SlideShare a Scribd company logo
1 of 5
Download to read offline
GBH Enterprises, Ltd.

Naphtha Steam Reforming Catalyst
Reduction by NH3 Cracking

Process Information Disclaimer
Information contained in this publication or as otherwise supplied to Users is
believed to be accurate and correct at time of going to press, and is given in
good faith, but it is for the User to satisfy itself of the suitability of the Product for
its own particular purpose. GBHE gives no warranty as to the fitness of the
Product for any particular purpose and any implied warranty or condition
(statutory or otherwise) is excluded except to the extent that exclusion is
prevented by law. GBHE accepts no liability for loss, damage or personnel injury
caused or resulting from reliance on this information. Freedom under Patent,
Copyright and Designs cannot be assumed.

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
Naphtha Steam Reforming Catalyst Reduction by NH3 Cracking
Scope
This procedure applies to the in situ reduction of VULCAN Series steam
reforming catalysts using ammonia cracking to form hydrogen over the catalyst in
the steam reformer. This procedure covers plants with a dry gas circulation loop
for reduction. The procedure is likely to be applied to plants using only heavier
feeds (e.g.: LPG and/or naphtha) and some combination of VULCAN Series
catalysts.
Introduction
A small number of steam reforming plants do not have an available source of the
commonly used reducing media (e.g.: hydrogen, hydrogen-rich off-gas, natural
gas). These plants will usually operate on LPG and/or naphtha feed only where
cracking of this hydrocarbon is not usually advised for reduction of the steam
reforming catalyst. In such circumstances, the plant may be designed to use the
installed steam reforming catalyst to crack ammonia to provide hydrogen for the
reformer catalyst reduction. This may be on a once through basis or with gas
recycle through a circulating loop. By control of the steam to ammonia ratio and
reformer exit temperature, oxidized catalyst cracks ammonia to generate
hydrogen which then affects a degree of catalyst reduction. Once some reduced
nickel is present, ammonia cracking becomes efficient and the period in which
ammonia is observed in the process condensate is kept to a minimum.
Procedure
1. Ensure the primary reformer catalyst is heated in a nitrogen flow to above the
dew point of the process stream. Once this temperature is exceeded by at
least 50°C (90°F), continue heating with process steam. The system pressure
should be in the usual range for the reformer start-up circulation loop
(typically 10 – 15 bara).

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
2. Heat the reformer to a measured inlet temperature in the range 475 to 500°C
(887-932°F) and a measured exit temperature of 780 to 800°C (14361472°F). If the plant design does not allow the inlet temperature to attain this
level, then the inlet temperature should be as high as possible within the
constraints of the plant. Temperature losses to the point of exit temperature
measurement are usual at this low load of operation and the actual tube exit
temperature will be higher than these values.
Regular (1/2 hourly)
inspections, ideally with an accurate IR pyrometer, of the reformer are
necessary to check for possible overheating.
3. At the above temperatures, control the steam flow through the primary
reformer insofar as this is possible to remain within tube skin temperature
limits and to satisfy the ratio of steam to ammonia as specified in (5)
4. Maintain a nitrogen gas circulation rate of 40-60 Nm3/hr per reformer tube.
5. Inject ammonia at an initial rate to satisfy a steam to ammonia molar ratio of
an absolute minimum of 20:1. This will be sufficient to carry-out the catalyst
reduction, but hydrogen will take 1-2 hours to be detected in the recycle
gases and ammonia in the condensate will be at high levels (>>100 ppmw)
for this period also. To minimize the time to produce hydrogen and limit the
amount of high ammonia concentration in the condensate, lower molar ratios
of steam to ammonia should be targeted in the range 14:1 to 9:1.
6. Process condensate containing ammonia will need proper attention. Initial
levels of ammonia could exceed 1000 ppmw, but will reduce quickly to <100
ppmw (typically 30-70 ppmw) once cracking occurs over the reforming
catalyst
7. Maintain continuous injection at the required rate for at least one (1) hour.
Monitor the progress of ammonia cracking by observation of process
conditions (increasing loop pressure; dry gas circulation rate) and analysis.
Adjust the rate based on the analytical results.
8. Take samples for analysis of the re-circulating gas for ammonia and hydrogen
and of the process condensate for ammonia every 30 minutes over the first
two hours of ammonia injection. Thereafter, reduce the frequency to every 60
minutes for as long as necessary.

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
9. If no hydrogen is detected after 2 hours and the ammonia levels in the
process condensate remain high (>>100 ppmw), then the molar ratio of
ammonia to steam is possibly incorrect and/or the reforming temperature is
low.
10. Once hydrogen is measured, the H2O/H2 molar ratio should be recorded (from
a combination of analysis and calculation of the amount injected and cracked
ammonia). The target point is when the H2O/H2 molar ratio enters the target
reduction range of 6:1 – 8:1. The molar ratio may be allowed to go as low as
4:1 without cause for concern in terms of the catalysts within the loop.
11. Once the H2O/H2 molar ratio is in the range 6:1 – 8:1, stop ammonia injection.
Continue to analyze at 60-minute intervals and calculate the H2O/H2 molar
ratio in the loop. Hydrogen will be consumed slowly as the reduction
proceeds. As the H2O/H2 ratio rises towards the top of the reducing range
(H2O/H2 molar ratio = 8:1), inject a slug of ammonia to adjust the H2O/H2
molar ratio in the loop to about 6:1.
12. Maintain reducing conditions (H2O/H2 molar ratio in the range 6:1 – 8:1) for
the following times depending on the recent shutdown history of the catalyst.
See Table 1.
13. Following this, introduce hydrocarbon feed as described in the Operating
Manual for VULCAN Series Naphtha Steam Reforming Catalysts.

Table 1 – Catalyst Reduction Times

Catalyst Steaming
Period
(Hours)
<3
3-8
>8
Fresh Catalyst Charge

Period of Reduction
(Hours)
No reduction required
6 hours of reduction
12 hours of reduction
18 hours of reduction

Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com
Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown
Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass
Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance
Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts /
Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals
Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries
Web Site: www.GBHEnterprises.com

More Related Content

What's hot

Theory and Practice of Steam Reforming
Theory and Practice of Steam ReformingTheory and Practice of Steam Reforming
Theory and Practice of Steam ReformingGerard B. Hawkins
 
Gas Heated Reforming - An Overview
Gas Heated Reforming - An OverviewGas Heated Reforming - An Overview
Gas Heated Reforming - An OverviewGerard B. Hawkins
 
Reduction & Startup of Pre-reforming Catalysts
Reduction & Startup of Pre-reforming CatalystsReduction & Startup of Pre-reforming Catalysts
Reduction & Startup of Pre-reforming CatalystsGerard B. Hawkins
 
(LTS) Low Temperature Shift Catalyst - Comprehensive Overview
(LTS) Low Temperature Shift Catalyst - Comprehensive Overview(LTS) Low Temperature Shift Catalyst - Comprehensive Overview
(LTS) Low Temperature Shift Catalyst - Comprehensive OverviewGerard B. Hawkins
 
Methanation Catalyst Start Up Procedures
Methanation Catalyst Start Up Procedures Methanation Catalyst Start Up Procedures
Methanation Catalyst Start Up Procedures Gerard B. Hawkins
 
Feedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen PlantsFeedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen PlantsGerard B. Hawkins
 
(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview
(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview
(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev OverviewGerard B. Hawkins
 
Steam Reforming - Carbon Formation
Steam Reforming - Carbon FormationSteam Reforming - Carbon Formation
Steam Reforming - Carbon FormationGerard B. Hawkins
 
Steam Reforming - A Comprehensive Review
Steam Reforming - A Comprehensive ReviewSteam Reforming - A Comprehensive Review
Steam Reforming - A Comprehensive ReviewGerard B. Hawkins
 
Theory and Operation of Methanation Catalyst
Theory and Operation of Methanation CatalystTheory and Operation of Methanation Catalyst
Theory and Operation of Methanation CatalystGerard B. Hawkins
 
Revamps for Ageing Methanol Plants
Revamps for Ageing Methanol PlantsRevamps for Ageing Methanol Plants
Revamps for Ageing Methanol PlantsGerard B. Hawkins
 
Methane Steam Reformer Re-tube Studies
Methane Steam Reformer Re-tube StudiesMethane Steam Reformer Re-tube Studies
Methane Steam Reformer Re-tube StudiesGerard B. Hawkins
 
Tube Wall Temperature Measurement On Steam Reformers - Best Practices
Tube Wall Temperature Measurement On Steam Reformers - Best PracticesTube Wall Temperature Measurement On Steam Reformers - Best Practices
Tube Wall Temperature Measurement On Steam Reformers - Best PracticesGerard B. Hawkins
 
Steam Reforming - Common Problems
Steam Reforming - Common ProblemsSteam Reforming - Common Problems
Steam Reforming - Common ProblemsGerard B. Hawkins
 
POx and Sour Shift Catalyst Applications
POx and Sour Shift Catalyst ApplicationsPOx and Sour Shift Catalyst Applications
POx and Sour Shift Catalyst ApplicationsGerard B. Hawkins
 
Primary Reforming Flowsheets
Primary Reforming FlowsheetsPrimary Reforming Flowsheets
Primary Reforming FlowsheetsGerard B. Hawkins
 
Pre-reformer Operations Technical Supplement
Pre-reformer Operations Technical SupplementPre-reformer Operations Technical Supplement
Pre-reformer Operations Technical SupplementGerard B. Hawkins
 
Secondary Reforming Flowsheets
Secondary Reforming FlowsheetsSecondary Reforming Flowsheets
Secondary Reforming FlowsheetsGerard B. Hawkins
 
Ammonia Synthesis Flowsheet - Operator training
Ammonia Synthesis Flowsheet - Operator trainingAmmonia Synthesis Flowsheet - Operator training
Ammonia Synthesis Flowsheet - Operator trainingGerard B. Hawkins
 

What's hot (20)

Methanol Reformer Designs
Methanol Reformer DesignsMethanol Reformer Designs
Methanol Reformer Designs
 
Theory and Practice of Steam Reforming
Theory and Practice of Steam ReformingTheory and Practice of Steam Reforming
Theory and Practice of Steam Reforming
 
Gas Heated Reforming - An Overview
Gas Heated Reforming - An OverviewGas Heated Reforming - An Overview
Gas Heated Reforming - An Overview
 
Reduction & Startup of Pre-reforming Catalysts
Reduction & Startup of Pre-reforming CatalystsReduction & Startup of Pre-reforming Catalysts
Reduction & Startup of Pre-reforming Catalysts
 
(LTS) Low Temperature Shift Catalyst - Comprehensive Overview
(LTS) Low Temperature Shift Catalyst - Comprehensive Overview(LTS) Low Temperature Shift Catalyst - Comprehensive Overview
(LTS) Low Temperature Shift Catalyst - Comprehensive Overview
 
Methanation Catalyst Start Up Procedures
Methanation Catalyst Start Up Procedures Methanation Catalyst Start Up Procedures
Methanation Catalyst Start Up Procedures
 
Feedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen PlantsFeedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen Plants
 
(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview
(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview
(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview
 
Steam Reforming - Carbon Formation
Steam Reforming - Carbon FormationSteam Reforming - Carbon Formation
Steam Reforming - Carbon Formation
 
Steam Reforming - A Comprehensive Review
Steam Reforming - A Comprehensive ReviewSteam Reforming - A Comprehensive Review
Steam Reforming - A Comprehensive Review
 
Theory and Operation of Methanation Catalyst
Theory and Operation of Methanation CatalystTheory and Operation of Methanation Catalyst
Theory and Operation of Methanation Catalyst
 
Revamps for Ageing Methanol Plants
Revamps for Ageing Methanol PlantsRevamps for Ageing Methanol Plants
Revamps for Ageing Methanol Plants
 
Methane Steam Reformer Re-tube Studies
Methane Steam Reformer Re-tube StudiesMethane Steam Reformer Re-tube Studies
Methane Steam Reformer Re-tube Studies
 
Tube Wall Temperature Measurement On Steam Reformers - Best Practices
Tube Wall Temperature Measurement On Steam Reformers - Best PracticesTube Wall Temperature Measurement On Steam Reformers - Best Practices
Tube Wall Temperature Measurement On Steam Reformers - Best Practices
 
Steam Reforming - Common Problems
Steam Reforming - Common ProblemsSteam Reforming - Common Problems
Steam Reforming - Common Problems
 
POx and Sour Shift Catalyst Applications
POx and Sour Shift Catalyst ApplicationsPOx and Sour Shift Catalyst Applications
POx and Sour Shift Catalyst Applications
 
Primary Reforming Flowsheets
Primary Reforming FlowsheetsPrimary Reforming Flowsheets
Primary Reforming Flowsheets
 
Pre-reformer Operations Technical Supplement
Pre-reformer Operations Technical SupplementPre-reformer Operations Technical Supplement
Pre-reformer Operations Technical Supplement
 
Secondary Reforming Flowsheets
Secondary Reforming FlowsheetsSecondary Reforming Flowsheets
Secondary Reforming Flowsheets
 
Ammonia Synthesis Flowsheet - Operator training
Ammonia Synthesis Flowsheet - Operator trainingAmmonia Synthesis Flowsheet - Operator training
Ammonia Synthesis Flowsheet - Operator training
 

Viewers also liked

Physical properties and thermochemistry for reactor technology
Physical properties and thermochemistry for reactor technologyPhysical properties and thermochemistry for reactor technology
Physical properties and thermochemistry for reactor technologyGerard B. Hawkins
 
Estimation of Pressure Drop in Pipe Systems
Estimation of Pressure Drop in Pipe SystemsEstimation of Pressure Drop in Pipe Systems
Estimation of Pressure Drop in Pipe SystemsGerard B. Hawkins
 
Orifice Restrictors - Design Guidelines
Orifice Restrictors - Design GuidelinesOrifice Restrictors - Design Guidelines
Orifice Restrictors - Design GuidelinesGerard B. Hawkins
 
Integration of Special Purpose Centrifugal Fans into a Process
Integration of Special Purpose Centrifugal Fans into a ProcessIntegration of Special Purpose Centrifugal Fans into a Process
Integration of Special Purpose Centrifugal Fans into a ProcessGerard B. Hawkins
 
The Preliminary Choice of Fan or Compressor
The Preliminary Choice of Fan or Compressor The Preliminary Choice of Fan or Compressor
The Preliminary Choice of Fan or Compressor Gerard B. Hawkins
 
Examination of Critical Centrifugal Fans and Blowers
Examination of Critical Centrifugal Fans and BlowersExamination of Critical Centrifugal Fans and Blowers
Examination of Critical Centrifugal Fans and BlowersGerard B. Hawkins
 
Protection Systems for Machines: an Engineering Guide
Protection Systems for Machines: an Engineering GuideProtection Systems for Machines: an Engineering Guide
Protection Systems for Machines: an Engineering GuideGerard B. Hawkins
 
Reciprocating Compressors - Protection against Crank Case Explosions
Reciprocating Compressors - Protection against Crank Case ExplosionsReciprocating Compressors - Protection against Crank Case Explosions
Reciprocating Compressors - Protection against Crank Case ExplosionsGerard B. Hawkins
 
How to use the GBHE Reactor Technology Guides
How to use the GBHE Reactor Technology GuidesHow to use the GBHE Reactor Technology Guides
How to use the GBHE Reactor Technology GuidesGerard B. Hawkins
 
Reactor Modeling Tools - An Overview
Reactor Modeling Tools - An OverviewReactor Modeling Tools - An Overview
Reactor Modeling Tools - An OverviewGerard B. Hawkins
 
Solid Catalyzed Gas Phase Reactor Selection
Solid Catalyzed Gas Phase Reactor SelectionSolid Catalyzed Gas Phase Reactor Selection
Solid Catalyzed Gas Phase Reactor SelectionGerard B. Hawkins
 
Fixed Bed Reactor Scale-up Checklist
Fixed Bed Reactor Scale-up ChecklistFixed Bed Reactor Scale-up Checklist
Fixed Bed Reactor Scale-up ChecklistGerard B. Hawkins
 

Viewers also liked (20)

Physical properties and thermochemistry for reactor technology
Physical properties and thermochemistry for reactor technologyPhysical properties and thermochemistry for reactor technology
Physical properties and thermochemistry for reactor technology
 
Estimation of Pressure Drop in Pipe Systems
Estimation of Pressure Drop in Pipe SystemsEstimation of Pressure Drop in Pipe Systems
Estimation of Pressure Drop in Pipe Systems
 
Orifice Restrictors - Design Guidelines
Orifice Restrictors - Design GuidelinesOrifice Restrictors - Design Guidelines
Orifice Restrictors - Design Guidelines
 
Process Synthesis
Process SynthesisProcess Synthesis
Process Synthesis
 
Integration of Special Purpose Centrifugal Fans into a Process
Integration of Special Purpose Centrifugal Fans into a ProcessIntegration of Special Purpose Centrifugal Fans into a Process
Integration of Special Purpose Centrifugal Fans into a Process
 
The Preliminary Choice of Fan or Compressor
The Preliminary Choice of Fan or Compressor The Preliminary Choice of Fan or Compressor
The Preliminary Choice of Fan or Compressor
 
Examination of Critical Centrifugal Fans and Blowers
Examination of Critical Centrifugal Fans and BlowersExamination of Critical Centrifugal Fans and Blowers
Examination of Critical Centrifugal Fans and Blowers
 
Protection Systems for Machines: an Engineering Guide
Protection Systems for Machines: an Engineering GuideProtection Systems for Machines: an Engineering Guide
Protection Systems for Machines: an Engineering Guide
 
Reciprocating Compressors - Protection against Crank Case Explosions
Reciprocating Compressors - Protection against Crank Case ExplosionsReciprocating Compressors - Protection against Crank Case Explosions
Reciprocating Compressors - Protection against Crank Case Explosions
 
How to use the GBHE Reactor Technology Guides
How to use the GBHE Reactor Technology GuidesHow to use the GBHE Reactor Technology Guides
How to use the GBHE Reactor Technology Guides
 
Reactor Modeling Tools - An Overview
Reactor Modeling Tools - An OverviewReactor Modeling Tools - An Overview
Reactor Modeling Tools - An Overview
 
Gas - Liquid Reactors
Gas - Liquid ReactorsGas - Liquid Reactors
Gas - Liquid Reactors
 
Solid Catalyzed Reactions
Solid Catalyzed Reactions Solid Catalyzed Reactions
Solid Catalyzed Reactions
 
Solid Catalyzed Gas Phase Reactor Selection
Solid Catalyzed Gas Phase Reactor SelectionSolid Catalyzed Gas Phase Reactor Selection
Solid Catalyzed Gas Phase Reactor Selection
 
Fixed Bed Reactor Scale-up Checklist
Fixed Bed Reactor Scale-up ChecklistFixed Bed Reactor Scale-up Checklist
Fixed Bed Reactor Scale-up Checklist
 
Homogeneous Reactors
Homogeneous ReactorsHomogeneous Reactors
Homogeneous Reactors
 
Centrifugal Compressors
Centrifugal CompressorsCentrifugal Compressors
Centrifugal Compressors
 
Reactor and Catalyst Design
Reactor and Catalyst DesignReactor and Catalyst Design
Reactor and Catalyst Design
 
Novel Reactor Technology
Novel Reactor TechnologyNovel Reactor Technology
Novel Reactor Technology
 
Chemical Process Conception
Chemical Process ConceptionChemical Process Conception
Chemical Process Conception
 

Similar to Naphtha Steam Reforming Catalyst Reduction by NH3 Cracking

Naphtha Steam Reforming Catalyst Reduction with Methanol
Naphtha Steam Reforming Catalyst Reduction with MethanolNaphtha Steam Reforming Catalyst Reduction with Methanol
Naphtha Steam Reforming Catalyst Reduction with MethanolGerard B. Hawkins
 
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTSSTEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTSGerard B. Hawkins
 
Guidelines for Charging Primary Reforming Catalyst via Wet Method
Guidelines for Charging Primary Reforming Catalyst via Wet MethodGuidelines for Charging Primary Reforming Catalyst via Wet Method
Guidelines for Charging Primary Reforming Catalyst via Wet MethodGerard B. Hawkins
 
Low Temperature Shift Catalyst Reduction Procedure
Low Temperature Shift Catalyst Reduction ProcedureLow Temperature Shift Catalyst Reduction Procedure
Low Temperature Shift Catalyst Reduction ProcedureGerard B. Hawkins
 
METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...
METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...
METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...Gerard B. Hawkins
 
Discharge and Reduction Procedures for Methanation Catalyst
Discharge and Reduction Procedures for Methanation CatalystDischarge and Reduction Procedures for Methanation Catalyst
Discharge and Reduction Procedures for Methanation CatalystGerard B. Hawkins
 
Fixed Bed Adsorber Design Guidelines
Fixed Bed Adsorber Design GuidelinesFixed Bed Adsorber Design Guidelines
Fixed Bed Adsorber Design GuidelinesGerard B. Hawkins
 
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDSSYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDSGerard B. Hawkins
 
METHANOL PLANT - SHALE GAS FEED PRETREATMENT
METHANOL PLANT - SHALE GAS FEED PRETREATMENTMETHANOL PLANT - SHALE GAS FEED PRETREATMENT
METHANOL PLANT - SHALE GAS FEED PRETREATMENTGerard B. Hawkins
 
Steam Reforming Catalyst Reduction with LPG Feed
Steam Reforming Catalyst Reduction with LPG FeedSteam Reforming Catalyst Reduction with LPG Feed
Steam Reforming Catalyst Reduction with LPG FeedGerard B. Hawkins
 
Air / Steam Regeneration Procedure for Primary Reforming Ccatalyst
Air / Steam Regeneration Procedure for Primary Reforming CcatalystAir / Steam Regeneration Procedure for Primary Reforming Ccatalyst
Air / Steam Regeneration Procedure for Primary Reforming CcatalystGerard B. Hawkins
 
Getting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen PlantGetting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen PlantGerard B. Hawkins
 
Key Considerations for a Reforming Unit Revamp
Key Considerations for a Reforming Unit RevampKey Considerations for a Reforming Unit Revamp
Key Considerations for a Reforming Unit RevampGerard B. Hawkins
 
(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT
(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT
(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENTGerard B. Hawkins
 
Determination of Oxygen in Anhydrous Ammonia
Determination of Oxygen in Anhydrous AmmoniaDetermination of Oxygen in Anhydrous Ammonia
Determination of Oxygen in Anhydrous AmmoniaGerard B. Hawkins
 
Design and Operation of NHT Strippers to Protect Catalytic Reformers
Design and Operation of NHT Strippers to Protect Catalytic Reformers Design and Operation of NHT Strippers to Protect Catalytic Reformers
Design and Operation of NHT Strippers to Protect Catalytic Reformers Gerard B. Hawkins
 
Hydrogen Plant Monitoring & Methane Steam Reformer Troubleshooting
Hydrogen Plant Monitoring & Methane Steam Reformer TroubleshootingHydrogen Plant Monitoring & Methane Steam Reformer Troubleshooting
Hydrogen Plant Monitoring & Methane Steam Reformer TroubleshootingGerard B. Hawkins
 
High Temperature Shift Catalyst Reduction Procedure
High Temperature Shift Catalyst Reduction ProcedureHigh Temperature Shift Catalyst Reduction Procedure
High Temperature Shift Catalyst Reduction ProcedureGerard B. Hawkins
 
METHANOL PLANT ARC RETROFIT Case Study
METHANOL PLANT ARC RETROFIT Case StudyMETHANOL PLANT ARC RETROFIT Case Study
METHANOL PLANT ARC RETROFIT Case StudyGerard B. Hawkins
 

Similar to Naphtha Steam Reforming Catalyst Reduction by NH3 Cracking (20)

Naphtha Steam Reforming Catalyst Reduction with Methanol
Naphtha Steam Reforming Catalyst Reduction with MethanolNaphtha Steam Reforming Catalyst Reduction with Methanol
Naphtha Steam Reforming Catalyst Reduction with Methanol
 
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTSSTEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
STEAMING PROCEDURE FOR VULCAN STEAM REFORMING CATALYSTS
 
Guidelines for Charging Primary Reforming Catalyst via Wet Method
Guidelines for Charging Primary Reforming Catalyst via Wet MethodGuidelines for Charging Primary Reforming Catalyst via Wet Method
Guidelines for Charging Primary Reforming Catalyst via Wet Method
 
Low Temperature Shift Catalyst Reduction Procedure
Low Temperature Shift Catalyst Reduction ProcedureLow Temperature Shift Catalyst Reduction Procedure
Low Temperature Shift Catalyst Reduction Procedure
 
METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...
METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...
METHANOL PRODUCTION USING VULCAN SYSTEMS COMBINED REFORMING TECHNOLOGY (ATR) ...
 
Discharge and Reduction Procedures for Methanation Catalyst
Discharge and Reduction Procedures for Methanation CatalystDischarge and Reduction Procedures for Methanation Catalyst
Discharge and Reduction Procedures for Methanation Catalyst
 
Fixed Bed Adsorber Design Guidelines
Fixed Bed Adsorber Design GuidelinesFixed Bed Adsorber Design Guidelines
Fixed Bed Adsorber Design Guidelines
 
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDSSYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
SYNGAS CONDITIONING UNIT FEASIBILITY CASE STUDY: COAL-TO-LIQUIDS
 
METHANOL PLANT - SHALE GAS FEED PRETREATMENT
METHANOL PLANT - SHALE GAS FEED PRETREATMENTMETHANOL PLANT - SHALE GAS FEED PRETREATMENT
METHANOL PLANT - SHALE GAS FEED PRETREATMENT
 
Steam Reforming Catalyst Reduction with LPG Feed
Steam Reforming Catalyst Reduction with LPG FeedSteam Reforming Catalyst Reduction with LPG Feed
Steam Reforming Catalyst Reduction with LPG Feed
 
Air / Steam Regeneration Procedure for Primary Reforming Ccatalyst
Air / Steam Regeneration Procedure for Primary Reforming CcatalystAir / Steam Regeneration Procedure for Primary Reforming Ccatalyst
Air / Steam Regeneration Procedure for Primary Reforming Ccatalyst
 
Getting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen PlantGetting the Most Out of Your Refinery Hydrogen Plant
Getting the Most Out of Your Refinery Hydrogen Plant
 
Key Considerations for a Reforming Unit Revamp
Key Considerations for a Reforming Unit RevampKey Considerations for a Reforming Unit Revamp
Key Considerations for a Reforming Unit Revamp
 
(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT
(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT
(AGRU) ACID GAS SOUR SHIFT: CASE STUDY IN REFINERY GAS TREATMENT
 
Determination of Oxygen in Anhydrous Ammonia
Determination of Oxygen in Anhydrous AmmoniaDetermination of Oxygen in Anhydrous Ammonia
Determination of Oxygen in Anhydrous Ammonia
 
Design and Operation of NHT Strippers to Protect Catalytic Reformers
Design and Operation of NHT Strippers to Protect Catalytic Reformers Design and Operation of NHT Strippers to Protect Catalytic Reformers
Design and Operation of NHT Strippers to Protect Catalytic Reformers
 
Hydrogen Plant Monitoring & Methane Steam Reformer Troubleshooting
Hydrogen Plant Monitoring & Methane Steam Reformer TroubleshootingHydrogen Plant Monitoring & Methane Steam Reformer Troubleshooting
Hydrogen Plant Monitoring & Methane Steam Reformer Troubleshooting
 
High Temperature Shift Catalyst Reduction Procedure
High Temperature Shift Catalyst Reduction ProcedureHigh Temperature Shift Catalyst Reduction Procedure
High Temperature Shift Catalyst Reduction Procedure
 
METHANOL PLANT ARC RETROFIT Case Study
METHANOL PLANT ARC RETROFIT Case StudyMETHANOL PLANT ARC RETROFIT Case Study
METHANOL PLANT ARC RETROFIT Case Study
 
Hydrogen Compressors
Hydrogen CompressorsHydrogen Compressors
Hydrogen Compressors
 

More from Gerard B. Hawkins

Pressure Relief Systems Vol 2
Pressure Relief Systems   Vol 2Pressure Relief Systems   Vol 2
Pressure Relief Systems Vol 2Gerard B. Hawkins
 
GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy GasesGAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy GasesGerard B. Hawkins
 
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...Gerard B. Hawkins
 
Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming Gerard B. Hawkins
 
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...Gerard B. Hawkins
 
Calculation of an Ammonia Plant Energy Consumption:
Calculation of an Ammonia Plant Energy Consumption:  Calculation of an Ammonia Plant Energy Consumption:
Calculation of an Ammonia Plant Energy Consumption: Gerard B. Hawkins
 
Calculation of Caloric Value and other Characteristic Data of Fuel Gas
Calculation of Caloric Value and other Characteristic Data of Fuel GasCalculation of Caloric Value and other Characteristic Data of Fuel Gas
Calculation of Caloric Value and other Characteristic Data of Fuel GasGerard B. Hawkins
 
Piping and Vessels Flushing and Cleaning Procedure
Piping and Vessels Flushing and Cleaning ProcedurePiping and Vessels Flushing and Cleaning Procedure
Piping and Vessels Flushing and Cleaning ProcedureGerard B. Hawkins
 
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS Gerard B. Hawkins
 
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...Gerard B. Hawkins
 
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...Gerard B. Hawkins
 
EMERGENCY ISOLATION OF CHEMICAL PLANTS
EMERGENCY ISOLATION OF CHEMICAL PLANTS EMERGENCY ISOLATION OF CHEMICAL PLANTS
EMERGENCY ISOLATION OF CHEMICAL PLANTS Gerard B. Hawkins
 
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...Gerard B. Hawkins
 
Purificación – Mecanismos de Reacción
Purificación – Mecanismos de Reacción Purificación – Mecanismos de Reacción
Purificación – Mecanismos de Reacción Gerard B. Hawkins
 
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide Gerard B. Hawkins
 
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...Gerard B. Hawkins
 
GBHE Over View jan_13_español
GBHE Over View jan_13_españolGBHE Over View jan_13_español
GBHE Over View jan_13_españolGerard B. Hawkins
 
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...Gerard B. Hawkins
 

More from Gerard B. Hawkins (20)

Pressure Relief Systems Vol 2
Pressure Relief Systems   Vol 2Pressure Relief Systems   Vol 2
Pressure Relief Systems Vol 2
 
Pressure Relief Systems
Pressure Relief Systems Pressure Relief Systems
Pressure Relief Systems
 
GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy GasesGAS DISPERSION -  A Definitive Guide to Accidental Releases of Heavy Gases
GAS DISPERSION - A Definitive Guide to Accidental Releases of Heavy Gases
 
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
El impacto en el rendimiento del catalizador por envenenamiento y ensuciamien...
 
Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming Theory of Carbon Formation in Steam Reforming
Theory of Carbon Formation in Steam Reforming
 
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...Adiabatic Reactor Analysis for Methanol Synthesis   Plant Note Book Series: P...
Adiabatic Reactor Analysis for Methanol Synthesis Plant Note Book Series: P...
 
Calculation of an Ammonia Plant Energy Consumption:
Calculation of an Ammonia Plant Energy Consumption:  Calculation of an Ammonia Plant Energy Consumption:
Calculation of an Ammonia Plant Energy Consumption:
 
Calculation of Caloric Value and other Characteristic Data of Fuel Gas
Calculation of Caloric Value and other Characteristic Data of Fuel GasCalculation of Caloric Value and other Characteristic Data of Fuel Gas
Calculation of Caloric Value and other Characteristic Data of Fuel Gas
 
Pickling & Passivation
Pickling & PassivationPickling & Passivation
Pickling & Passivation
 
Piping and Vessels Flushing and Cleaning Procedure
Piping and Vessels Flushing and Cleaning ProcedurePiping and Vessels Flushing and Cleaning Procedure
Piping and Vessels Flushing and Cleaning Procedure
 
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
 
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
PRACTICAL GUIDE ON THE SELECTION OF PROCESS TECHNOLOGY FOR THE TREATMENT OF A...
 
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
PRACTICAL GUIDE ON THE REDUCTION OF DISCHARGES TO ATMOSPHERE OF VOLATILE ORGA...
 
EMERGENCY ISOLATION OF CHEMICAL PLANTS
EMERGENCY ISOLATION OF CHEMICAL PLANTS EMERGENCY ISOLATION OF CHEMICAL PLANTS
EMERGENCY ISOLATION OF CHEMICAL PLANTS
 
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...
 
Purificación – Mecanismos de Reacción
Purificación – Mecanismos de Reacción Purificación – Mecanismos de Reacción
Purificación – Mecanismos de Reacción
 
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide Amine Gas Treating Unit  - Best Practices - Troubleshooting Guide
Amine Gas Treating Unit - Best Practices - Troubleshooting Guide
 
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
Investigation of the Potential Use of (IILs) Immobilized Ionic Liquids in Sha...
 
GBHE Over View jan_13_español
GBHE Over View jan_13_españolGBHE Over View jan_13_español
GBHE Over View jan_13_español
 
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
OXIDATIVE COUPLING COMBINED WITH DISTILLATION TO REMOVE MERCAPTAN SULFUR FROM...
 

Recently uploaded

Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxnull - The Open Security Community
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsHyundai Motor Group
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 

Recently uploaded (20)

Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
The transition to renewables in India.pdf
The transition to renewables in India.pdfThe transition to renewables in India.pdf
The transition to renewables in India.pdf
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 

Naphtha Steam Reforming Catalyst Reduction by NH3 Cracking

  • 1. GBH Enterprises, Ltd. Naphtha Steam Reforming Catalyst Reduction by NH3 Cracking Process Information Disclaimer Information contained in this publication or as otherwise supplied to Users is believed to be accurate and correct at time of going to press, and is given in good faith, but it is for the User to satisfy itself of the suitability of the Product for its own particular purpose. GBHE gives no warranty as to the fitness of the Product for any particular purpose and any implied warranty or condition (statutory or otherwise) is excluded except to the extent that exclusion is prevented by law. GBHE accepts no liability for loss, damage or personnel injury caused or resulting from reliance on this information. Freedom under Patent, Copyright and Designs cannot be assumed. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 2. Naphtha Steam Reforming Catalyst Reduction by NH3 Cracking Scope This procedure applies to the in situ reduction of VULCAN Series steam reforming catalysts using ammonia cracking to form hydrogen over the catalyst in the steam reformer. This procedure covers plants with a dry gas circulation loop for reduction. The procedure is likely to be applied to plants using only heavier feeds (e.g.: LPG and/or naphtha) and some combination of VULCAN Series catalysts. Introduction A small number of steam reforming plants do not have an available source of the commonly used reducing media (e.g.: hydrogen, hydrogen-rich off-gas, natural gas). These plants will usually operate on LPG and/or naphtha feed only where cracking of this hydrocarbon is not usually advised for reduction of the steam reforming catalyst. In such circumstances, the plant may be designed to use the installed steam reforming catalyst to crack ammonia to provide hydrogen for the reformer catalyst reduction. This may be on a once through basis or with gas recycle through a circulating loop. By control of the steam to ammonia ratio and reformer exit temperature, oxidized catalyst cracks ammonia to generate hydrogen which then affects a degree of catalyst reduction. Once some reduced nickel is present, ammonia cracking becomes efficient and the period in which ammonia is observed in the process condensate is kept to a minimum. Procedure 1. Ensure the primary reformer catalyst is heated in a nitrogen flow to above the dew point of the process stream. Once this temperature is exceeded by at least 50°C (90°F), continue heating with process steam. The system pressure should be in the usual range for the reformer start-up circulation loop (typically 10 – 15 bara). Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 3. 2. Heat the reformer to a measured inlet temperature in the range 475 to 500°C (887-932°F) and a measured exit temperature of 780 to 800°C (14361472°F). If the plant design does not allow the inlet temperature to attain this level, then the inlet temperature should be as high as possible within the constraints of the plant. Temperature losses to the point of exit temperature measurement are usual at this low load of operation and the actual tube exit temperature will be higher than these values. Regular (1/2 hourly) inspections, ideally with an accurate IR pyrometer, of the reformer are necessary to check for possible overheating. 3. At the above temperatures, control the steam flow through the primary reformer insofar as this is possible to remain within tube skin temperature limits and to satisfy the ratio of steam to ammonia as specified in (5) 4. Maintain a nitrogen gas circulation rate of 40-60 Nm3/hr per reformer tube. 5. Inject ammonia at an initial rate to satisfy a steam to ammonia molar ratio of an absolute minimum of 20:1. This will be sufficient to carry-out the catalyst reduction, but hydrogen will take 1-2 hours to be detected in the recycle gases and ammonia in the condensate will be at high levels (>>100 ppmw) for this period also. To minimize the time to produce hydrogen and limit the amount of high ammonia concentration in the condensate, lower molar ratios of steam to ammonia should be targeted in the range 14:1 to 9:1. 6. Process condensate containing ammonia will need proper attention. Initial levels of ammonia could exceed 1000 ppmw, but will reduce quickly to <100 ppmw (typically 30-70 ppmw) once cracking occurs over the reforming catalyst 7. Maintain continuous injection at the required rate for at least one (1) hour. Monitor the progress of ammonia cracking by observation of process conditions (increasing loop pressure; dry gas circulation rate) and analysis. Adjust the rate based on the analytical results. 8. Take samples for analysis of the re-circulating gas for ammonia and hydrogen and of the process condensate for ammonia every 30 minutes over the first two hours of ammonia injection. Thereafter, reduce the frequency to every 60 minutes for as long as necessary. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 4. 9. If no hydrogen is detected after 2 hours and the ammonia levels in the process condensate remain high (>>100 ppmw), then the molar ratio of ammonia to steam is possibly incorrect and/or the reforming temperature is low. 10. Once hydrogen is measured, the H2O/H2 molar ratio should be recorded (from a combination of analysis and calculation of the amount injected and cracked ammonia). The target point is when the H2O/H2 molar ratio enters the target reduction range of 6:1 – 8:1. The molar ratio may be allowed to go as low as 4:1 without cause for concern in terms of the catalysts within the loop. 11. Once the H2O/H2 molar ratio is in the range 6:1 – 8:1, stop ammonia injection. Continue to analyze at 60-minute intervals and calculate the H2O/H2 molar ratio in the loop. Hydrogen will be consumed slowly as the reduction proceeds. As the H2O/H2 ratio rises towards the top of the reducing range (H2O/H2 molar ratio = 8:1), inject a slug of ammonia to adjust the H2O/H2 molar ratio in the loop to about 6:1. 12. Maintain reducing conditions (H2O/H2 molar ratio in the range 6:1 – 8:1) for the following times depending on the recent shutdown history of the catalyst. See Table 1. 13. Following this, introduce hydrocarbon feed as described in the Operating Manual for VULCAN Series Naphtha Steam Reforming Catalysts. Table 1 – Catalyst Reduction Times Catalyst Steaming Period (Hours) <3 3-8 >8 Fresh Catalyst Charge Period of Reduction (Hours) No reduction required 6 hours of reduction 12 hours of reduction 18 hours of reduction Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com
  • 5. Refinery Process Stream Purification Refinery Process Catalysts Troubleshooting Refinery Process Catalyst Start-Up / Shutdown Activation Reduction In-situ Ex-situ Sulfiding Specializing in Refinery Process Catalyst Performance Evaluation Heat & Mass Balance Analysis Catalyst Remaining Life Determination Catalyst Deactivation Assessment Catalyst Performance Characterization Refining & Gas Processing & Petrochemical Industries Catalysts / Process Technology - Hydrogen Catalysts / Process Technology – Ammonia Catalyst Process Technology - Methanol Catalysts / process Technology – Petrochemicals Specializing in the Development & Commercialization of New Technology in the Refining & Petrochemical Industries Web Site: www.GBHEnterprises.com