SlideShare a Scribd company logo
GBH Enterprises, Ltd.

Plant Analytical Techniques
ANHYDROUS AMMONIA: DETERMINATION OF INERT GASES

Information contained in this publication or as otherwise supplied to Users is believed to be
accurate and correct at time of going to press, and is given in good faith, but it is for the User to
satisfy itself of the suitability of the information for its own particular purpose. GBHE gives no
warranty as to the fitness of this information for any particular purpose and any implied warranty
or condition (statutory or otherwise) is excluded except to the extent that exclusion is prevented
by law. GBHE accepts no liability for loss or personnel injury caused by or resulting from reliance
on this information. Freedom under Patent, Copyright and Designs cannot be assumed.

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
ANHYDROUS AMMONIA: DETERMINATION OF INERT GASES
1

SCOPE AND FIELD OF APPLICATION

This packed-column GC method is suitable for the determination of hydrogen,
nitrogen, oxygen, argon and carbon monoxide in anhydrous ammonia. The
determinations of the gases are linear in the range O-100 ppm v/v.

2

PRINCIPLE

The gaseous components of the test sample are separated on the solid phase of
a packed chromatographic column, and are then detected by means of a helium
ionization detector.
Helium carrier gas flows through the detector ionization chamber, where
collisions with primary electrons from a g-source occurs. A titrium
radioactive source is mounted inside the detector cell.

3

REAGENTS AND MATERIALS

3.1

Carrier gas: Helium with 50 ppm v/v neon.

3.2

Service helium, 5 kg/cm2: used to operate the injection valve.

3.3

Water-free methanol.

3.4

Solid phase column packing: Porapak Q-S, SO-80 mesh.

THIS MATERIAL IS HARMFUL BY INHALATION.
3.5

Calibration mixture: Approximately 10 ppm of each component analysed.
The mixture must have a certificate guaranteeing the quality of the
mixture: This mixture can be obtained from BOC or an alternative source.

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
4

APPARATUS

4.1

Gas-chromatograph, having a helium ionization detector, and an
amplifier. A Carlo-Erba 3700 model, or similar, is suitable.

4.2

Chromatography column: a 4m x 3 mm OD stainless steel tube, suitably
adapted to a suitable size to fit into a 2L vacuum jar.

4.3

Rare gas purifier: a BOC Mk3 model, or similar, is suitable.

4.4

Recorder: 0.1 mv FSD with 1 s response time.

4.5

Flowmeter: O-10 L/hr.

4.6

Vacuum flask: a Dilvac Dewar Flask, model 990/111. or similar, is
suitable.

4.7

Refrigeration unit: a Neslab CryoCool CC-80 model, capable of
maintaining a cooling temperature of -80oC is suitable.

4.8

Sampling 'bomb' as shown in Figure 2.

4.9

Gas sample valve

4.10

Stop-watch.

5

PROCEDURE

5.1

Preparation of Column

Bend the column tubing (4.2) into a suitable size to fit into the vacuum jar;
close one end with a glass wool plug and connect this end via a catch-pot to
a vacuum pump. Connect a small funnel to the other end, start the pump and
fill the column with packing (3.4). vibrating it at the same time. Leave any
pumping for a further 15 minutes and make up any fall in level. Switch off
the pump, remove the funnel and close the open end of the column with a glass
wool plug. Activate the column packing by heating overnight at 230°C in a
stream of helium.

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
5.2

Operating Conditions

Column temperature:

- 80°C.

Carrier gas

Helium containing 50 f- 10 ppm neon
Inlet pressure 1.5 kg/cm2 (21.4 psig)
Helium service 4 kg/cm2 (57 psig)

Excitation voltage
Attenuation
Helium purifier

380 V
256
Switched on. (Preset by manufacturers
at approximately 730oC.

Recorder chart speed
Injector
Sample volume

2mm/min
Gas loop
3mL

Assemble the components of the chromatograph system as shown
diagrammatically.
in Figure 1, and check that the operating conditions are correctly set.
5.3

Calibration

5.3.1 Connect the primary calibration mixture cylinder (3.5) to the
chromatograph fitted with a suitable exit flow indicator (4.5).
5.3.2 Maintain a purge rate of 3 L/hr through the gas loop, as indicated by
the exit flow indicator.
5.3.3 After a period of approximately one minute, change the "LOAD" setting
on the sampling valve control to "INJECT" and maintain this setting for
exactly 15 seconds, as timed by a stop-watch. (4.10).
5.3.4 Change the setting on the sampling valve control back to "LOAD".
5.3.5 Reduce the flow rate such that it is just showing on the exit flow
indicator. The system should be slowly purged.
5.3.6 Increase the flow rate back up to 3 L/hr and repeat the procedure from
sub-sections 5.3.2 to 5.3.5 inclusive.

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
5.3.7 Continue this procedure until the standards on the recorder (4.4) show
good repeatability. Carefully check the consistency of the peaks for
oxygen and nitrogen (see Figure 4).
5.4

Sampling

REFER TO LABORATORY SAMPLING PROCEDURES MANUAL DOCUMENT:
SPL-FE, PROCEDURE NUMBER: 52/1/l FOR SAFETY PRECAUTIONS.

5.4.1 The sampling "bomb" is used for this purpose (Figure 2). This consists
of a liquid sample volume V1 and an in-line expansion volume, V2
enclosed by "Hake" ball valves. These volumes are such that the volume,
V1 of liquid ammonia, when allowed to vaporize into a total volume of V1 +
V 2 gives a gas sample at a pressure of three atmospheres.
The test sample is collected as follows:
5.4.2 Connect the vessel to the sample point at the Ermeto coupling
(Figure 3) and purge right through with liquid ammonia sample for 30
seconds. Close valve B and allow the liquid in V2 to evaporate. When the
pressure in V 2 is almost at atmospheric pressure, close valve C.
5.4.3 Close valve A, open, then shut valve B and finally open valve A. The
liquid in V1 will expand into V2. Open valve C again until V2 is almost at
atmospheric pressure, then close valve C.
5.4.4 Repeat the purging procedure (5.4.3) eight times.
5.4.5 Take the final sample in the same manner, but leaving valves C and A
closed. Close the plant sample point and open the purge line, allowing any
ammonia present to rent to atmosphere before disconnecting the sample
"bomb".
5.5

Analysis

5.5.1 Connect the outlet of the sample "bomb" to the column inlet by means of
a micro-valve coupling.
5.5.2 Place the column in the vacuum flask, as shown in figure 1. Switch on
the refrigeration unit and reduce the methanol temperature to - 80°C.
Allow 2 hours for the temperature to stabilize.
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
5.5.3 Open valve C, with valves A and B still closed, and by means of the
needle valve, regulate the flow of test sample through the flow-meter at 3
L/hr for one minute.
5.5.4 Follow the procedure for the section Calibration from subsection
5.3.3 to 5.3.6 inclusive.
5.5.5 Duplicate tests should be run to check for the absence of air which may
have diffused into the sample lines.
5.5.6 Typical retention times are as follows:
Component
Hydrogen
Nitrogen
Oxygen
Argon
Carbon Monoxide

Retention time
2 mins
5 mins
6 mins
6.5 mins
7.5 mins

6

EXPRESSION OF RESULTS

6.1

Identify each peak by its retention time and measure its height from base
line to tip.

6.2

Calculate the concentration of each component by relating this height to
the peak heights of the standards.

7

NOTES

7.1

Ammonia will be retained on the column at -80°C, and is likely to break
through approximately four hours after injection of the first sample, or
after the analysis of approximately 20 samples.

7.2

The column is reactivated by maintaining it at ambient temperature for
several hours, and preferably overnight. This process can be expedited by
immersing the column in a bath of hot water.

7.3

Small amounts of methane (up to 50 ppm v/v) in the anhydrous ammonia
will show up as a broad interference peak.

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
Figure 1

SCHEMATIC ARRANGEMENT OF CHROMATOGRAPH FOR
THE DETERMINATION OF INERT GASES IN ANHYDROUS
AMMONIA

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
Figure 2

ANHYDROUS AMMONIA SAMPLE “BOMB”

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
Figure 3

ANHYDROUS AMMONIA SAMPLE “POINT”

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
Figure 4 EXAMPLE STANDARD CHROMATOGRAM FOR CALIBRATION
STANDARDS

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com

More Related Content

What's hot

Hydrocarbon Feed Purification for Ammonia Plants
Hydrocarbon Feed Purification for Ammonia PlantsHydrocarbon Feed Purification for Ammonia Plants
Hydrocarbon Feed Purification for Ammonia Plants
Gerard B. Hawkins
 
Chapter 5b -_cracking_ffcu
Chapter 5b -_cracking_ffcuChapter 5b -_cracking_ffcu
Chapter 5b -_cracking_ffcu
Helena Francis
 
Theory and Operation VSG-A101 Ammonia Synthesis Catalyst
Theory and Operation VSG-A101 Ammonia Synthesis CatalystTheory and Operation VSG-A101 Ammonia Synthesis Catalyst
Theory and Operation VSG-A101 Ammonia Synthesis Catalyst
Gerard B. Hawkins
 
Naphtha Steam Reforming Catalyst Reduction with Methanol
Naphtha Steam Reforming Catalyst Reduction with MethanolNaphtha Steam Reforming Catalyst Reduction with Methanol
Naphtha Steam Reforming Catalyst Reduction with Methanol
Gerard B. Hawkins
 
Reformer Tube Inspection & Issues Affecting Tube Life
Reformer Tube Inspection & Issues Affecting Tube LifeReformer Tube Inspection & Issues Affecting Tube Life
Reformer Tube Inspection & Issues Affecting Tube Life
Thomas Fortinberry
 
Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers - Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers -
Gerard B. Hawkins
 
Low Temperature Shift Catalyst Reduction Procedure
Low Temperature Shift Catalyst Reduction ProcedureLow Temperature Shift Catalyst Reduction Procedure
Low Temperature Shift Catalyst Reduction Procedure
Gerard B. Hawkins
 
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTSSTEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
Gerard B. Hawkins
 
Steam Reforming - Catalyst Loading
Steam Reforming - Catalyst LoadingSteam Reforming - Catalyst Loading
Steam Reforming - Catalyst Loading
Gerard B. Hawkins
 
Theory and Practice of Steam Reforming
Theory and Practice of Steam ReformingTheory and Practice of Steam Reforming
Theory and Practice of Steam Reforming
Gerard B. Hawkins
 
Ammonia Synthesis Flowsheet - Operator training
Ammonia Synthesis Flowsheet - Operator trainingAmmonia Synthesis Flowsheet - Operator training
Ammonia Synthesis Flowsheet - Operator training
Gerard B. Hawkins
 
Naphtha Steam Reforming Catalyst Reduction by NH3 Cracking
Naphtha Steam Reforming Catalyst Reduction by NH3 CrackingNaphtha Steam Reforming Catalyst Reduction by NH3 Cracking
Naphtha Steam Reforming Catalyst Reduction by NH3 Cracking
Gerard B. Hawkins
 
HAZARD STUDY 1: REPORTING
HAZARD STUDY 1: REPORTINGHAZARD STUDY 1: REPORTING
HAZARD STUDY 1: REPORTING
Gerard B. Hawkins
 
228741271 combustion-chamber
228741271 combustion-chamber228741271 combustion-chamber
228741271 combustion-chamber
manojg1990
 
60167331 secondary-reformer
60167331 secondary-reformer60167331 secondary-reformer
60167331 secondary-reformer
Khai Huynh
 
Reduction & Startup of Pre-reforming Catalysts
Reduction & Startup of Pre-reforming CatalystsReduction & Startup of Pre-reforming Catalysts
Reduction & Startup of Pre-reforming Catalysts
Gerard B. Hawkins
 
Discharge and Reduction Procedures for Methanation Catalyst
Discharge and Reduction Procedures for Methanation CatalystDischarge and Reduction Procedures for Methanation Catalyst
Discharge and Reduction Procedures for Methanation Catalyst
Gerard B. Hawkins
 
Steam Reforming - Common Problems
Steam Reforming - Common ProblemsSteam Reforming - Common Problems
Steam Reforming - Common Problems
Gerard B. Hawkins
 
PRESENTATION-Commissioning Experiences on Ammonia and Urea projects- Independ...
PRESENTATION-Commissioning Experiences on Ammonia and Urea projects- Independ...PRESENTATION-Commissioning Experiences on Ammonia and Urea projects- Independ...
PRESENTATION-Commissioning Experiences on Ammonia and Urea projects- Independ...
Mumin HACIMUSALAR
 
Theory and Operation of Methanation Catalyst
Theory and Operation of Methanation CatalystTheory and Operation of Methanation Catalyst
Theory and Operation of Methanation Catalyst
Gerard B. Hawkins
 

What's hot (20)

Hydrocarbon Feed Purification for Ammonia Plants
Hydrocarbon Feed Purification for Ammonia PlantsHydrocarbon Feed Purification for Ammonia Plants
Hydrocarbon Feed Purification for Ammonia Plants
 
Chapter 5b -_cracking_ffcu
Chapter 5b -_cracking_ffcuChapter 5b -_cracking_ffcu
Chapter 5b -_cracking_ffcu
 
Theory and Operation VSG-A101 Ammonia Synthesis Catalyst
Theory and Operation VSG-A101 Ammonia Synthesis CatalystTheory and Operation VSG-A101 Ammonia Synthesis Catalyst
Theory and Operation VSG-A101 Ammonia Synthesis Catalyst
 
Naphtha Steam Reforming Catalyst Reduction with Methanol
Naphtha Steam Reforming Catalyst Reduction with MethanolNaphtha Steam Reforming Catalyst Reduction with Methanol
Naphtha Steam Reforming Catalyst Reduction with Methanol
 
Reformer Tube Inspection & Issues Affecting Tube Life
Reformer Tube Inspection & Issues Affecting Tube LifeReformer Tube Inspection & Issues Affecting Tube Life
Reformer Tube Inspection & Issues Affecting Tube Life
 
Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers - Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers -
 
Low Temperature Shift Catalyst Reduction Procedure
Low Temperature Shift Catalyst Reduction ProcedureLow Temperature Shift Catalyst Reduction Procedure
Low Temperature Shift Catalyst Reduction Procedure
 
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTSSTEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
 
Steam Reforming - Catalyst Loading
Steam Reforming - Catalyst LoadingSteam Reforming - Catalyst Loading
Steam Reforming - Catalyst Loading
 
Theory and Practice of Steam Reforming
Theory and Practice of Steam ReformingTheory and Practice of Steam Reforming
Theory and Practice of Steam Reforming
 
Ammonia Synthesis Flowsheet - Operator training
Ammonia Synthesis Flowsheet - Operator trainingAmmonia Synthesis Flowsheet - Operator training
Ammonia Synthesis Flowsheet - Operator training
 
Naphtha Steam Reforming Catalyst Reduction by NH3 Cracking
Naphtha Steam Reforming Catalyst Reduction by NH3 CrackingNaphtha Steam Reforming Catalyst Reduction by NH3 Cracking
Naphtha Steam Reforming Catalyst Reduction by NH3 Cracking
 
HAZARD STUDY 1: REPORTING
HAZARD STUDY 1: REPORTINGHAZARD STUDY 1: REPORTING
HAZARD STUDY 1: REPORTING
 
228741271 combustion-chamber
228741271 combustion-chamber228741271 combustion-chamber
228741271 combustion-chamber
 
60167331 secondary-reformer
60167331 secondary-reformer60167331 secondary-reformer
60167331 secondary-reformer
 
Reduction & Startup of Pre-reforming Catalysts
Reduction & Startup of Pre-reforming CatalystsReduction & Startup of Pre-reforming Catalysts
Reduction & Startup of Pre-reforming Catalysts
 
Discharge and Reduction Procedures for Methanation Catalyst
Discharge and Reduction Procedures for Methanation CatalystDischarge and Reduction Procedures for Methanation Catalyst
Discharge and Reduction Procedures for Methanation Catalyst
 
Steam Reforming - Common Problems
Steam Reforming - Common ProblemsSteam Reforming - Common Problems
Steam Reforming - Common Problems
 
PRESENTATION-Commissioning Experiences on Ammonia and Urea projects- Independ...
PRESENTATION-Commissioning Experiences on Ammonia and Urea projects- Independ...PRESENTATION-Commissioning Experiences on Ammonia and Urea projects- Independ...
PRESENTATION-Commissioning Experiences on Ammonia and Urea projects- Independ...
 
Theory and Operation of Methanation Catalyst
Theory and Operation of Methanation CatalystTheory and Operation of Methanation Catalyst
Theory and Operation of Methanation Catalyst
 

Viewers also liked

Optimization of Process Parameters of Tungsten Inert Gas Welding by Taguchi M...
Optimization of Process Parameters of Tungsten Inert Gas Welding by Taguchi M...Optimization of Process Parameters of Tungsten Inert Gas Welding by Taguchi M...
Optimization of Process Parameters of Tungsten Inert Gas Welding by Taguchi M...
ijsrd.com
 
Welding
WeldingWelding
Welding
steamdays
 
Effct of Tungsten Inert Gas Welding & Shielded Metal Arc Welding Processes on...
Effct of Tungsten Inert Gas Welding & Shielded Metal Arc Welding Processes on...Effct of Tungsten Inert Gas Welding & Shielded Metal Arc Welding Processes on...
Effct of Tungsten Inert Gas Welding & Shielded Metal Arc Welding Processes on...
Suryaprakash Shanmugam
 
Metal Additive Manufacturing
Metal Additive ManufacturingMetal Additive Manufacturing
Metal Additive Manufacturing
Thu Nguyen
 
Halogens and Noble gases
Halogens and Noble gasesHalogens and Noble gases
Halogens and Noble gases
Arrehome
 
Mig welding. Manufacturing Process
Mig welding. Manufacturing ProcessMig welding. Manufacturing Process
Mig welding. Manufacturing Process
Chaudhry Zia
 
Evaluate The Metal Inert Gas Welding Process Using Activated Flux On SS316L B...
Evaluate The Metal Inert Gas Welding Process Using Activated Flux On SS316L B...Evaluate The Metal Inert Gas Welding Process Using Activated Flux On SS316L B...
Evaluate The Metal Inert Gas Welding Process Using Activated Flux On SS316L B...
International Center for Research & Development
 
Tungsten Inert Gas Welding
Tungsten Inert Gas WeldingTungsten Inert Gas Welding
Tungsten Inert Gas Welding
AVINASH JURIANI
 
Metal inert gas welding machine
Metal inert gas welding machineMetal inert gas welding machine
Metal inert gas welding machine
Fifa Hafiz
 
Clean Agent & Inert Gas Fire Suppression
Clean Agent & Inert Gas Fire SuppressionClean Agent & Inert Gas Fire Suppression
Clean Agent & Inert Gas Fire Suppression
Ben Adams
 
INERT GAS EXTINGUISHING SYSTEM
INERT GAS EXTINGUISHING SYSTEMINERT GAS EXTINGUISHING SYSTEM
INERT GAS EXTINGUISHING SYSTEM
INDUSTRIAL ENGINEERING
 
TIG Welding (Tungsten Inert Gas Welding)
TIG Welding (Tungsten Inert Gas Welding) TIG Welding (Tungsten Inert Gas Welding)
TIG Welding (Tungsten Inert Gas Welding)
Aqeel Ur Rehman
 
Gas Metal Arc Welding
Gas Metal Arc WeldingGas Metal Arc Welding
Gas Metal Arc Welding
Mohamad Hakimee Roslan
 
Qu'est ce que un acide tartrique ?
Qu'est ce que un acide tartrique ?Qu'est ce que un acide tartrique ?
Qu'est ce que un acide tartrique ?
eri8p7f4ku
 
final report.edit
final report.editfinal report.edit
final report.edit
Megha Ganguly
 
Ig system & equipment oil tankers
Ig system &  equipment oil tankersIg system &  equipment oil tankers
Ig system & equipment oil tankers
jabbar2002pk200
 
A SHORT REVIEW ON ALUMINIUM ANODIZING: AN ECO-FRIENDLY METAL FINISHING PROCESS
A SHORT REVIEW ON ALUMINIUM ANODIZING: AN ECO-FRIENDLY METAL FINISHING PROCESSA SHORT REVIEW ON ALUMINIUM ANODIZING: AN ECO-FRIENDLY METAL FINISHING PROCESS
A SHORT REVIEW ON ALUMINIUM ANODIZING: AN ECO-FRIENDLY METAL FINISHING PROCESS
Journal For Research
 
Chromium problems
Chromium problemsChromium problems
Chromium problems
crazyaxe
 
Metabolisme des lipides
Metabolisme des lipidesMetabolisme des lipides
Metabolisme des lipideskillua zoldyck
 
Aluminum Anodizing
Aluminum AnodizingAluminum Anodizing
Aluminum Anodizing
AACOA.com
 

Viewers also liked (20)

Optimization of Process Parameters of Tungsten Inert Gas Welding by Taguchi M...
Optimization of Process Parameters of Tungsten Inert Gas Welding by Taguchi M...Optimization of Process Parameters of Tungsten Inert Gas Welding by Taguchi M...
Optimization of Process Parameters of Tungsten Inert Gas Welding by Taguchi M...
 
Welding
WeldingWelding
Welding
 
Effct of Tungsten Inert Gas Welding & Shielded Metal Arc Welding Processes on...
Effct of Tungsten Inert Gas Welding & Shielded Metal Arc Welding Processes on...Effct of Tungsten Inert Gas Welding & Shielded Metal Arc Welding Processes on...
Effct of Tungsten Inert Gas Welding & Shielded Metal Arc Welding Processes on...
 
Metal Additive Manufacturing
Metal Additive ManufacturingMetal Additive Manufacturing
Metal Additive Manufacturing
 
Halogens and Noble gases
Halogens and Noble gasesHalogens and Noble gases
Halogens and Noble gases
 
Mig welding. Manufacturing Process
Mig welding. Manufacturing ProcessMig welding. Manufacturing Process
Mig welding. Manufacturing Process
 
Evaluate The Metal Inert Gas Welding Process Using Activated Flux On SS316L B...
Evaluate The Metal Inert Gas Welding Process Using Activated Flux On SS316L B...Evaluate The Metal Inert Gas Welding Process Using Activated Flux On SS316L B...
Evaluate The Metal Inert Gas Welding Process Using Activated Flux On SS316L B...
 
Tungsten Inert Gas Welding
Tungsten Inert Gas WeldingTungsten Inert Gas Welding
Tungsten Inert Gas Welding
 
Metal inert gas welding machine
Metal inert gas welding machineMetal inert gas welding machine
Metal inert gas welding machine
 
Clean Agent & Inert Gas Fire Suppression
Clean Agent & Inert Gas Fire SuppressionClean Agent & Inert Gas Fire Suppression
Clean Agent & Inert Gas Fire Suppression
 
INERT GAS EXTINGUISHING SYSTEM
INERT GAS EXTINGUISHING SYSTEMINERT GAS EXTINGUISHING SYSTEM
INERT GAS EXTINGUISHING SYSTEM
 
TIG Welding (Tungsten Inert Gas Welding)
TIG Welding (Tungsten Inert Gas Welding) TIG Welding (Tungsten Inert Gas Welding)
TIG Welding (Tungsten Inert Gas Welding)
 
Gas Metal Arc Welding
Gas Metal Arc WeldingGas Metal Arc Welding
Gas Metal Arc Welding
 
Qu'est ce que un acide tartrique ?
Qu'est ce que un acide tartrique ?Qu'est ce que un acide tartrique ?
Qu'est ce que un acide tartrique ?
 
final report.edit
final report.editfinal report.edit
final report.edit
 
Ig system & equipment oil tankers
Ig system &  equipment oil tankersIg system &  equipment oil tankers
Ig system & equipment oil tankers
 
A SHORT REVIEW ON ALUMINIUM ANODIZING: AN ECO-FRIENDLY METAL FINISHING PROCESS
A SHORT REVIEW ON ALUMINIUM ANODIZING: AN ECO-FRIENDLY METAL FINISHING PROCESSA SHORT REVIEW ON ALUMINIUM ANODIZING: AN ECO-FRIENDLY METAL FINISHING PROCESS
A SHORT REVIEW ON ALUMINIUM ANODIZING: AN ECO-FRIENDLY METAL FINISHING PROCESS
 
Chromium problems
Chromium problemsChromium problems
Chromium problems
 
Metabolisme des lipides
Metabolisme des lipidesMetabolisme des lipides
Metabolisme des lipides
 
Aluminum Anodizing
Aluminum AnodizingAluminum Anodizing
Aluminum Anodizing
 

Similar to Determination of Inert Gas in Anhydrous Ammonia

Determination of Carbon Dioxide, Ethane And Nitrogen in Natural Gas by Gas C...
Determination of Carbon Dioxide, Ethane  And Nitrogen in Natural Gas by Gas C...Determination of Carbon Dioxide, Ethane  And Nitrogen in Natural Gas by Gas C...
Determination of Carbon Dioxide, Ethane And Nitrogen in Natural Gas by Gas C...
Gerard B. Hawkins
 
Determination of Argon in Ammonia Plant Process Gas Streams by Gas Chromatogr...
Determination of Argon in Ammonia Plant Process Gas Streams by Gas Chromatogr...Determination of Argon in Ammonia Plant Process Gas Streams by Gas Chromatogr...
Determination of Argon in Ammonia Plant Process Gas Streams by Gas Chromatogr...
Gerard B. Hawkins
 
Determination of Hydrocarbons in Anhydrous Ammonia By Gas Chromatography
Determination of Hydrocarbons in Anhydrous Ammonia By Gas ChromatographyDetermination of Hydrocarbons in Anhydrous Ammonia By Gas Chromatography
Determination of Hydrocarbons in Anhydrous Ammonia By Gas Chromatography
Gerard B. Hawkins
 
BENFIELD LIQUOR - DETERMINATION OF IRON
BENFIELD LIQUOR - DETERMINATION OF IRONBENFIELD LIQUOR - DETERMINATION OF IRON
BENFIELD LIQUOR - DETERMINATION OF IRON
Gerard B. Hawkins
 
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDSSYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
Gerard B. Hawkins
 
H - Acid Caustic Fusion Stage
H - Acid Caustic Fusion StageH - Acid Caustic Fusion Stage
H - Acid Caustic Fusion Stage
Gerard B. Hawkins
 
Reactor Arrangement for Continuous Vapor Phase Chlorination
Reactor Arrangement for Continuous Vapor Phase ChlorinationReactor Arrangement for Continuous Vapor Phase Chlorination
Reactor Arrangement for Continuous Vapor Phase Chlorination
Gerard B. Hawkins
 
Start Up Procedures for Primary Reforming Catalyst
Start Up Procedures for Primary Reforming CatalystStart Up Procedures for Primary Reforming Catalyst
Start Up Procedures for Primary Reforming Catalyst
Gerard B. Hawkins
 
Integration of Special Purpose Reciprocating Compressors into a Process
Integration of Special Purpose Reciprocating Compressors into a ProcessIntegration of Special Purpose Reciprocating Compressors into a Process
Integration of Special Purpose Reciprocating Compressors into a Process
Gerard B. Hawkins
 
ACTIVATED CARBON- AIR-STEAM REGENERATION PROCEDURE
ACTIVATED CARBON-  AIR-STEAM REGENERATION PROCEDUREACTIVATED CARBON-  AIR-STEAM REGENERATION PROCEDURE
ACTIVATED CARBON- AIR-STEAM REGENERATION PROCEDURE
Gerard B. Hawkins
 
Laboratory Distillation
Laboratory DistillationLaboratory Distillation
Laboratory Distillation
Gerard B. Hawkins
 
Psychrometry
PsychrometryPsychrometry
Psychrometry
Gerard B. Hawkins
 
Debottlenecking Claus Sulfur Recovery Units: An Investigation of the applicat...
Debottlenecking Claus Sulfur Recovery Units: An Investigation of the applicat...Debottlenecking Claus Sulfur Recovery Units: An Investigation of the applicat...
Debottlenecking Claus Sulfur Recovery Units: An Investigation of the applicat...
Gerard B. Hawkins
 
Piping and Vessels Flushing and Cleaning Procedure
Piping and Vessels Flushing and Cleaning ProcedurePiping and Vessels Flushing and Cleaning Procedure
Piping and Vessels Flushing and Cleaning Procedure
Gerard B. Hawkins
 
Hydrogen Compressors
Hydrogen CompressorsHydrogen Compressors
Hydrogen Compressors
Gerard B. Hawkins
 
Tube Wall Temperature Measurement On Steam Reformers - Best Practices
Tube Wall Temperature Measurement On Steam Reformers - Best PracticesTube Wall Temperature Measurement On Steam Reformers - Best Practices
Tube Wall Temperature Measurement On Steam Reformers - Best Practices
Gerard B. Hawkins
 
Overflows and Gravity Drainage Systems
Overflows and Gravity Drainage SystemsOverflows and Gravity Drainage Systems
Overflows and Gravity Drainage Systems
Gerard B. Hawkins
 
SMR PRE-REFORMER DESIGN: Case Study
SMR PRE-REFORMER DESIGN: Case StudySMR PRE-REFORMER DESIGN: Case Study
SMR PRE-REFORMER DESIGN: Case Study
Gerard B. Hawkins
 
Steam Reforming Catalyst Reduction with LPG Feed
Steam Reforming Catalyst Reduction with LPG FeedSteam Reforming Catalyst Reduction with LPG Feed
Steam Reforming Catalyst Reduction with LPG Feed
Gerard B. Hawkins
 
Methanation Catalyst Start Up Procedures
Methanation Catalyst Start Up Procedures Methanation Catalyst Start Up Procedures
Methanation Catalyst Start Up Procedures
Gerard B. Hawkins
 

Similar to Determination of Inert Gas in Anhydrous Ammonia (20)

Determination of Carbon Dioxide, Ethane And Nitrogen in Natural Gas by Gas C...
Determination of Carbon Dioxide, Ethane  And Nitrogen in Natural Gas by Gas C...Determination of Carbon Dioxide, Ethane  And Nitrogen in Natural Gas by Gas C...
Determination of Carbon Dioxide, Ethane And Nitrogen in Natural Gas by Gas C...
 
Determination of Argon in Ammonia Plant Process Gas Streams by Gas Chromatogr...
Determination of Argon in Ammonia Plant Process Gas Streams by Gas Chromatogr...Determination of Argon in Ammonia Plant Process Gas Streams by Gas Chromatogr...
Determination of Argon in Ammonia Plant Process Gas Streams by Gas Chromatogr...
 
Determination of Hydrocarbons in Anhydrous Ammonia By Gas Chromatography
Determination of Hydrocarbons in Anhydrous Ammonia By Gas ChromatographyDetermination of Hydrocarbons in Anhydrous Ammonia By Gas Chromatography
Determination of Hydrocarbons in Anhydrous Ammonia By Gas Chromatography
 
BENFIELD LIQUOR - DETERMINATION OF IRON
BENFIELD LIQUOR - DETERMINATION OF IRONBENFIELD LIQUOR - DETERMINATION OF IRON
BENFIELD LIQUOR - DETERMINATION OF IRON
 
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDSSYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
 
H - Acid Caustic Fusion Stage
H - Acid Caustic Fusion StageH - Acid Caustic Fusion Stage
H - Acid Caustic Fusion Stage
 
Reactor Arrangement for Continuous Vapor Phase Chlorination
Reactor Arrangement for Continuous Vapor Phase ChlorinationReactor Arrangement for Continuous Vapor Phase Chlorination
Reactor Arrangement for Continuous Vapor Phase Chlorination
 
Start Up Procedures for Primary Reforming Catalyst
Start Up Procedures for Primary Reforming CatalystStart Up Procedures for Primary Reforming Catalyst
Start Up Procedures for Primary Reforming Catalyst
 
Integration of Special Purpose Reciprocating Compressors into a Process
Integration of Special Purpose Reciprocating Compressors into a ProcessIntegration of Special Purpose Reciprocating Compressors into a Process
Integration of Special Purpose Reciprocating Compressors into a Process
 
ACTIVATED CARBON- AIR-STEAM REGENERATION PROCEDURE
ACTIVATED CARBON-  AIR-STEAM REGENERATION PROCEDUREACTIVATED CARBON-  AIR-STEAM REGENERATION PROCEDURE
ACTIVATED CARBON- AIR-STEAM REGENERATION PROCEDURE
 
Laboratory Distillation
Laboratory DistillationLaboratory Distillation
Laboratory Distillation
 
Psychrometry
PsychrometryPsychrometry
Psychrometry
 
Debottlenecking Claus Sulfur Recovery Units: An Investigation of the applicat...
Debottlenecking Claus Sulfur Recovery Units: An Investigation of the applicat...Debottlenecking Claus Sulfur Recovery Units: An Investigation of the applicat...
Debottlenecking Claus Sulfur Recovery Units: An Investigation of the applicat...
 
Piping and Vessels Flushing and Cleaning Procedure
Piping and Vessels Flushing and Cleaning ProcedurePiping and Vessels Flushing and Cleaning Procedure
Piping and Vessels Flushing and Cleaning Procedure
 
Hydrogen Compressors
Hydrogen CompressorsHydrogen Compressors
Hydrogen Compressors
 
Tube Wall Temperature Measurement On Steam Reformers - Best Practices
Tube Wall Temperature Measurement On Steam Reformers - Best PracticesTube Wall Temperature Measurement On Steam Reformers - Best Practices
Tube Wall Temperature Measurement On Steam Reformers - Best Practices
 
Overflows and Gravity Drainage Systems
Overflows and Gravity Drainage SystemsOverflows and Gravity Drainage Systems
Overflows and Gravity Drainage Systems
 
SMR PRE-REFORMER DESIGN: Case Study
SMR PRE-REFORMER DESIGN: Case StudySMR PRE-REFORMER DESIGN: Case Study
SMR PRE-REFORMER DESIGN: Case Study
 
Steam Reforming Catalyst Reduction with LPG Feed
Steam Reforming Catalyst Reduction with LPG FeedSteam Reforming Catalyst Reduction with LPG Feed
Steam Reforming Catalyst Reduction with LPG Feed
 
Methanation Catalyst Start Up Procedures
Methanation Catalyst Start Up Procedures Methanation Catalyst Start Up Procedures
Methanation Catalyst Start Up Procedures
 

More from Gerard B. Hawkins

Pressure Relief Systems Vol 2
Pressure Relief Systems   Vol 2Pressure Relief Systems   Vol 2
Pressure Relief Systems Vol 2
Gerard B. Hawkins
 
Pressure Relief Systems
Pressure Relief Systems Pressure Relief Systems
Pressure Relief Systems
Gerard B. Hawkins
 
GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy GasesGAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy Gases
Gerard B. Hawkins
 
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
Gerard B. Hawkins
 
Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming
Gerard B. Hawkins
 
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...
Gerard B. Hawkins
 
Calculation of an Ammonia Plant Energy Consumption:
Calculation of an Ammonia Plant Energy Consumption:  Calculation of an Ammonia Plant Energy Consumption:
Calculation of an Ammonia Plant Energy Consumption:
Gerard B. Hawkins
 
Pickling & Passivation
Pickling & PassivationPickling & Passivation
Pickling & Passivation
Gerard B. Hawkins
 
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
Gerard B. Hawkins
 
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
Gerard B. Hawkins
 
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
Gerard B. Hawkins
 
Getting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen PlantGetting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen Plant
Gerard B. Hawkins
 
EMERGENCY ISOLATION OF CHEMICAL PLANTS
EMERGENCY ISOLATION OF CHEMICAL PLANTS EMERGENCY ISOLATION OF CHEMICAL PLANTS
EMERGENCY ISOLATION OF CHEMICAL PLANTS
Gerard B. Hawkins
 
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...
Gerard B. Hawkins
 
Purificación – Mecanismos de Reacción
Purificación – Mecanismos de Reacción Purificación – Mecanismos de Reacción
Purificación – Mecanismos de Reacción
Gerard B. Hawkins
 
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide
Gerard B. Hawkins
 
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
Gerard B. Hawkins
 
GBHE Over View jan_13_español
GBHE Over View jan_13_españolGBHE Over View jan_13_español
GBHE Over View jan_13_español
Gerard B. Hawkins
 
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
Gerard B. Hawkins
 
FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...
FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...
FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...
Gerard B. Hawkins
 

More from Gerard B. Hawkins (20)

Pressure Relief Systems Vol 2
Pressure Relief Systems   Vol 2Pressure Relief Systems   Vol 2
Pressure Relief Systems Vol 2
 
Pressure Relief Systems
Pressure Relief Systems Pressure Relief Systems
Pressure Relief Systems
 
GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy GasesGAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy Gases
 
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
 
Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming
 
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...
 
Calculation of an Ammonia Plant Energy Consumption:
Calculation of an Ammonia Plant Energy Consumption:  Calculation of an Ammonia Plant Energy Consumption:
Calculation of an Ammonia Plant Energy Consumption:
 
Pickling & Passivation
Pickling & PassivationPickling & Passivation
Pickling & Passivation
 
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
 
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
 
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
 
Getting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen PlantGetting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen Plant
 
EMERGENCY ISOLATION OF CHEMICAL PLANTS
EMERGENCY ISOLATION OF CHEMICAL PLANTS EMERGENCY ISOLATION OF CHEMICAL PLANTS
EMERGENCY ISOLATION OF CHEMICAL PLANTS
 
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...
 
Purificación – Mecanismos de Reacción
Purificación – Mecanismos de Reacción Purificación – Mecanismos de Reacción
Purificación – Mecanismos de Reacción
 
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide
 
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
 
GBHE Over View jan_13_español
GBHE Over View jan_13_españolGBHE Over View jan_13_español
GBHE Over View jan_13_español
 
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
 
FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...
FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...
FCC Catalyst Design: Morphology, Physiology, Reaction Chemistry and Manufactu...
 

Recently uploaded

Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
panagenda
 
Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)
Jakub Marek
 
Digital Banking in the Cloud: How Citizens Bank Unlocked Their Mainframe
Digital Banking in the Cloud: How Citizens Bank Unlocked Their MainframeDigital Banking in the Cloud: How Citizens Bank Unlocked Their Mainframe
Digital Banking in the Cloud: How Citizens Bank Unlocked Their Mainframe
Precisely
 
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
Jason Yip
 
5th LF Energy Power Grid Model Meet-up Slides
5th LF Energy Power Grid Model Meet-up Slides5th LF Energy Power Grid Model Meet-up Slides
5th LF Energy Power Grid Model Meet-up Slides
DanBrown980551
 
Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024
Jason Packer
 
Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
Zilliz
 
Choosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptxChoosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptx
Brandon Minnick, MBA
 
Nordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptxNordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptx
MichaelKnudsen27
 
Apps Break Data
Apps Break DataApps Break Data
Apps Break Data
Ivo Velitchkov
 
“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...
“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...
“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...
Edge AI and Vision Alliance
 
Generating privacy-protected synthetic data using Secludy and Milvus
Generating privacy-protected synthetic data using Secludy and MilvusGenerating privacy-protected synthetic data using Secludy and Milvus
Generating privacy-protected synthetic data using Secludy and Milvus
Zilliz
 
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
Alex Pruden
 
Mutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented ChatbotsMutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented Chatbots
Pablo Gómez Abajo
 
Y-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PPY-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PP
c5vrf27qcz
 
Skybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoptionSkybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoption
Tatiana Kojar
 
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdfHow to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
Chart Kalyan
 
Taking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdfTaking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdf
ssuserfac0301
 

Recently uploaded (20)

Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
 
Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)
 
Digital Banking in the Cloud: How Citizens Bank Unlocked Their Mainframe
Digital Banking in the Cloud: How Citizens Bank Unlocked Their MainframeDigital Banking in the Cloud: How Citizens Bank Unlocked Their Mainframe
Digital Banking in the Cloud: How Citizens Bank Unlocked Their Mainframe
 
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
 
5th LF Energy Power Grid Model Meet-up Slides
5th LF Energy Power Grid Model Meet-up Slides5th LF Energy Power Grid Model Meet-up Slides
5th LF Energy Power Grid Model Meet-up Slides
 
Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024
 
Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
 
Choosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptxChoosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptx
 
Nordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptxNordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptx
 
Apps Break Data
Apps Break DataApps Break Data
Apps Break Data
 
“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...
“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...
“How Axelera AI Uses Digital Compute-in-memory to Deliver Fast and Energy-eff...
 
Generating privacy-protected synthetic data using Secludy and Milvus
Generating privacy-protected synthetic data using Secludy and MilvusGenerating privacy-protected synthetic data using Secludy and Milvus
Generating privacy-protected synthetic data using Secludy and Milvus
 
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
 
Mutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented ChatbotsMutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented Chatbots
 
Y-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PPY-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PP
 
Artificial Intelligence and Electronic Warfare
Artificial Intelligence and Electronic WarfareArtificial Intelligence and Electronic Warfare
Artificial Intelligence and Electronic Warfare
 
Skybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoptionSkybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoption
 
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdfHow to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
 
Taking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdfTaking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdf
 

Determination of Inert Gas in Anhydrous Ammonia

  • 1. GBH Enterprises, Ltd. Plant Analytical Techniques ANHYDROUS AMMONIA: DETERMINATION OF INERT GASES Information contained in this publication or as otherwise supplied to Users is believed to be accurate and correct at time of going to press, and is given in good faith, but it is for the User to satisfy itself of the suitability of the information for its own particular purpose. GBHE gives no warranty as to the fitness of this information for any particular purpose and any implied warranty or condition (statutory or otherwise) is excluded except to the extent that exclusion is prevented by law. GBHE accepts no liability for loss or personnel injury caused by or resulting from reliance on this information. Freedom under Patent, Copyright and Designs cannot be assumed. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 2. ANHYDROUS AMMONIA: DETERMINATION OF INERT GASES 1 SCOPE AND FIELD OF APPLICATION This packed-column GC method is suitable for the determination of hydrogen, nitrogen, oxygen, argon and carbon monoxide in anhydrous ammonia. The determinations of the gases are linear in the range O-100 ppm v/v. 2 PRINCIPLE The gaseous components of the test sample are separated on the solid phase of a packed chromatographic column, and are then detected by means of a helium ionization detector. Helium carrier gas flows through the detector ionization chamber, where collisions with primary electrons from a g-source occurs. A titrium radioactive source is mounted inside the detector cell. 3 REAGENTS AND MATERIALS 3.1 Carrier gas: Helium with 50 ppm v/v neon. 3.2 Service helium, 5 kg/cm2: used to operate the injection valve. 3.3 Water-free methanol. 3.4 Solid phase column packing: Porapak Q-S, SO-80 mesh. THIS MATERIAL IS HARMFUL BY INHALATION. 3.5 Calibration mixture: Approximately 10 ppm of each component analysed. The mixture must have a certificate guaranteeing the quality of the mixture: This mixture can be obtained from BOC or an alternative source. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 3. 4 APPARATUS 4.1 Gas-chromatograph, having a helium ionization detector, and an amplifier. A Carlo-Erba 3700 model, or similar, is suitable. 4.2 Chromatography column: a 4m x 3 mm OD stainless steel tube, suitably adapted to a suitable size to fit into a 2L vacuum jar. 4.3 Rare gas purifier: a BOC Mk3 model, or similar, is suitable. 4.4 Recorder: 0.1 mv FSD with 1 s response time. 4.5 Flowmeter: O-10 L/hr. 4.6 Vacuum flask: a Dilvac Dewar Flask, model 990/111. or similar, is suitable. 4.7 Refrigeration unit: a Neslab CryoCool CC-80 model, capable of maintaining a cooling temperature of -80oC is suitable. 4.8 Sampling 'bomb' as shown in Figure 2. 4.9 Gas sample valve 4.10 Stop-watch. 5 PROCEDURE 5.1 Preparation of Column Bend the column tubing (4.2) into a suitable size to fit into the vacuum jar; close one end with a glass wool plug and connect this end via a catch-pot to a vacuum pump. Connect a small funnel to the other end, start the pump and fill the column with packing (3.4). vibrating it at the same time. Leave any pumping for a further 15 minutes and make up any fall in level. Switch off the pump, remove the funnel and close the open end of the column with a glass wool plug. Activate the column packing by heating overnight at 230°C in a stream of helium. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 4. 5.2 Operating Conditions Column temperature: - 80°C. Carrier gas Helium containing 50 f- 10 ppm neon Inlet pressure 1.5 kg/cm2 (21.4 psig) Helium service 4 kg/cm2 (57 psig) Excitation voltage Attenuation Helium purifier 380 V 256 Switched on. (Preset by manufacturers at approximately 730oC. Recorder chart speed Injector Sample volume 2mm/min Gas loop 3mL Assemble the components of the chromatograph system as shown diagrammatically. in Figure 1, and check that the operating conditions are correctly set. 5.3 Calibration 5.3.1 Connect the primary calibration mixture cylinder (3.5) to the chromatograph fitted with a suitable exit flow indicator (4.5). 5.3.2 Maintain a purge rate of 3 L/hr through the gas loop, as indicated by the exit flow indicator. 5.3.3 After a period of approximately one minute, change the "LOAD" setting on the sampling valve control to "INJECT" and maintain this setting for exactly 15 seconds, as timed by a stop-watch. (4.10). 5.3.4 Change the setting on the sampling valve control back to "LOAD". 5.3.5 Reduce the flow rate such that it is just showing on the exit flow indicator. The system should be slowly purged. 5.3.6 Increase the flow rate back up to 3 L/hr and repeat the procedure from sub-sections 5.3.2 to 5.3.5 inclusive. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 5. 5.3.7 Continue this procedure until the standards on the recorder (4.4) show good repeatability. Carefully check the consistency of the peaks for oxygen and nitrogen (see Figure 4). 5.4 Sampling REFER TO LABORATORY SAMPLING PROCEDURES MANUAL DOCUMENT: SPL-FE, PROCEDURE NUMBER: 52/1/l FOR SAFETY PRECAUTIONS. 5.4.1 The sampling "bomb" is used for this purpose (Figure 2). This consists of a liquid sample volume V1 and an in-line expansion volume, V2 enclosed by "Hake" ball valves. These volumes are such that the volume, V1 of liquid ammonia, when allowed to vaporize into a total volume of V1 + V 2 gives a gas sample at a pressure of three atmospheres. The test sample is collected as follows: 5.4.2 Connect the vessel to the sample point at the Ermeto coupling (Figure 3) and purge right through with liquid ammonia sample for 30 seconds. Close valve B and allow the liquid in V2 to evaporate. When the pressure in V 2 is almost at atmospheric pressure, close valve C. 5.4.3 Close valve A, open, then shut valve B and finally open valve A. The liquid in V1 will expand into V2. Open valve C again until V2 is almost at atmospheric pressure, then close valve C. 5.4.4 Repeat the purging procedure (5.4.3) eight times. 5.4.5 Take the final sample in the same manner, but leaving valves C and A closed. Close the plant sample point and open the purge line, allowing any ammonia present to rent to atmosphere before disconnecting the sample "bomb". 5.5 Analysis 5.5.1 Connect the outlet of the sample "bomb" to the column inlet by means of a micro-valve coupling. 5.5.2 Place the column in the vacuum flask, as shown in figure 1. Switch on the refrigeration unit and reduce the methanol temperature to - 80°C. Allow 2 hours for the temperature to stabilize. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 6. 5.5.3 Open valve C, with valves A and B still closed, and by means of the needle valve, regulate the flow of test sample through the flow-meter at 3 L/hr for one minute. 5.5.4 Follow the procedure for the section Calibration from subsection 5.3.3 to 5.3.6 inclusive. 5.5.5 Duplicate tests should be run to check for the absence of air which may have diffused into the sample lines. 5.5.6 Typical retention times are as follows: Component Hydrogen Nitrogen Oxygen Argon Carbon Monoxide Retention time 2 mins 5 mins 6 mins 6.5 mins 7.5 mins 6 EXPRESSION OF RESULTS 6.1 Identify each peak by its retention time and measure its height from base line to tip. 6.2 Calculate the concentration of each component by relating this height to the peak heights of the standards. 7 NOTES 7.1 Ammonia will be retained on the column at -80°C, and is likely to break through approximately four hours after injection of the first sample, or after the analysis of approximately 20 samples. 7.2 The column is reactivated by maintaining it at ambient temperature for several hours, and preferably overnight. This process can be expedited by immersing the column in a bath of hot water. 7.3 Small amounts of methane (up to 50 ppm v/v) in the anhydrous ammonia will show up as a broad interference peak. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 7. Figure 1 SCHEMATIC ARRANGEMENT OF CHROMATOGRAPH FOR THE DETERMINATION OF INERT GASES IN ANHYDROUS AMMONIA Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 8. Figure 2 ANHYDROUS AMMONIA SAMPLE “BOMB” Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 9. Figure 3 ANHYDROUS AMMONIA SAMPLE “POINT” Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 10. Figure 4 EXAMPLE STANDARD CHROMATOGRAM FOR CALIBRATION STANDARDS Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 11. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com