SlideShare a Scribd company logo
International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015
1
DEVELOPMENT OF ECO-FRIENDLY FLAME
RETARDANT FABRIC USING PHOSPHOROUS
BASED INTUMESCENCES CHEMISTRY
Subhas Ghosh1
and Vikas Joshi2
1,2
Textile Science Laboratory, College of Technology, Eastern Michigan University,
Ypsilanti, 48197, Michigan, USA
Abstract:
A novel flame retardant application technique was developed for cotton apparel fabric using spirocyclic
pentaerythritol di (phosphoryl chloride) (SPDPC), which was further synthesized into bis diglycol spirocyclic
pentaerythritol bisphosphorate (BSPB). The flame retardant agent was then attached to the fabric using a
sol-gel process. The treated fabric was tested on a vertical flame tester which showed very high flame
retardancy as compared to the untreated cotton. TGA analysis exhibited a slow rate of weight loss and
higher ultimate degradation temperature for the FR treated sample. The FR treated sample showed modest
loss in strength while retaining 86.4% of its original strength. The fabric’s appearance did not alter and the
change in stiffness was insignificant as a result of the FR finish.
Keywords: flame retardant, synthesis, SPDPC, TGA
1.Introduction
Fire retardancy (FR) is an important requirement for apparel and other furnishing textiles. Textile
substrate has a high surface area and close contact with skin that created more complications in
developing new chemistry. Most effective flame retardant additive and finishes developed during
the period between the 1950s and the 1980s raised concerns over the toxicological and
environmental consequences of using such chemicals 1
.
Recent research studies focused on the development of an alternative to these traditional fire
retardant agents. These studies have been conducted mostly on intumescent fire retardants.
Horrocks et al.1
synthesized spirocyclic pentaerythritol di (phosphonyl chloride) (SPDPC) as a
char former. SPDPC was applied to the Proban®
treated cotton fabric, which created further
higher level of char formation owing to the presence of Proban®
and enhanced flame retardancy 5
.
It is important to recognize that these intumescent finishes must be substantively attached to the
textile fabric without losing required textile properties to achieve wash durability. Char formation
on wool keratin and nylon was also studied using polyol phosphoryl chlorides6
. Nylon 6 and 6, 6
were phosphorylated by SPDPC, cyclic 1, 3-propanediol phosphoryl chloride (CPPC) and cyclic
2, 2-diethyl-1, 3-propanediol phosphoryl chloride (CDPPC). Based on their calculations, the
authors suggested that only primary amine groups at the end of the molecular chain are possible
phosphorylation sites. When a wool sample was treated with SPDPC, it also improved char
formation. The authors found that like Proban-treated cotton, polyamide containing active
hydrogen atoms in primary amine groups at the end of the molecular chains can also be
phosphorylated by the polyol phosphoryl chlorides SPDPC, CPPC, and CDPPC. Ma et al.2
synthesized phosphate-polyester co-polymer using SPDPC. The structural properties of polyester
were altered as a result of introducing a new monomer into the polyester structure. The fiber’s
limiting oxygen index (LOI), glass-transition [tg], and solubility parameters [δ] increased with
increasing SPDPC content in the copolymer. Alongi and Ciobanu 3
coated cotton fabric with
silica using a sol-gel process. The authors claimed higher fabric flame retardancy and thermal
International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015
2
stability; however, the probability of an increase in fabric thickness and stiffness were not
discussed. Chen et al.4
reported a flame retardant and anti-dripping finish for poly (ethylene
terephthalate) fabric. PET fabric was treated with poly92-hydroxy propylene spirocyclic
pentaerythritol bisphosphonate (PPPBP). The authors found reduced flammability and dripping
tendency of PET fabrics using a vertical burning test. Gui-Hong Chen et al.7
investigated flame
retardancy of epoxy resins after treatment with bisdiglycol spirocyclic pentaerythritol
bisphosphorate (BDSPBP). They found that flame retardancy of the cured epoxy resins
significantly increased when BDSPBP loading was 18% w/w. Intumescent flame retardant can be
used on apparel only if the applied finish does not alter textile properties suchas strength,
stiffness, and appearance. In our investigation, we synthesized SPDPC and converted it into bis
diglycol spirocyclic pentaerythritol bisphosphorate (BSPB). This flame retardant solution was
attached to the cotton fabric using a sol-gel system that did not alter significantly any textile
properties of the fabric.
2. Experimental
2.1 Synthesis of Spirocyclic pentaerythritol diphosphoryl chloride (SPDPC)
SPDPC was synthesized using a modified version of the SPDPC synthesis procedure reported by
Horrocks2
. Pentaerythritol, 98% pure, MP 253-258 ºC and phosphorous oxychloride, 99% pure
(BP. 105 ºC), and ethylene glycol were obtained from Sigma Aldrich, Inc., and were used as
received.
Figure 1.SPDPC synthesis and HCl neutralization setup.
Pentaerythritol and phosphorous oxychloride were reacted in a three-neck glass reactor at a molar
ratio of 0.5:3.5. The reactor was connected to a magnetic stirrer, nitrogen supply, and a cold water
condenser with gradual drop-by-drop addition of phosphoryl chloride to pentaerythritol. HCl
formed during the reaction was removed into a beaker containing NaOH and phenolphthalein
indicator as safety precaution. The temperature was slowly increased to 80 ºC, and reaction was
continued for 2 hours. The temperature was further raised to 115 ºC and held for 20 hours. The
final milky white product was washed thoroughly with tetrahydrofuran and air dried (80% yield).
Scheme 1 shows the reaction schematics for synthesis of SPDPC.
International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015
3
Figure 2. Reaction schematic of the formation of Spirocyclic pentaerythritol diphosphoryl chloride
(SPDPC)
2.2 Synthesis of Bis diglycol Spirocyclic pentaerythritol bisphosphorate (BSPB)
Ethylene glycol, 99.8 % pure (B.P 195-198 ºC), was obtained from Sigma Aldrich and was used
as received. BSPB was synthesized as reported by reacting purified SPDPC with ethylene glycol
at a molar ratio of 0.1:0.25, as shown in the Figure 34
.The reaction mixture in the three-
neckreactor was heated gradually to 80 ºC and held there for 6 hours. Further temperature was
raised to 130 ºC, and the reaction mixture was held there for 4 hours. The end product was
washed with diethyl ether to obtain white powder.
Figure3.Reaction schematic of the formation of Bis-diglycol Spirocyclic Pentaerythritol Bisphosphorate
(BSPB)
International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015
4
2.3 Synthesis of Bis-silane and Flame retardant (FR) sol
The synthesis of silane and sol-gel system, and its attachment to textile substrates, is the unique
contribution of this research. Silquest A-Link 25 –Isocyanatopropyltriethoxysilane (B.P. 238) was
obtained from Momentive and used as received. Dibutyltindilaurate reagent, acetone (99.9%
pure), and ethanol were obtained from Sigma Aldrich and used as received. Bis-silane was
synthesized in two steps by reacting BSPB with triethoxysilane in the molar ratio 1:2 in presence
of dibutyltindilaurate as catalyst, figure 4. The reaction mixture is heated to 60 ºC and held there
for 4 hours in a three-neck glass reactor equipped with nitrogen gas, magnetic stirrer,
thermometer, and a circumference condenser. Formation of bis-silane was tested using Fourier
transformation infrared spectroscopy (FTIR).
The synthesized bis-silane was reacted with ethanol and water to produce a sol system. The pH of
the reaction mixture was adjusted between 3.5 and 4 and stirred at 450 rpm, using magnetic stirrer
for 15 minutes to produce a sol.
Figure 4. Reaction Schematic of formation of Bis-Silane
2.4 Application of the FR component on textile substrate.
The synthesized flame retardant sol was applied on a 100% cotton fabric sample (EPI/PPI: 59/47,
3.2 oz/sqyd). The hydroxyl group of the sol-gel flame retardant finish reacts chemically with the
cellulose in cotton to form strong covalent bonds, thus attaching the flame retardant finish to
cotton substrate3
.The sol-gel was applied on the cotton substrate using the pad-dry-cure method.
International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015
5
The mangle was adjusted to 25 psi, and the sample was treated with 4 dips and nips to achieve
100% wet pickup. After the application, the fabric was dried in the oven at 60 ºC for 10 minutes
and then cured at 115 ºC for 6 minutes in an air drying oven.
2.5 Measurements
A Bruker tensor 27 FTIR instrument was used to identify the presence of specific peaks of
SPDPC, BSPB, and bis-silane.
A DSC Q200 V24.4 Build 116 differential scanning calorimeter (DSC) was used to determine the
melting point of SPDPC. The sample was heated from room temperature to 300 ºC at a heating
rate of 10 ºC/min.
The FR treated samples were tested on a vertical flammability tester following ASTM D 6413
procedure to observe char length after flame and afterglow of the sample.
The treated and untreated cotton samples were analyzed on a TA instrument TGA Q500 thermo
gravimetric analysis instrument at a heating rate of 20 ºC/min. The treated and untreated cotton
samples’ rate of “% weight loss” was studied to draw conclusions about effectiveness of the
flame retardant finish.
The tensile strength of the coated and uncoated fabric was tested on the MTS Synergie 200 CRT
tensile tester by following the procedure in ASTM D5035.
The stiffness of the fabric was tested on the TABER V-5 stiffness tester by following the
procedure in ASTM D5342.
3. Results and Discussion
3.1 Analysis of SPDPC
The synthesized product after reaction between pentaerythritol and phosphorous oxychloride was
identified with the presence of P-Cl bond at 550 cm-1
stretching. Presence of these bonds indicates
the synthesis of SPDPC (Figure 2).
Figure 5. FTIR spectra of SPDPC
International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015
The melting point of SPDPC was found to be 245.57 ºC. The results were comparable with the
melting point range of SPDPC as report
Figure 6
3.2 Analysis of BSPB
The synthesized BSPB sample was tested for the presence of specific peaks on FTIR. The
reaction between SPDPC and ethylene glycol indicates the disappearance of P
of formation of BSPB; thus the disappearance of P
formation of BSPB.
Figure 7
International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015
The melting point of SPDPC was found to be 245.57 ºC. The results were comparable with the
C as reported in the literature1
.
Figure 6. DSC Thermogram of SPDPC
The synthesized BSPB sample was tested for the presence of specific peaks on FTIR. The
reaction between SPDPC and ethylene glycol indicates the disappearance of P-Cl bond in process
of formation of BSPB; thus the disappearance of P-Cl stretching at 550 cm-1
confirmed the
Figure 7. Illustrates the FTIR scan of BSPB
International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015
6
The melting point of SPDPC was found to be 245.57 ºC. The results were comparable with the
The synthesized BSPB sample was tested for the presence of specific peaks on FTIR. The
bond in process
confirmed the
International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015
7
3.3 Analysis of Bis-silane
The synthesized bis-silane was analyzed on FTIR to identify the peaks. Urea linkage was
observed in the FTIR scan of bis-silane. The C=O stretching and N-H stretching can be observed
on the scan at 1703 cm-1
and 1028 cm-1
arising from the presence of urea, as seen in Figure 8.
Figure 8. FTIR spectra of Bis Silane
3.4 Flame testing of the treated sample:
During the flame testing, the treated sample self-extinguished while the flame was removed. No
after flame was observed. The sample formed a one-inch char and exhibited afterglow of less than
one second. The results suggest that the phosphorous-based sol gel FR treated sample passed the
bench scale flame performance goals as suggested in ASTM D 6413: 2.0s, maximum after flame;
25.0s, maximum afterglow; and 4.0 in. maximum char length11
. Therefore, the flame resistance of
the cotton fabric was enhanced with the applied FR finish. However, the untreated cotton sample
immediately burnt to char.
a. FR treated sample: 1-inch char lengthb. Untreated cotton sample: Burnt to char
International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015
8
Figure9.ASTM D6413vertical flammability test results (a) FR Treated sample (b) Untreated sample
3.5 Thermo gravimetric analysis (TGA) of the treated and control cotton sample
Figure 10.TGA thermogram of FR treated and untreated cotton.
The thermal degradation curve exhibited that the FR-coated sample of cotton had a slower rate of
weight loss than an uncoated sample. The uncoated sample showed onset of weight loss at 380 ºC
and then abruptly degraded when the temperature reached 420 ºC, which is the usual degradation
temperature of cotton. The uncoated sample was completely degraded at about 700 ºC. However,
the coated sample showed an onset of weight loss at 360 ºC and continued gradually until 900 ºC,
unlike abruptly degrading as the uncoated cotton sample had done. The coated sample did not
degrade completely and showed about 20% weight retention at 900 ºC. This analysis clearly
indicates that a coated flame retardant sample is thermally more stable than the uncoated cotton
sample.
3.6 Analysis of tensile and stiffness properties of the treated fabric.
Coated and uncoated samples were tested for tensile strength and bending resistance to study the
change in physical properties of the fabric due to FR coating. The tensile strength results of the
coated cotton and uncoated fabric are reported in Table 1.
Fabric
Tensile
Strength
(lbf) ( Warp)
Strength
retention %
Coated 36.615
86.35
Uncoated 42.405
Table 1. Tensile strength for coated and uncoated cotton fabric
The coated fabric showed better strength retention after application of the FR finish than the
values reported in literature, where more than 20% loss of strength was reported9
. The SPDPC
0 20 0 400 6 00 800 100 0
0
20
40
60
80
1 00
1 20WtLoss%
T e m p
o
C
a ) u n c o a te d
b ) C o a te d
a
b
International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015
9
synthesis has high acidic pH (pH<4). However, the acidic impurities are removed to an extent
during purification of SPDPC. The FR sol system also has a slightly acidic pH, 4-4.5. The loss in
strength of cotton fabric due to FR finishing can be attributed to the acid catalyzed de-
polymerization of the cellulose polymer.
Stiffness of the coated and uncoated samples was measured to observe the change in stiffness of
the fabric due to the FR finish.
Fabric
Stiffness
(Millinewton
Meters)
Increase in
Stiffness
%
Coated 2.9 x 10-3
5.8
Uncoated 2.74 x 10-3
Table 2 Stiffness for coated and uncoated cotton fabric.
The FR coated cotton fabric had a minor increase in stiffness of 5.8%. The slight increase in
stiffness of the coated fabric can be attributed to an increase in hydrogen-bonded contacts from
the chemical interaction of FR sol and cellulose10
. The physical testing concluded that FR coated
fabric showed only a modest change in tensile strength and stiffness in comparison to the
uncoated fabric. From experience, these small changes in strength and stiffness do not have a
practical impact on the product. No color distortion of the fabric was observed owing to the FR
finish application.
4. Conclusion
In this study it was possible to successfully synthesize and apply a non-toxic phosphorus-based
flame resistant finish using intumescent chemistry. The FTIR and DSC analysis showed that
SPDPC, BSPB, and Silane were successfully synthesized.
The flame retardant finish was applied using the pad-dry-cure method, and the coated FR cotton
fabric showed an excellent flame resistance on the vertical flammability test. The TGA analysis
showed that the treated fabric had a slower weight loss than the untreated cotton sample during
burning. The treated cotton fabric had 86.4% tensile strength retention, and no significant change
in stiffness and appearance was observed.
5. References
[1] Horrocks, R. A., & Zhang, S. (2001). Enhancing polymer char formation by reaction with
phosphorylated polyols.1.cellulose. Polymer, 42 (19), 8025-8033.
[2] MA, Z., Zhao, W., Liu, Y., & Shi, J. (1997). Synthesis and properties of intumescent, phosphorus-
containing, flame-retardant polyesters. Journal of Applied Polymer Science, 63(12), 1511-1515.
International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015
10
[3] Alongi, J., Ciobanu, M., &Malucelli, G. (2011). Sol-gel treatments for enhancing flame retardancy
and thermal stability of cotton fabrics: optimization of the process and evaluation of the durability.
Cellulose, 18(1), 167-177.
[4] Chen, D., Wang, Y.-, Hu, X., Wang, D.-, Qu, M.-, & Yang, B. (2005). Flame-retardant and anti-
dripping effects of a novel char-forming flame retardant for the treatment of poly(ethylene
terephthalate) fabrics. Polymer Degradation and Stability, 88, 349-356.
[5] Horrocks, R., & Zhang, S. (2002). Enhancing polymer flame retardancy by reaction with
phosphorylated polyols. part 2. cellulose treated with a phosphonium salt urea condensate ( proban cc)
flame retardant. Fire and Materials,26, 173-182
[6] Horrocks, R. A., & Zhang, S. (2004). Char formation in polyamides nylon 6 and nylon 66 and wool
keratin phosphorylated by polyol phosphorous chlorides. Textile Research Journal, 74(5), 433-44.
[7] Chen, G. H., Yang, B., & Wang, Y. Z. (2006). A novel flame retardant of spirocyclic pentaerythritol
bisphosphorate for epoxy resins. Journal of Applied Polymer Science, 102, 4978-4982.
[8] Wilkie, C. A., Dong, M. & Yu –Zhong, W. (2006). A novel flame retardant of Spirocyclic
pentaerythriol bisphosphate for epoxy resins. Journal for Applied Polymer Science, 102, 4978-4982.
[9] Yang, C. Q., & Yang, H. (2011). The flame retardant nomex/cotton and nylon/cotton blend fabrics for
protective clothing. In Advances in modern woven fabrics technology (pp. 198-210). InTech.
[10] K, S., A, V., K, J., & V, S. (2000). Effect of finishing agents on low stress mechanical properties of
full voil fabric. Indian Journal of Fiber & Textile Research, 25, 211-216.
[11] Winterhalter, C. A., Lomba, R. A., Tucker, D. W., & Martin, D. O. (2005). Novel approach to soldier
flame protection. Journal of ASTM International, 2(2

More Related Content

What's hot

preparation of acetanilide
preparation of acetanilidepreparation of acetanilide
preparation of acetanilide
araz aras
 
Copper phthalocyanine crude_-revised-_preparation_of_crude_cu_pc_with_yield_o...
Copper phthalocyanine crude_-revised-_preparation_of_crude_cu_pc_with_yield_o...Copper phthalocyanine crude_-revised-_preparation_of_crude_cu_pc_with_yield_o...
Copper phthalocyanine crude_-revised-_preparation_of_crude_cu_pc_with_yield_o...
Benjamin Lukas
 
Synthesis of Epoxidizedcardanol from CNSL (Vietnam) by Glacial Acetic Acid an...
Synthesis of Epoxidizedcardanol from CNSL (Vietnam) by Glacial Acetic Acid an...Synthesis of Epoxidizedcardanol from CNSL (Vietnam) by Glacial Acetic Acid an...
Synthesis of Epoxidizedcardanol from CNSL (Vietnam) by Glacial Acetic Acid an...
ijtsrd
 
Heat stabilizer for copper and other metal mono phthalocyanines as well as fo...
Heat stabilizer for copper and other metal mono phthalocyanines as well as fo...Heat stabilizer for copper and other metal mono phthalocyanines as well as fo...
Heat stabilizer for copper and other metal mono phthalocyanines as well as fo...
Benjamin Lukas
 
Preparation of Benzocaine
Preparation of BenzocainePreparation of Benzocaine
Preparation of Benzocaine
Dr. Krishna Swamy. G
 
Material Science and Engineering-B_Synthesis of ultra high molecular weight p...
Material Science and Engineering-B_Synthesis of ultra high molecular weight p...Material Science and Engineering-B_Synthesis of ultra high molecular weight p...
Material Science and Engineering-B_Synthesis of ultra high molecular weight p...Shashi Kant
 
Preparation of p-nitroacetanilide from Acetanilide
Preparation of p-nitroacetanilide from AcetanilidePreparation of p-nitroacetanilide from Acetanilide
Preparation of p-nitroacetanilide from Acetanilide
Dr. Krishna Swamy. G
 
Characterization of Rubber Seed Shell and Kernel (Hevea brasiliensis) as Raw ...
Characterization of Rubber Seed Shell and Kernel (Hevea brasiliensis) as Raw ...Characterization of Rubber Seed Shell and Kernel (Hevea brasiliensis) as Raw ...
Characterization of Rubber Seed Shell and Kernel (Hevea brasiliensis) as Raw ...
CrimsonPublishersACSR
 
Synthesis and Antimicrobial Evaluation of Some Nitro-Mannich Bases Derived fr...
Synthesis and Antimicrobial Evaluation of Some Nitro-Mannich Bases Derived fr...Synthesis and Antimicrobial Evaluation of Some Nitro-Mannich Bases Derived fr...
Synthesis and Antimicrobial Evaluation of Some Nitro-Mannich Bases Derived fr...
peertechzpublication
 
CONVERSION OF DIMETHYL-NITROBENZENE TO DIMETHY L ANILINE, EFFECT OF SOME PROC...
CONVERSION OF DIMETHYL-NITROBENZENE TO DIMETHY L ANILINE, EFFECT OF SOME PROC...CONVERSION OF DIMETHYL-NITROBENZENE TO DIMETHY L ANILINE, EFFECT OF SOME PROC...
CONVERSION OF DIMETHYL-NITROBENZENE TO DIMETHY L ANILINE, EFFECT OF SOME PROC...
Berklin
 
M.sc. inorganic chemistry laboratory manual complex preparations
M.sc. inorganic chemistry laboratory manual complex preparationsM.sc. inorganic chemistry laboratory manual complex preparations
M.sc. inorganic chemistry laboratory manual complex preparations
DrSSreenivasa
 
2014_Nguyen et al._The Journal of Supercritical Fluids
2014_Nguyen et al._The Journal of Supercritical Fluids2014_Nguyen et al._The Journal of Supercritical Fluids
2014_Nguyen et al._The Journal of Supercritical FluidsHuyen Lyckeskog
 
P368995
P368995P368995
P368995
IJERA Editor
 
Creating a Method for Activating Alkaline Bentonite of Navbakhor to Justify t...
Creating a Method for Activating Alkaline Bentonite of Navbakhor to Justify t...Creating a Method for Activating Alkaline Bentonite of Navbakhor to Justify t...
Creating a Method for Activating Alkaline Bentonite of Navbakhor to Justify t...
ijtsrd
 
IJCT 14(4) (2007) 350-354
IJCT 14(4) (2007) 350-354IJCT 14(4) (2007) 350-354
IJCT 14(4) (2007) 350-354sunil paladugu
 
Preparation of p-bromoaniline from Acetanilide
Preparation of p-bromoaniline from AcetanilidePreparation of p-bromoaniline from Acetanilide
Preparation of p-bromoaniline from Acetanilide
Dr. Krishna Swamy. G
 
Effects of bagasse ash additive on the physiochemical and biological paramete...
Effects of bagasse ash additive on the physiochemical and biological paramete...Effects of bagasse ash additive on the physiochemical and biological paramete...
Effects of bagasse ash additive on the physiochemical and biological paramete...
International Journal of Modern Research in Engineering and Technology
 
F0343042051
F0343042051F0343042051
F0343042051
ijceronline
 
Thermo catalytic decomposition of methane over Pd/AC and Pd/CB catalysts for ...
Thermo catalytic decomposition of methane over Pd/AC and Pd/CB catalysts for ...Thermo catalytic decomposition of methane over Pd/AC and Pd/CB catalysts for ...
Thermo catalytic decomposition of methane over Pd/AC and Pd/CB catalysts for ...
IJERA Editor
 
M.sc. laboratory manual organic chemistry binary mixture seprations
M.sc. laboratory manual organic chemistry binary mixture seprationsM.sc. laboratory manual organic chemistry binary mixture seprations
M.sc. laboratory manual organic chemistry binary mixture seprations
DrSSreenivasa
 

What's hot (20)

preparation of acetanilide
preparation of acetanilidepreparation of acetanilide
preparation of acetanilide
 
Copper phthalocyanine crude_-revised-_preparation_of_crude_cu_pc_with_yield_o...
Copper phthalocyanine crude_-revised-_preparation_of_crude_cu_pc_with_yield_o...Copper phthalocyanine crude_-revised-_preparation_of_crude_cu_pc_with_yield_o...
Copper phthalocyanine crude_-revised-_preparation_of_crude_cu_pc_with_yield_o...
 
Synthesis of Epoxidizedcardanol from CNSL (Vietnam) by Glacial Acetic Acid an...
Synthesis of Epoxidizedcardanol from CNSL (Vietnam) by Glacial Acetic Acid an...Synthesis of Epoxidizedcardanol from CNSL (Vietnam) by Glacial Acetic Acid an...
Synthesis of Epoxidizedcardanol from CNSL (Vietnam) by Glacial Acetic Acid an...
 
Heat stabilizer for copper and other metal mono phthalocyanines as well as fo...
Heat stabilizer for copper and other metal mono phthalocyanines as well as fo...Heat stabilizer for copper and other metal mono phthalocyanines as well as fo...
Heat stabilizer for copper and other metal mono phthalocyanines as well as fo...
 
Preparation of Benzocaine
Preparation of BenzocainePreparation of Benzocaine
Preparation of Benzocaine
 
Material Science and Engineering-B_Synthesis of ultra high molecular weight p...
Material Science and Engineering-B_Synthesis of ultra high molecular weight p...Material Science and Engineering-B_Synthesis of ultra high molecular weight p...
Material Science and Engineering-B_Synthesis of ultra high molecular weight p...
 
Preparation of p-nitroacetanilide from Acetanilide
Preparation of p-nitroacetanilide from AcetanilidePreparation of p-nitroacetanilide from Acetanilide
Preparation of p-nitroacetanilide from Acetanilide
 
Characterization of Rubber Seed Shell and Kernel (Hevea brasiliensis) as Raw ...
Characterization of Rubber Seed Shell and Kernel (Hevea brasiliensis) as Raw ...Characterization of Rubber Seed Shell and Kernel (Hevea brasiliensis) as Raw ...
Characterization of Rubber Seed Shell and Kernel (Hevea brasiliensis) as Raw ...
 
Synthesis and Antimicrobial Evaluation of Some Nitro-Mannich Bases Derived fr...
Synthesis and Antimicrobial Evaluation of Some Nitro-Mannich Bases Derived fr...Synthesis and Antimicrobial Evaluation of Some Nitro-Mannich Bases Derived fr...
Synthesis and Antimicrobial Evaluation of Some Nitro-Mannich Bases Derived fr...
 
CONVERSION OF DIMETHYL-NITROBENZENE TO DIMETHY L ANILINE, EFFECT OF SOME PROC...
CONVERSION OF DIMETHYL-NITROBENZENE TO DIMETHY L ANILINE, EFFECT OF SOME PROC...CONVERSION OF DIMETHYL-NITROBENZENE TO DIMETHY L ANILINE, EFFECT OF SOME PROC...
CONVERSION OF DIMETHYL-NITROBENZENE TO DIMETHY L ANILINE, EFFECT OF SOME PROC...
 
M.sc. inorganic chemistry laboratory manual complex preparations
M.sc. inorganic chemistry laboratory manual complex preparationsM.sc. inorganic chemistry laboratory manual complex preparations
M.sc. inorganic chemistry laboratory manual complex preparations
 
2014_Nguyen et al._The Journal of Supercritical Fluids
2014_Nguyen et al._The Journal of Supercritical Fluids2014_Nguyen et al._The Journal of Supercritical Fluids
2014_Nguyen et al._The Journal of Supercritical Fluids
 
P368995
P368995P368995
P368995
 
Creating a Method for Activating Alkaline Bentonite of Navbakhor to Justify t...
Creating a Method for Activating Alkaline Bentonite of Navbakhor to Justify t...Creating a Method for Activating Alkaline Bentonite of Navbakhor to Justify t...
Creating a Method for Activating Alkaline Bentonite of Navbakhor to Justify t...
 
IJCT 14(4) (2007) 350-354
IJCT 14(4) (2007) 350-354IJCT 14(4) (2007) 350-354
IJCT 14(4) (2007) 350-354
 
Preparation of p-bromoaniline from Acetanilide
Preparation of p-bromoaniline from AcetanilidePreparation of p-bromoaniline from Acetanilide
Preparation of p-bromoaniline from Acetanilide
 
Effects of bagasse ash additive on the physiochemical and biological paramete...
Effects of bagasse ash additive on the physiochemical and biological paramete...Effects of bagasse ash additive on the physiochemical and biological paramete...
Effects of bagasse ash additive on the physiochemical and biological paramete...
 
F0343042051
F0343042051F0343042051
F0343042051
 
Thermo catalytic decomposition of methane over Pd/AC and Pd/CB catalysts for ...
Thermo catalytic decomposition of methane over Pd/AC and Pd/CB catalysts for ...Thermo catalytic decomposition of methane over Pd/AC and Pd/CB catalysts for ...
Thermo catalytic decomposition of methane over Pd/AC and Pd/CB catalysts for ...
 
M.sc. laboratory manual organic chemistry binary mixture seprations
M.sc. laboratory manual organic chemistry binary mixture seprationsM.sc. laboratory manual organic chemistry binary mixture seprations
M.sc. laboratory manual organic chemistry binary mixture seprations
 

Viewers also liked

Enrico Turrin, FEP @ Liber 2015, TISP workshop
Enrico Turrin, FEP @ Liber 2015, TISP workshopEnrico Turrin, FEP @ Liber 2015, TISP workshop
Enrico Turrin, FEP @ Liber 2015, TISP workshop
TISP Project
 
Taller de busquedad de informacion
Taller de busquedad de informacionTaller de busquedad de informacion
Taller de busquedad de informacion
tiago300
 
Tugas makalahku
Tugas makalahkuTugas makalahku
Tugas makalahku
Septian Muna Barakati
 
Испанский для начинающих! Фрагмент вебинаров
Испанский для начинающих! Фрагмент вебинаровИспанский для начинающих! Фрагмент вебинаров
Испанский для начинающих! Фрагмент вебинаров
Oleg Matveev
 
Kitab mandi
Kitab mandiKitab mandi
Portafolio
Portafolio Portafolio
Portafolio
Leidi Rivera
 
Cas scouts proposal
Cas scouts proposalCas scouts proposal
Cas scouts proposal
Paulo Jorge
 
Tip´s para estudiar
Tip´s para estudiarTip´s para estudiar
Tip´s para estudiar
Claudia Ariely Tepeche Rosas
 
Kitab hudud
Kitab hududKitab hudud
Master's thesis: The absolute sustainable building
Master's thesis: The absolute sustainable buildingMaster's thesis: The absolute sustainable building
Master's thesis: The absolute sustainable building
Kathrine Brejnrod
 
Redes sociales privadas, especificas
Redes sociales privadas, especificasRedes sociales privadas, especificas
Redes sociales privadas, especificas
Raquel Ayestarán
 
Mi PLE, Victoria Muñoz Pérez
Mi PLE, Victoria Muñoz PérezMi PLE, Victoria Muñoz Pérez
Mi PLE, Victoria Muñoz Pérez
anitsa17
 
Lessons Learned from Building a Growth Team
Lessons Learned from Building a Growth TeamLessons Learned from Building a Growth Team
Lessons Learned from Building a Growth Team
Kieran Flanagan
 
Estrategias útiles para promover aprendizajes cognitivos
Estrategias útiles  para promover aprendizajes cognitivosEstrategias útiles  para promover aprendizajes cognitivos
Estrategias útiles para promover aprendizajes cognitivos
SEIEM
 
Sign language translator using glove
Sign language translator using gloveSign language translator using glove
Sign language translator using glove
chetanjain92r
 

Viewers also liked (18)

Enrico Turrin, FEP @ Liber 2015, TISP workshop
Enrico Turrin, FEP @ Liber 2015, TISP workshopEnrico Turrin, FEP @ Liber 2015, TISP workshop
Enrico Turrin, FEP @ Liber 2015, TISP workshop
 
Taller de busquedad de informacion
Taller de busquedad de informacionTaller de busquedad de informacion
Taller de busquedad de informacion
 
Producto en oferta (i)
Producto en oferta (i)Producto en oferta (i)
Producto en oferta (i)
 
Tugas makalahku
Tugas makalahkuTugas makalahku
Tugas makalahku
 
Испанский для начинающих! Фрагмент вебинаров
Испанский для начинающих! Фрагмент вебинаровИспанский для начинающих! Фрагмент вебинаров
Испанский для начинающих! Фрагмент вебинаров
 
employment
employmentemployment
employment
 
Kitab mandi
Kitab mandiKitab mandi
Kitab mandi
 
Portafolio
Portafolio Portafolio
Portafolio
 
Cas scouts proposal
Cas scouts proposalCas scouts proposal
Cas scouts proposal
 
Tip´s para estudiar
Tip´s para estudiarTip´s para estudiar
Tip´s para estudiar
 
Leaflet diare akper muna
Leaflet diare akper munaLeaflet diare akper muna
Leaflet diare akper muna
 
Kitab hudud
Kitab hududKitab hudud
Kitab hudud
 
Master's thesis: The absolute sustainable building
Master's thesis: The absolute sustainable buildingMaster's thesis: The absolute sustainable building
Master's thesis: The absolute sustainable building
 
Redes sociales privadas, especificas
Redes sociales privadas, especificasRedes sociales privadas, especificas
Redes sociales privadas, especificas
 
Mi PLE, Victoria Muñoz Pérez
Mi PLE, Victoria Muñoz PérezMi PLE, Victoria Muñoz Pérez
Mi PLE, Victoria Muñoz Pérez
 
Lessons Learned from Building a Growth Team
Lessons Learned from Building a Growth TeamLessons Learned from Building a Growth Team
Lessons Learned from Building a Growth Team
 
Estrategias útiles para promover aprendizajes cognitivos
Estrategias útiles  para promover aprendizajes cognitivosEstrategias útiles  para promover aprendizajes cognitivos
Estrategias útiles para promover aprendizajes cognitivos
 
Sign language translator using glove
Sign language translator using gloveSign language translator using glove
Sign language translator using glove
 

Similar to Development of eco friendly flame

Antibacterial Finishing Of Cotton Fabrics
Antibacterial Finishing Of Cotton FabricsAntibacterial Finishing Of Cotton Fabrics
Antibacterial Finishing Of Cotton Fabrics
KEVSER CARPET
 
Inherent flame retardant polyester fibre using organophosporous compounds as ...
Inherent flame retardant polyester fibre using organophosporous compounds as ...Inherent flame retardant polyester fibre using organophosporous compounds as ...
Inherent flame retardant polyester fibre using organophosporous compounds as ...
iosrjce
 
Physicochemical Properties and Proposed Mechanism in the Obtainment of 4-Hidr...
Physicochemical Properties and Proposed Mechanism in the Obtainment of 4-Hidr...Physicochemical Properties and Proposed Mechanism in the Obtainment of 4-Hidr...
Physicochemical Properties and Proposed Mechanism in the Obtainment of 4-Hidr...
IJERA Editor
 
2011 3-82-study on-the_modification_of_pp_nonwoven_fabric
2011 3-82-study on-the_modification_of_pp_nonwoven_fabric2011 3-82-study on-the_modification_of_pp_nonwoven_fabric
2011 3-82-study on-the_modification_of_pp_nonwoven_fabric
Thang Tran
 
plastic to fuel conversion.pptx
plastic to fuel conversion.pptxplastic to fuel conversion.pptx
plastic to fuel conversion.pptx
SathishKumar2974
 
Experimental Study of CO2 Gasification of Biomethanation Waste
Experimental Study of CO2 Gasification of Biomethanation WasteExperimental Study of CO2 Gasification of Biomethanation Waste
Experimental Study of CO2 Gasification of Biomethanation Waste
IJERA Editor
 
FLAME RETARDANT FINISH ON TEXTILES
FLAME RETARDANT FINISH ON TEXTILES FLAME RETARDANT FINISH ON TEXTILES
FLAME RETARDANT FINISH ON TEXTILES
INDIAN INSTITUTE OF TECHNOLOGY DELHI (IIT-DELHI)
 
PRODUCTION, CHARACTERIZATION AND FUEL PROPERTIES OF ALTERNATIVE DIESEL FUEL F...
PRODUCTION, CHARACTERIZATION AND FUEL PROPERTIES OF ALTERNATIVE DIESEL FUEL F...PRODUCTION, CHARACTERIZATION AND FUEL PROPERTIES OF ALTERNATIVE DIESEL FUEL F...
PRODUCTION, CHARACTERIZATION AND FUEL PROPERTIES OF ALTERNATIVE DIESEL FUEL F...
Anand Mohan
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
IJERD Editor
 
PYROLYSIS
PYROLYSISPYROLYSIS
PYROLYSIS
AratGymOfficial
 
Studies on Nitration of Phenol over Solid Acid Catalyst by Lipika Das, Koushi...
Studies on Nitration of Phenol over Solid Acid Catalyst by Lipika Das, Koushi...Studies on Nitration of Phenol over Solid Acid Catalyst by Lipika Das, Koushi...
Studies on Nitration of Phenol over Solid Acid Catalyst by Lipika Das, Koushi...
crimsonpublisherspps
 
Studies on Nitration of Phenol over Solid Acid Catalyst | Crimson Publishers
Studies on Nitration of Phenol over Solid Acid Catalyst | Crimson PublishersStudies on Nitration of Phenol over Solid Acid Catalyst | Crimson Publishers
Studies on Nitration of Phenol over Solid Acid Catalyst | Crimson Publishers
DanesBlake
 
Oh functionalization by glycerol
Oh functionalization by glycerolOh functionalization by glycerol
Oh functionalization by glycerol
Anthony Maputi
 
And automotive gas oil [ago].
 And automotive gas oil [ago]. And automotive gas oil [ago].
And automotive gas oil [ago].
Alexander Decker
 
Synthesis and Application of Azo Disperse Reactive Dyes derived from p-Aminob...
Synthesis and Application of Azo Disperse Reactive Dyes derived from p-Aminob...Synthesis and Application of Azo Disperse Reactive Dyes derived from p-Aminob...
Synthesis and Application of Azo Disperse Reactive Dyes derived from p-Aminob...
IJERA Editor
 
hdpe granules suppliers delhi
hdpe granules suppliers delhihdpe granules suppliers delhi
hdpe granules suppliers delhi
tirupatipolyplast
 
G046043540
G046043540G046043540
G046043540
IJERA Editor
 
Synthesis and Characterization of cyclohexylidene containing novel cardo pol...
	Synthesis and Characterization of cyclohexylidene containing novel cardo pol...	Synthesis and Characterization of cyclohexylidene containing novel cardo pol...
Synthesis and Characterization of cyclohexylidene containing novel cardo pol...
inventionjournals
 
app.50809.pdf
app.50809.pdfapp.50809.pdf
app.50809.pdf
abrhsh abadi
 

Similar to Development of eco friendly flame (20)

Antibacterial Finishing Of Cotton Fabrics
Antibacterial Finishing Of Cotton FabricsAntibacterial Finishing Of Cotton Fabrics
Antibacterial Finishing Of Cotton Fabrics
 
Inherent flame retardant polyester fibre using organophosporous compounds as ...
Inherent flame retardant polyester fibre using organophosporous compounds as ...Inherent flame retardant polyester fibre using organophosporous compounds as ...
Inherent flame retardant polyester fibre using organophosporous compounds as ...
 
Physicochemical Properties and Proposed Mechanism in the Obtainment of 4-Hidr...
Physicochemical Properties and Proposed Mechanism in the Obtainment of 4-Hidr...Physicochemical Properties and Proposed Mechanism in the Obtainment of 4-Hidr...
Physicochemical Properties and Proposed Mechanism in the Obtainment of 4-Hidr...
 
2011 3-82-study on-the_modification_of_pp_nonwoven_fabric
2011 3-82-study on-the_modification_of_pp_nonwoven_fabric2011 3-82-study on-the_modification_of_pp_nonwoven_fabric
2011 3-82-study on-the_modification_of_pp_nonwoven_fabric
 
plastic to fuel conversion.pptx
plastic to fuel conversion.pptxplastic to fuel conversion.pptx
plastic to fuel conversion.pptx
 
Experimental Study of CO2 Gasification of Biomethanation Waste
Experimental Study of CO2 Gasification of Biomethanation WasteExperimental Study of CO2 Gasification of Biomethanation Waste
Experimental Study of CO2 Gasification of Biomethanation Waste
 
Research Paper
Research PaperResearch Paper
Research Paper
 
FLAME RETARDANT FINISH ON TEXTILES
FLAME RETARDANT FINISH ON TEXTILES FLAME RETARDANT FINISH ON TEXTILES
FLAME RETARDANT FINISH ON TEXTILES
 
PRODUCTION, CHARACTERIZATION AND FUEL PROPERTIES OF ALTERNATIVE DIESEL FUEL F...
PRODUCTION, CHARACTERIZATION AND FUEL PROPERTIES OF ALTERNATIVE DIESEL FUEL F...PRODUCTION, CHARACTERIZATION AND FUEL PROPERTIES OF ALTERNATIVE DIESEL FUEL F...
PRODUCTION, CHARACTERIZATION AND FUEL PROPERTIES OF ALTERNATIVE DIESEL FUEL F...
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
PYROLYSIS
PYROLYSISPYROLYSIS
PYROLYSIS
 
Studies on Nitration of Phenol over Solid Acid Catalyst by Lipika Das, Koushi...
Studies on Nitration of Phenol over Solid Acid Catalyst by Lipika Das, Koushi...Studies on Nitration of Phenol over Solid Acid Catalyst by Lipika Das, Koushi...
Studies on Nitration of Phenol over Solid Acid Catalyst by Lipika Das, Koushi...
 
Studies on Nitration of Phenol over Solid Acid Catalyst | Crimson Publishers
Studies on Nitration of Phenol over Solid Acid Catalyst | Crimson PublishersStudies on Nitration of Phenol over Solid Acid Catalyst | Crimson Publishers
Studies on Nitration of Phenol over Solid Acid Catalyst | Crimson Publishers
 
Oh functionalization by glycerol
Oh functionalization by glycerolOh functionalization by glycerol
Oh functionalization by glycerol
 
And automotive gas oil [ago].
 And automotive gas oil [ago]. And automotive gas oil [ago].
And automotive gas oil [ago].
 
Synthesis and Application of Azo Disperse Reactive Dyes derived from p-Aminob...
Synthesis and Application of Azo Disperse Reactive Dyes derived from p-Aminob...Synthesis and Application of Azo Disperse Reactive Dyes derived from p-Aminob...
Synthesis and Application of Azo Disperse Reactive Dyes derived from p-Aminob...
 
hdpe granules suppliers delhi
hdpe granules suppliers delhihdpe granules suppliers delhi
hdpe granules suppliers delhi
 
G046043540
G046043540G046043540
G046043540
 
Synthesis and Characterization of cyclohexylidene containing novel cardo pol...
	Synthesis and Characterization of cyclohexylidene containing novel cardo pol...	Synthesis and Characterization of cyclohexylidene containing novel cardo pol...
Synthesis and Characterization of cyclohexylidene containing novel cardo pol...
 
app.50809.pdf
app.50809.pdfapp.50809.pdf
app.50809.pdf
 

Recently uploaded

Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
Ralf Eggert
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
Paul Groth
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
Product School
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
RTTS
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
Product School
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
Safe Software
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Ramesh Iyer
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
Fwdays
 

Recently uploaded (20)

Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
 

Development of eco friendly flame

  • 1. International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015 1 DEVELOPMENT OF ECO-FRIENDLY FLAME RETARDANT FABRIC USING PHOSPHOROUS BASED INTUMESCENCES CHEMISTRY Subhas Ghosh1 and Vikas Joshi2 1,2 Textile Science Laboratory, College of Technology, Eastern Michigan University, Ypsilanti, 48197, Michigan, USA Abstract: A novel flame retardant application technique was developed for cotton apparel fabric using spirocyclic pentaerythritol di (phosphoryl chloride) (SPDPC), which was further synthesized into bis diglycol spirocyclic pentaerythritol bisphosphorate (BSPB). The flame retardant agent was then attached to the fabric using a sol-gel process. The treated fabric was tested on a vertical flame tester which showed very high flame retardancy as compared to the untreated cotton. TGA analysis exhibited a slow rate of weight loss and higher ultimate degradation temperature for the FR treated sample. The FR treated sample showed modest loss in strength while retaining 86.4% of its original strength. The fabric’s appearance did not alter and the change in stiffness was insignificant as a result of the FR finish. Keywords: flame retardant, synthesis, SPDPC, TGA 1.Introduction Fire retardancy (FR) is an important requirement for apparel and other furnishing textiles. Textile substrate has a high surface area and close contact with skin that created more complications in developing new chemistry. Most effective flame retardant additive and finishes developed during the period between the 1950s and the 1980s raised concerns over the toxicological and environmental consequences of using such chemicals 1 . Recent research studies focused on the development of an alternative to these traditional fire retardant agents. These studies have been conducted mostly on intumescent fire retardants. Horrocks et al.1 synthesized spirocyclic pentaerythritol di (phosphonyl chloride) (SPDPC) as a char former. SPDPC was applied to the Proban® treated cotton fabric, which created further higher level of char formation owing to the presence of Proban® and enhanced flame retardancy 5 . It is important to recognize that these intumescent finishes must be substantively attached to the textile fabric without losing required textile properties to achieve wash durability. Char formation on wool keratin and nylon was also studied using polyol phosphoryl chlorides6 . Nylon 6 and 6, 6 were phosphorylated by SPDPC, cyclic 1, 3-propanediol phosphoryl chloride (CPPC) and cyclic 2, 2-diethyl-1, 3-propanediol phosphoryl chloride (CDPPC). Based on their calculations, the authors suggested that only primary amine groups at the end of the molecular chain are possible phosphorylation sites. When a wool sample was treated with SPDPC, it also improved char formation. The authors found that like Proban-treated cotton, polyamide containing active hydrogen atoms in primary amine groups at the end of the molecular chains can also be phosphorylated by the polyol phosphoryl chlorides SPDPC, CPPC, and CDPPC. Ma et al.2 synthesized phosphate-polyester co-polymer using SPDPC. The structural properties of polyester were altered as a result of introducing a new monomer into the polyester structure. The fiber’s limiting oxygen index (LOI), glass-transition [tg], and solubility parameters [δ] increased with increasing SPDPC content in the copolymer. Alongi and Ciobanu 3 coated cotton fabric with silica using a sol-gel process. The authors claimed higher fabric flame retardancy and thermal
  • 2. International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015 2 stability; however, the probability of an increase in fabric thickness and stiffness were not discussed. Chen et al.4 reported a flame retardant and anti-dripping finish for poly (ethylene terephthalate) fabric. PET fabric was treated with poly92-hydroxy propylene spirocyclic pentaerythritol bisphosphonate (PPPBP). The authors found reduced flammability and dripping tendency of PET fabrics using a vertical burning test. Gui-Hong Chen et al.7 investigated flame retardancy of epoxy resins after treatment with bisdiglycol spirocyclic pentaerythritol bisphosphorate (BDSPBP). They found that flame retardancy of the cured epoxy resins significantly increased when BDSPBP loading was 18% w/w. Intumescent flame retardant can be used on apparel only if the applied finish does not alter textile properties suchas strength, stiffness, and appearance. In our investigation, we synthesized SPDPC and converted it into bis diglycol spirocyclic pentaerythritol bisphosphorate (BSPB). This flame retardant solution was attached to the cotton fabric using a sol-gel system that did not alter significantly any textile properties of the fabric. 2. Experimental 2.1 Synthesis of Spirocyclic pentaerythritol diphosphoryl chloride (SPDPC) SPDPC was synthesized using a modified version of the SPDPC synthesis procedure reported by Horrocks2 . Pentaerythritol, 98% pure, MP 253-258 ºC and phosphorous oxychloride, 99% pure (BP. 105 ºC), and ethylene glycol were obtained from Sigma Aldrich, Inc., and were used as received. Figure 1.SPDPC synthesis and HCl neutralization setup. Pentaerythritol and phosphorous oxychloride were reacted in a three-neck glass reactor at a molar ratio of 0.5:3.5. The reactor was connected to a magnetic stirrer, nitrogen supply, and a cold water condenser with gradual drop-by-drop addition of phosphoryl chloride to pentaerythritol. HCl formed during the reaction was removed into a beaker containing NaOH and phenolphthalein indicator as safety precaution. The temperature was slowly increased to 80 ºC, and reaction was continued for 2 hours. The temperature was further raised to 115 ºC and held for 20 hours. The final milky white product was washed thoroughly with tetrahydrofuran and air dried (80% yield). Scheme 1 shows the reaction schematics for synthesis of SPDPC.
  • 3. International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015 3 Figure 2. Reaction schematic of the formation of Spirocyclic pentaerythritol diphosphoryl chloride (SPDPC) 2.2 Synthesis of Bis diglycol Spirocyclic pentaerythritol bisphosphorate (BSPB) Ethylene glycol, 99.8 % pure (B.P 195-198 ºC), was obtained from Sigma Aldrich and was used as received. BSPB was synthesized as reported by reacting purified SPDPC with ethylene glycol at a molar ratio of 0.1:0.25, as shown in the Figure 34 .The reaction mixture in the three- neckreactor was heated gradually to 80 ºC and held there for 6 hours. Further temperature was raised to 130 ºC, and the reaction mixture was held there for 4 hours. The end product was washed with diethyl ether to obtain white powder. Figure3.Reaction schematic of the formation of Bis-diglycol Spirocyclic Pentaerythritol Bisphosphorate (BSPB)
  • 4. International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015 4 2.3 Synthesis of Bis-silane and Flame retardant (FR) sol The synthesis of silane and sol-gel system, and its attachment to textile substrates, is the unique contribution of this research. Silquest A-Link 25 –Isocyanatopropyltriethoxysilane (B.P. 238) was obtained from Momentive and used as received. Dibutyltindilaurate reagent, acetone (99.9% pure), and ethanol were obtained from Sigma Aldrich and used as received. Bis-silane was synthesized in two steps by reacting BSPB with triethoxysilane in the molar ratio 1:2 in presence of dibutyltindilaurate as catalyst, figure 4. The reaction mixture is heated to 60 ºC and held there for 4 hours in a three-neck glass reactor equipped with nitrogen gas, magnetic stirrer, thermometer, and a circumference condenser. Formation of bis-silane was tested using Fourier transformation infrared spectroscopy (FTIR). The synthesized bis-silane was reacted with ethanol and water to produce a sol system. The pH of the reaction mixture was adjusted between 3.5 and 4 and stirred at 450 rpm, using magnetic stirrer for 15 minutes to produce a sol. Figure 4. Reaction Schematic of formation of Bis-Silane 2.4 Application of the FR component on textile substrate. The synthesized flame retardant sol was applied on a 100% cotton fabric sample (EPI/PPI: 59/47, 3.2 oz/sqyd). The hydroxyl group of the sol-gel flame retardant finish reacts chemically with the cellulose in cotton to form strong covalent bonds, thus attaching the flame retardant finish to cotton substrate3 .The sol-gel was applied on the cotton substrate using the pad-dry-cure method.
  • 5. International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015 5 The mangle was adjusted to 25 psi, and the sample was treated with 4 dips and nips to achieve 100% wet pickup. After the application, the fabric was dried in the oven at 60 ºC for 10 minutes and then cured at 115 ºC for 6 minutes in an air drying oven. 2.5 Measurements A Bruker tensor 27 FTIR instrument was used to identify the presence of specific peaks of SPDPC, BSPB, and bis-silane. A DSC Q200 V24.4 Build 116 differential scanning calorimeter (DSC) was used to determine the melting point of SPDPC. The sample was heated from room temperature to 300 ºC at a heating rate of 10 ºC/min. The FR treated samples were tested on a vertical flammability tester following ASTM D 6413 procedure to observe char length after flame and afterglow of the sample. The treated and untreated cotton samples were analyzed on a TA instrument TGA Q500 thermo gravimetric analysis instrument at a heating rate of 20 ºC/min. The treated and untreated cotton samples’ rate of “% weight loss” was studied to draw conclusions about effectiveness of the flame retardant finish. The tensile strength of the coated and uncoated fabric was tested on the MTS Synergie 200 CRT tensile tester by following the procedure in ASTM D5035. The stiffness of the fabric was tested on the TABER V-5 stiffness tester by following the procedure in ASTM D5342. 3. Results and Discussion 3.1 Analysis of SPDPC The synthesized product after reaction between pentaerythritol and phosphorous oxychloride was identified with the presence of P-Cl bond at 550 cm-1 stretching. Presence of these bonds indicates the synthesis of SPDPC (Figure 2). Figure 5. FTIR spectra of SPDPC
  • 6. International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015 The melting point of SPDPC was found to be 245.57 ºC. The results were comparable with the melting point range of SPDPC as report Figure 6 3.2 Analysis of BSPB The synthesized BSPB sample was tested for the presence of specific peaks on FTIR. The reaction between SPDPC and ethylene glycol indicates the disappearance of P of formation of BSPB; thus the disappearance of P formation of BSPB. Figure 7 International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015 The melting point of SPDPC was found to be 245.57 ºC. The results were comparable with the C as reported in the literature1 . Figure 6. DSC Thermogram of SPDPC The synthesized BSPB sample was tested for the presence of specific peaks on FTIR. The reaction between SPDPC and ethylene glycol indicates the disappearance of P-Cl bond in process of formation of BSPB; thus the disappearance of P-Cl stretching at 550 cm-1 confirmed the Figure 7. Illustrates the FTIR scan of BSPB International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015 6 The melting point of SPDPC was found to be 245.57 ºC. The results were comparable with the The synthesized BSPB sample was tested for the presence of specific peaks on FTIR. The bond in process confirmed the
  • 7. International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015 7 3.3 Analysis of Bis-silane The synthesized bis-silane was analyzed on FTIR to identify the peaks. Urea linkage was observed in the FTIR scan of bis-silane. The C=O stretching and N-H stretching can be observed on the scan at 1703 cm-1 and 1028 cm-1 arising from the presence of urea, as seen in Figure 8. Figure 8. FTIR spectra of Bis Silane 3.4 Flame testing of the treated sample: During the flame testing, the treated sample self-extinguished while the flame was removed. No after flame was observed. The sample formed a one-inch char and exhibited afterglow of less than one second. The results suggest that the phosphorous-based sol gel FR treated sample passed the bench scale flame performance goals as suggested in ASTM D 6413: 2.0s, maximum after flame; 25.0s, maximum afterglow; and 4.0 in. maximum char length11 . Therefore, the flame resistance of the cotton fabric was enhanced with the applied FR finish. However, the untreated cotton sample immediately burnt to char. a. FR treated sample: 1-inch char lengthb. Untreated cotton sample: Burnt to char
  • 8. International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015 8 Figure9.ASTM D6413vertical flammability test results (a) FR Treated sample (b) Untreated sample 3.5 Thermo gravimetric analysis (TGA) of the treated and control cotton sample Figure 10.TGA thermogram of FR treated and untreated cotton. The thermal degradation curve exhibited that the FR-coated sample of cotton had a slower rate of weight loss than an uncoated sample. The uncoated sample showed onset of weight loss at 380 ºC and then abruptly degraded when the temperature reached 420 ºC, which is the usual degradation temperature of cotton. The uncoated sample was completely degraded at about 700 ºC. However, the coated sample showed an onset of weight loss at 360 ºC and continued gradually until 900 ºC, unlike abruptly degrading as the uncoated cotton sample had done. The coated sample did not degrade completely and showed about 20% weight retention at 900 ºC. This analysis clearly indicates that a coated flame retardant sample is thermally more stable than the uncoated cotton sample. 3.6 Analysis of tensile and stiffness properties of the treated fabric. Coated and uncoated samples were tested for tensile strength and bending resistance to study the change in physical properties of the fabric due to FR coating. The tensile strength results of the coated cotton and uncoated fabric are reported in Table 1. Fabric Tensile Strength (lbf) ( Warp) Strength retention % Coated 36.615 86.35 Uncoated 42.405 Table 1. Tensile strength for coated and uncoated cotton fabric The coated fabric showed better strength retention after application of the FR finish than the values reported in literature, where more than 20% loss of strength was reported9 . The SPDPC 0 20 0 400 6 00 800 100 0 0 20 40 60 80 1 00 1 20WtLoss% T e m p o C a ) u n c o a te d b ) C o a te d a b
  • 9. International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015 9 synthesis has high acidic pH (pH<4). However, the acidic impurities are removed to an extent during purification of SPDPC. The FR sol system also has a slightly acidic pH, 4-4.5. The loss in strength of cotton fabric due to FR finishing can be attributed to the acid catalyzed de- polymerization of the cellulose polymer. Stiffness of the coated and uncoated samples was measured to observe the change in stiffness of the fabric due to the FR finish. Fabric Stiffness (Millinewton Meters) Increase in Stiffness % Coated 2.9 x 10-3 5.8 Uncoated 2.74 x 10-3 Table 2 Stiffness for coated and uncoated cotton fabric. The FR coated cotton fabric had a minor increase in stiffness of 5.8%. The slight increase in stiffness of the coated fabric can be attributed to an increase in hydrogen-bonded contacts from the chemical interaction of FR sol and cellulose10 . The physical testing concluded that FR coated fabric showed only a modest change in tensile strength and stiffness in comparison to the uncoated fabric. From experience, these small changes in strength and stiffness do not have a practical impact on the product. No color distortion of the fabric was observed owing to the FR finish application. 4. Conclusion In this study it was possible to successfully synthesize and apply a non-toxic phosphorus-based flame resistant finish using intumescent chemistry. The FTIR and DSC analysis showed that SPDPC, BSPB, and Silane were successfully synthesized. The flame retardant finish was applied using the pad-dry-cure method, and the coated FR cotton fabric showed an excellent flame resistance on the vertical flammability test. The TGA analysis showed that the treated fabric had a slower weight loss than the untreated cotton sample during burning. The treated cotton fabric had 86.4% tensile strength retention, and no significant change in stiffness and appearance was observed. 5. References [1] Horrocks, R. A., & Zhang, S. (2001). Enhancing polymer char formation by reaction with phosphorylated polyols.1.cellulose. Polymer, 42 (19), 8025-8033. [2] MA, Z., Zhao, W., Liu, Y., & Shi, J. (1997). Synthesis and properties of intumescent, phosphorus- containing, flame-retardant polyesters. Journal of Applied Polymer Science, 63(12), 1511-1515.
  • 10. International Journal of Advances in Chemistry (IJAC) Vol.3, No. 1/2/3 , August 2015 10 [3] Alongi, J., Ciobanu, M., &Malucelli, G. (2011). Sol-gel treatments for enhancing flame retardancy and thermal stability of cotton fabrics: optimization of the process and evaluation of the durability. Cellulose, 18(1), 167-177. [4] Chen, D., Wang, Y.-, Hu, X., Wang, D.-, Qu, M.-, & Yang, B. (2005). Flame-retardant and anti- dripping effects of a novel char-forming flame retardant for the treatment of poly(ethylene terephthalate) fabrics. Polymer Degradation and Stability, 88, 349-356. [5] Horrocks, R., & Zhang, S. (2002). Enhancing polymer flame retardancy by reaction with phosphorylated polyols. part 2. cellulose treated with a phosphonium salt urea condensate ( proban cc) flame retardant. Fire and Materials,26, 173-182 [6] Horrocks, R. A., & Zhang, S. (2004). Char formation in polyamides nylon 6 and nylon 66 and wool keratin phosphorylated by polyol phosphorous chlorides. Textile Research Journal, 74(5), 433-44. [7] Chen, G. H., Yang, B., & Wang, Y. Z. (2006). A novel flame retardant of spirocyclic pentaerythritol bisphosphorate for epoxy resins. Journal of Applied Polymer Science, 102, 4978-4982. [8] Wilkie, C. A., Dong, M. & Yu –Zhong, W. (2006). A novel flame retardant of Spirocyclic pentaerythriol bisphosphate for epoxy resins. Journal for Applied Polymer Science, 102, 4978-4982. [9] Yang, C. Q., & Yang, H. (2011). The flame retardant nomex/cotton and nylon/cotton blend fabrics for protective clothing. In Advances in modern woven fabrics technology (pp. 198-210). InTech. [10] K, S., A, V., K, J., & V, S. (2000). Effect of finishing agents on low stress mechanical properties of full voil fabric. Indian Journal of Fiber & Textile Research, 25, 211-216. [11] Winterhalter, C. A., Lomba, R. A., Tucker, D. W., & Martin, D. O. (2005). Novel approach to soldier flame protection. Journal of ASTM International, 2(2