weight Reduction and Structural Analysis of Automotiv...Design Modification for Weight Reduction and Structural Analysis of Automotiv...
Design Modification for Weight Reduction and Structural Analysis of Automotiv...
 
Consequence of Reinforced Concrete Slab Subjected to Blast Load
Consequence of Reinforced Concrete Slab Subjected to Blast LoadConsequence of Reinforced Concrete Slab Subjected to Blast Load
Consequence of Reinforced Concrete Slab Subjected to Blast Load
 

Recently uploaded

space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
ongomchris
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
SupreethSP4
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 

Recently uploaded (20)

space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 

Diseño, análisis y optimización de chasis de coches de carreras por su rendimiento estructural

  • 1. Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 5 Issue 07, July-2016 IJERTV5IS070313 www.ijert.org 1 (This work is licensed under a Creative Commons Attribution 4.0 International License.) Diseño, Análisis y Optimización de Chasis de Coches de Carreras por su Rendimiento Estructural Chandan S N1 M.Tech., Student (Machine Design), Department of Mechanical Engineering, Nitte Meenakshi Institute of Technology, Bangalore-64, India. Sandeep G M2 Assistant Professor, Department of Mechanical Engineering, Nitte Meenakshi Institute of Technology, Bangalore-64, India. Vinayaka N3 Assistant Professor, Department of Mechanical Engineering, Nitte Meenakshi Institute of Technology, Bangalore-64, India. Resumen- Las competiciones de Formula Student Racing se llevan a cabo en varios circuitos de Fórmula SAE a nivel mundial. El chasis sirve como el componente importante en el diseño del coche de carreras. Por lo tanto, se espera un análisis solícito fuera del coche de fórmula. También se observa que el peso del automóvil es inversamente proporcional al rendimiento del automóvil, por lo tanto, necesita optimización. Un sistema de protección de alta velocidad juega un papel importante en el diseño del coche de carreras, como el impacto frontal, el impacto trasero, el impacto lateral y el análisis de vuelco. Además, existe un problema de rigidez torsional en cuanto a la dinámica se considera. Este documento tiene como objetivo los aspectos de diseño y las ideas de análisis del coche de carreras. El automóvil está modelado de acuerdo con el percentil 95 macho que puede caber dentro de la cabina del chasis. A medida que el automóvil viaja a alta velocidad, la protección se ha diseñado para el automóvil de tal manera que las tensiones son mínimas y el rendimiento es máximo. Los métodos de elementos finitos se utilizan para el análisis y el diseño de experiencias ... Palabras clave: Diseño, análisis de elementos finitos, rigidez torsional, chasis de bastidor espacial tubular y optimización 1. INTRODUCTION El chasis es el miembro de soporte para todos los componentes del automóvil. Soporta la carrocería, el motor y otras partes que componen el vehículo. El chasis proporciona el soporte completo del vehículo y la rigidez. La propuesta del chasis automotriz es cuidar la forma del vehículo y apoyar los cientos variados aplicados para que la protección del chasis pueda ser una faceta importante dentro del estilo, y se pueda pensar en todas las etapas. El chasis se tiene en cuenta para ser una entre las muchas estructuras de automóviles asociados. A veces se fabrica a partir de un marco de acero que sostiene el motor asociado a la carrocería de un vehículo automotriz. Para ser precisos, el chasis automotriz o el chasis del automóvil podría ser un bastidor que atornilla numerosos elementos mecánicos como el motor, los neumáticos, los frenos, la dirección y los conjuntos de ejes. En general, la clasificación esencial del chasis contiene la columna vertebral, la escalera, el marco espacial y el monocasco, los diferentes tipos de estilo de chasis dan como resultado los diversos rendimientos. 2. DESIGN METHODOLOGY Se eligió un chasis de bastidor espacial sobre una variedad alternativa de chasis. El principio fundamental de un diseño de chasis establece que el
  • 2. Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 5 Issue 07, July-2016 IJERTV5IS070313 www.ijert.org 2 (This work is licensed under a Creative Commons Attribution 4.0 International License.) chasis debe diseñarse para lograr la rigidez torsional y el peso ligero con el fin de lograr un buen rendimiento de manejo de un automóvil de carreras. Por definición, la rigidez torsional se refiere a la capacidad del chasis para resistir la fuerza de torsión o el par. En otras palabras, la rigidez torsional es la cantidad de par requerida para torcer el cuadro en un grado. Durante la entrada en la esquina, si la rigidez torsional es demasiado pequeña, el chasis se desprenderá. Si la rigidez torsional es demasiado grande, entonces la entrada en la curva es difícil y conduce a la tendencia de la dirección inferior. Estos parámetros se aplican conjuntamente al chasis del bastidor espacial. Generalmente, el resultado de la rigidez torsional en el marco espacial es totalmente diferente al monocasco, gracias a su formato de construcción. El chasis del bastidor espacial es liviano, ya que su fabricación es rentable, requiere ... 2.1 Basic Design Durante las etapas iniciales del estilo de chasis se montaron cuatro secciones transversales principales del chasis específicamente, el aro de balanceo delantero, el aro de balanceo principal, el cabezal de bulto delantero y, por lo tanto, el cabezal de granel trasero. La posición del aro más rodado se montó teniendo en cuenta los puntos de montaje del motor y las posiciones del eje de transmisión que se montaron anteriormente, se utilizó un área mínima en blanco para el motor y, por lo tanto, los elementos del tren de transmisión y proporcionó la mayor parte del espacio dentro del espacio de la cabina del conductor para una mayor comodidad. El tamaño de la cabina se tomó del libro de reglas de SAE con gran tolerancia para incorporar el conductor masculino del percentil 95 y un espacio de cabina más grande para mantener las baterías e instalar el tanque de combustible. El primer y principal paso para el aspecto del chasis es buscar las condiciones de contorno y, por lo tanto, la colocación de los elementos. Teniendo esto en cuenta, hemos comenzado a dibujar diagramas de líneas, por lo que los transferimos a un modelo CATIA. Aunque el análisis estaba en el otro lado de nuestro horizonte en este punto una vez varias iteraciones y discusión, hemos vuelto con lo último estilo de chasis que tiene la capacidad de poseer una tensión reducida (el análisis una parte del informe puede concentrarse mucho en la reducción de la tensión) El diseño está modelado en el software Catia. El chasis final obtenido es: Figure 1: Final Chassis Tubing 3. MATERIAL SELECTION La clave para el buen chasis es seleccionar buenos materiales, de hecho, los mejores. Esto nos hizo pensarlo dos veces antes de seleccionar el material. Para este propósito hicimos una extensa investigación sobre los materiales. Los principales factores para nuestra comparación se basaron completamente en la resistencia, el peso, el costo, la disponibilidad, la resistencia a la corrosión y la soldabilidad. Los dos materiales muy utilizados para hacer el chasis del bastidor espacial son el acero al cromo molibdeno (Chromoly) y SAE-AISI 1018. Ambos materiales fueron analizados para diferentes parámetros. Basado en la resistencia y disponibilidad de la soldadura. Por lo tanto, el acero siempre es adecuado. Al recubrir el material apropiado, se puede resistir la corrosión. Descubrimos que AISI SAE 1018 es adecuado para nuestra aplicación. Las propiedades de los materiales elegidos son
  • 3. Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 5 Issue 07, July-2016 IJERTV5IS070313 www.ijert.org 3 (This work is licensed under a Creative Commons Attribution 4.0 International License.) Table 1: Material properties Material SAE 1018 Tensile strength 630 MPa Yield strength 385MPa Poisson’s ratio 0.29 Modulus of elasticity 210 GPa % elongation 27 Carbon 0.182% Manganese 0.645% Sulphur 0.64% Phosphor 0.03 Geometry Circular Hallow tube Weld ability Good 4. ANALYSIS Los cálculos teóricos manuales de todo el chasis van a ser extremadamente difíciles debido a la complejidad en el manejo de las ecuaciones, para reducir el esfuerzo humano, las formas de la máquina se utilizan ampliamente para el análisis y la validación. El análisis de elementos finitos es uno de los tipos prominentes de métodos computacionales que están disponibles en el mercado para uso comercial. El paquete de software ANSYS APDL Mechanical 16.0 ha sido elegido para intentar hacer análisis del chasis. Types of Analysis: 1. Punto de recogida de la suspensión de fijación de impacto delantero 2. Impacto lateral con la pared en el otro extremo. 3. Roll over analysis 4. 4. Rear impact analysis. 5. Torsional rigidity 6. Modal analysis. General Steps done during the analysis: The following steps are used for analysis This procedure has been used for the analysis, Sampling points used for design of experiments are calculated by doing the sensitivity analysis. 4.1 Front Impact analysis It has been assumed that the vehicle has front collision with other stationary vehicle of 300kg, considering our vehicle is moving at its maximum speed 60 kph and stops at 0.1 sec. The force acting on the vehicle is calculated and found 35312N or 12G load.
  • 4. Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 5 Issue 07, July-2016 IJERTV5IS070313 www.ijert.org 4 (This work is licensed under a Creative Commons Attribution 4.0 International License.) 4.2 Rear Impact Analysis It has been assumed that the vehicle collides with other stationary vehicle of 300kg, considering our vehicle is moving at its maximum speed 60 kph and stops at 0.1 sec. The force acting on the vehicle is calculated and found 8829N or 3G load. Table 3: Showing results of Rear impact analysis Force acting 7357.5 N Type To the side impact members Fixing points Other side of side impact members Max von mises stress 193.112 MPa Factor of safety 1.99 Maximum deflection 3.8628 mm Mesh size divisions per line Convergence criteria By varying space step( Htype) Force acting 8829 N Type To the rear 4 key points Fixing points Suspension pick up points in front Max von mises stress 272.391MPa Factor of safety 1.413 Table 2:Showing results of the front Impact. Force acting N 35312 Type To the front 4 Nodes Fixing points Suspension pick up points Max von mises stress MPa 202.87 Factor of safety 1.897 Max deflection 1.224 mm Mesh size divisions per line 60 Convergence criteria By varying space step( H-type) Figure 2: Von-mises stress Figure 3: Von-mises stress Side Impact of the Chassis 4.3 It has been assumed that the vehicle collides with other stationary vehicle of 300kg, considering our vehicle is moving at its maximum speed 60 kph and stops at 0.1 sec. The force acting on the vehicle is calculated and found N or 2.5G load. 7357.5 Table 4:Showing results of Side impact analysis
  • 5. Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 5 Issue 07, July-2016 IJERTV5IS070313 www.ijert.org 5 (This work is licensed under a Creative Commons Attribution 4.0 International License.) Figure 4: von-mises stress 4.4 Roll over analysis It has been assumed that the vehicle collides with other stationary vehicle of 300kg, considering our vehicle is moving at its maximum speed 60 kph and stops at 0.1 sec. The force acting on the vehicle is calculated and found 8829N or 3G load. Table 5: Showing results of Roll over analysis Force acting 8829 N Type Acting on front and main roll hoop Fixing points Bottom of the chassis Max von mises stress 101.66 MPa Factor of safety 3.787 Maximum deflection 0.4602 mm Mesh size 60 divisions per line Convergence criteria By varying space step( H-type) Figure 5: von-mises stress 4.5 Torsional rigidity of chassis Torsion is one of the main considerations while designing chassis, torsional rigidity of the chassis is found by applying the force at the front end as a couple and fixing the rear end. Maximum deflection 4.957mm Mesh size 60 divisions per line Convergence criteria By varying space step( H-type)
  • 6. Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 5 Issue 07, July-2016 IJERTV5IS070313 www.ijert.org 6 (This work is licensed under a Creative Commons Attribution 4.0 International License.) Force = 1000N L = 560mm Applying the force and getting deflection from Ansys, taking the mean deflection as δ. Mean deflection is half of the maximum deflection. Then the torsional rigidity is found out to be 1463.37Nm/deg. Figure 6: Deflection due to torsion. The analysis results are shown in table Table 6: Finite Element Analysis Results Test Maximum deformation (mm) Maximum Von Misses Stress (MPa) Factor of Safety Front impact 1.244 202.87 1.897 Rear impact 4.957 272.391 1.413 Side impact 3.8628 193.112 1.99 Roll over 0.4602 101.666 3.787 4.6 Modal Analysis Modal analysis determines the vibration mode shapes and corresponding frequencies. It is well known that (mechanical) structures can resonate, i.e. that small forces may end up in necessary deformation, and presumably, harm will be elicited within the structure. Resonance is often the cause of, or at least a contributing factor to many of the vibration and noise associated problems that occur in structures and operating machinery. To better understand any structural vibration problem, the resonant frequencies of a structure ought to be
  • 7. Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 5 Issue 07, July-2016 IJERTV5IS070313 www.ijert.org 7 (This work is licensed under a Creative Commons Attribution 4.0 International License.) known and quantified. Today, modal analysis has turn out to be a sizeable means of finding the modes of vibration of a system or structure. Modal analysis has been performed after creating the chassis finite element model. The mode shapes are shown below
  • 8. Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 5 Issue 07, July-2016 IJERTV5IS070313 www.ijert.org 8 (This work is licensed under a Creative Commons Attribution 4.0 International License.) Figure 8: 2nd mode displacement at the 55.611Hz frequency Figure 7: 1st mode displacement at the 54.45Hz frequency The first 10 modes of frequency are shown below 4.7Campbell diagram A Campbell diagram plot represents a system's response spectrum as a function of its oscillation regime. Campbell diagram is a plot betweenthe excitation frequency from the 0-max speed with respect to the natural forced vibrationof the chassis. The evolutions of the natural frequencies corresponding to a mode are drawn in function of the rotation speed of the shaft. The 10,000rpm is the engine rpm at the max, usually considering the idle speedof the engine is not at all allowed as the engine speed is always changing. The natural frequency of the chassis doesn’tchange with respect to the engine speed where it have no control over hence the chassis frequency is considered to be constant for all rpm.
  • 9. Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 5 Issue 07, July-2016 IJERTV5IS070313 www.ijert.org 9 (This work is licensed under a Creative Commons Attribution 4.0 International License.) Figure 9: 3rd mode displacement at the 68.034Hz frequency Figure 10: Campbell diagram It can be seen very clearly that the 1x mode is resonating st with respect to the 1 mode at the speed of 4800rpm th and 5 mode at 93% speed. Also, till 4x speeds there pose no danger to the natural frequency of the chassis st expect the 1 mode and the 1x resonance. But as the resonating speed is 50% lesser than the operating speed pose no danger to the overall structural integrity of the system. 5. OPTIMIZATION Choosing the best solution from the available solution. Minitab software is used for the optimization here. DOE is created using the factors influence for the stresses. Design points are constructed as per the model. Orthogonal arrays were proved to be more efficient compared to the other arrays used in screening but are more tedious. L9, L16, L25, L36 … can be used for the optimisation purpose depending on the inputs. It is noted that the design points are again iterations carried out in Ansys. L16 array would be good and sufficient enough to determine the best solution with least error and residuals. Hence L16 array is considered and each of the design samples for each type of analysis is tabulated here. From the sampling points, the optimisation can be done. Orthogonal regression model uses the algebraic equations for creation of the continuity between thickness, Diameter and stress. If the thickness is chosen is chosen to be as the continuous predictor then the model is called as the horizontal continuous model. If the radius is chosen as the continuous predictor then the model is called as the vertical continuous model. In the poisons regression is used instead of the orthogonal model then the equations used are not of linear form but are logarithmic. And thus obtaining the continuity. A target value of 200MPa is chosen as the desired stress value for the optimisation. This method gives the optimisation and the results of sampling points and the optimised results in all the models. Front Impact Design points and optimization: Figure 11: contour plot of the variation of stress with R4 and T4. Observation Table 7: Model Orthogonal Horizontal Orthogonal Vertical Poisons Horizontal Poisons Vertical R square Value 97.40% 93.83% 99.50% 98.91% R adjusted value 96.46% 91.58% 98.54% 97.95% Radius Value(mm) 14.7 13.5160 12.7 13.9652 Thickness Value(mm) 1.05035 1.4 1.47983 1.2 Side Impact Design points and optimisation:
  • 10. Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 5 Issue 07, July-2016 IJERTV5IS070313 www.ijert.org 10 (This work is licensed under a Creative Commons Attribution 4.0 International License.) Figure 12: contour plot of the variation of stress with R1 and T1. Observation Table 8: Model Orthogonal Horizontal Orthogo nal Vertical Poisons Horizontal Poisons Vertical R square Value 96.63% 94.04% 98.11% 97.16% R adjusted value 95.41% 91.88% 96.36% 95.41% Radius Value(mm) 16.7 16.6867 16.7 15.3366 Thickness Value(mm) 1.34635 1.2 1.3470 1.6 Rear Impact Design points and optimisation: Figure 13: Contour plot of the variation of stress with R4 and T4. Observation Table 9: Model Orthogonal Horizontal Orthogonal Vertical Poisons Horizontal Poisons Vertical R square Value 98.50% 96.05% 99.86% 99.60% R adjusted value 97.95% 94.61% 99.05% 98.01% Radius Value(mm) 16.7 16.2659 14.7 14.6354 Thickness Value(mm) 1.2252 1.2 1.5436 1.6 Roll over Design points and optimisation: Observation Table 10: Model Orthogonal Horizontal Orthogonal Vertical Poisons Horizontal Poisons Vertical R square Value 99.19% 98.31% 99.71% 99.76% R adjusted value 98.89% 97.69% 97.58% 97.63% Radius Value(mm) 10.7 13.0471 12.7 11.6922 Thickness Value(mm) 1.4737 1.0 1.0114 1.2
  • 11. Published by : International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 5 Issue 07, July-2016 IJERTV5IS070313 www.ijert.org 11 (This work is licensed under a Creative Commons Attribution 4.0 International License.) Figure 14: Contour plot of the variation of stress with R1 and T1. 6. CONCLUSION From the above table it is clear the model having the highest accuracy that is R-Square value will have reduced root mean square error. From the optimisation, these values are concluded as the best possible results for the chassis with the reduced stress and the weight with target stress values. Table 11: Optimum solution Radius Value(mm) Thickness (mm) Value(mm) R4(Front) 13.30 T4(Front) 1.35 R4(Rear) 13.10 T4(rear) 1.98 R1 13.10 T1 1.45 R2 13.10 T2 1.4 R3 12.7 T3 1.4 REFERENCES [1] Mohd hanif Mat, Amir Radzi Ab. Ghani “Design and analysis of “Eco” car chassis” Automotive research and testing centre (ARTeC), Univeristi teknologi MARA shah Alam, Malaysia. International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012). Procedia Engineering 41 (2012) 1756 – 1760, Elsevier [2] Mohammad Al bukhari mazuki, Mohd Arzo Abu bukar, Mohammad Firdaus Mohammed Azmi “ designing space frame Race car chassis structure using natural frequencies Data from ansys mode shape results analysis”, international journal of information systems and engineering, Volume 1(No 1), April 2015 ISSN 2289-2265 [3] Ravinder pal Singh, “Structural performance analysis of formula SAE car” Journal Mekanikal No 31, 46-61 [4] Simonetta Boria, university of Pisa. “Numerical simulation of crashTest for a formula SAE car” has claimed about the crash test of FSAE car chassis. Paper number 09-0152 [5] Brendan J Waterman, university of Western Australia, Master thesis “Design and construction of a space frame chassis” [6] Jannis D.G van kelchoven, Master’s thesis, Technische universiteit Eindhoven “Design of a formula student race car chassis” [7] AA Faieza, S.M sapun, MKA Ariffin, BTHT Baharudin and EE Supeni in the paper “Design and fabrication of a student competition based racing car” Scientific research and Essay Vol 4 (5) pp. 361366, ISSN 1992-2248, Academic journal. [8] Abrams, Ryan, “Formula SAE race car analysis-simulation & testing of the engine as a structural member”, F2008-SC-005. [9] The book “Machine Design” by NORTON.