SlideShare a Scribd company logo
Dealing With Green’s Functions: A Basic Refresher
[Field Theory Highlights 2015 Set B]
Roa, F. J. P.
This is now the continuing part of Field Theory Highlights 2015, came the year 2016 though I
have chosen a different title for this present document that deals mainly on Green’s functions at a
basic utilitarian level as applied to scalar fields.
In [1] it is discussed that we can outline a basic Higgs boson theory from a basic SU(2)XU(1)
construction that excludes the needed fermions in the complete Electroweak theory. The
lagrangian of such a basic Higgs boson theory can be given by
(1.1)
 
3222
2
2)(
)(222
4
1
cos2
1
)(
2
1
)()(
2
1



 





ο€­
 ο€­

ZZWWQxJmL T
(1.2)
222)(
)(2
cos2
1
2)( 

 


 yZZWWQxJT 
οƒΈ
οƒΆ



 ο€­

This is fundamentally a scalar field theory with the usual self-interaction terms that involve 2

and 3
 that come with the coupling constants  and  though in addition to these, there are
also another self-interaction terms that involve 2
 in which the massive gauge fields W and Z
partake in such terms.
Our initial approach towards the classical solutions is to consider the perturbative solution say, in
generic form
(2)
πœ‚ = πœ‚0 + βˆ‘ πœ†2𝑙
πœ‚π‘™
∞
𝑙=1
With respect to the coupling constant πœ† the 0th order field here is πœ‚0 and its corresponding
equation of motion is given by
(3)
πœ•πœ‡ πœ• πœ‡
πœ‚0 + π‘š πœ‚
2
πœ‚0 = 2𝑄′2
π‘Šπœ‡
(+)
π‘Š(βˆ’)
πœ‡
πœ‚0 +
𝑄′2
π‘π‘œπ‘ 2 𝛼
π‘πœ‡ 𝑍 πœ‡
πœ‚0 βˆ’ 𝐽 𝑇
Aside from the conventional source term that contains the source 𝐽 𝑇 we have the additional
source terms that contain the self-interacting scalar field πœ‚0 along with the massive gauge fields.
In the presence of sources, we may consider a generic Green’s function solution in the following
form
(4)
πœ‘π‘ =
1
(2πœ‹)2
∫ 𝑑4
π‘₯β€²
𝐺( π‘₯ βˆ’ π‘₯β€²) 𝐽(π‘₯β€²
)
(Here, note my placement of the integration variable π‘₯β€²
in the Green’s function and I am used to
this notation although we may resort to the symmetry of Green’s function in the integration to
interchange its place with the picking variable x but in doing so we must be specific of the
chosen causality.)
In my particular convention I write the fourier integral form of the Green’s function as
(5)
𝐺( π‘₯ βˆ’ π‘₯β€²) = βˆ’
1
(2πœ‹)2
∫ 𝑑4
π‘˜
𝑒 π‘–π‘˜ 𝜎(π‘₯βˆ’π‘₯β€²
) 𝜎
βˆ’π‘˜ πœ‡ π‘˜ πœ‡ + 𝑀2 + π‘–πœ–
where the fourier component is
(6)
𝐺̃( π‘˜) =
βˆ’ 1
βˆ’π‘˜ πœ‡ π‘˜ πœ‡ + 𝑀2 + π‘–πœ–
In this, I have already included the term π‘–πœ– to shift the poles whenever we perform the contour
integration. The metric signature used in this document is negative two so for instance, we can
write π‘˜2
= π‘˜ πœ‡ π‘˜ πœ‡
= (π‘˜0
)2
βˆ’ π‘˜βƒ— βˆ™ π‘˜βƒ— .
To continue, let us tackle on (5) as applied in the scalar solution (4), deriving the form of the
Green’s function suited for the case in which the scalar is massless and resort to stationary phase
approximation to obtain for the form for the case wherein the scalar is massive.
The fourier integral form (5) assumes continuous four-momenta as the integration variables so
we may write the differential 1+3 volume as
(7.1)
𝑑4
π‘˜ = π‘‘π‘˜0
𝑑3
π‘˜βƒ—
and considering the spherical momentum space we may actually write this as
(7.2)
𝑑4
π‘˜ = π‘‘π‘˜0
π‘‘π‘˜ π‘Ÿ π‘˜ π‘Ÿ
2
π‘‘πœ‘sin πœ‘ π‘‘πœ™
0 < πœ‘ < πœ‹ , 0 < πœ™ < 2πœ‹
So in the metric signature of negative two, we can separate out the integrations indicated in (5)
and re-writing this into the following form
(8.1)
𝐺( π‘₯ βˆ’ π‘₯β€²) =
1
(2πœ‹)2
∫ 𝑑3
π‘˜βƒ— π‘’βˆ’π‘–π‘˜βƒ— βˆ™ βˆ†π‘₯
∫ π‘‘π‘˜0
𝑒 π‘–π‘˜0
βˆ†π‘₯0
(π‘˜0)2 βˆ’ 𝑏′2
(8.2)
𝑏′2
= 𝑏2
+ π‘–πœ– = π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2
+ π‘–πœ–
(8.3)
βˆ†π‘₯0
= π‘₯0
βˆ’ π‘₯β€² 0
(8.4)
βˆ†π‘₯ = π‘₯ βˆ’ π‘₯β€²
(8.5)
π‘˜βƒ— βˆ™ βˆ†π‘₯ = π‘˜ π‘Ÿ |βˆ†π‘₯| cos πœ‘
|π‘˜βƒ— | = π‘˜ π‘Ÿ
We perform contour integration for the integral
∫ π‘‘π‘˜0
𝑒 π‘–π‘˜0
βˆ†π‘₯0
(π‘˜0)2 βˆ’ 𝑏′2
contained in (8.1) and let us simply quote the results here as taken in the limit πœ– β†’ 0. We shall
show the details of such contour integration in future attachments.
So quoting the results of the said contour integration we have
(9)
𝐺( π‘₯ βˆ’ π‘₯β€²) = βˆ’
1
(2πœ‹)2
∫ 𝑑4
π‘˜
𝑒 𝑖 π‘˜ 𝜎( π‘₯βˆ’π‘₯β€²)
𝜎
βˆ’π‘˜ πœ‡ π‘˜ πœ‡ + 𝑀2
= π‘™π‘–π‘š πœ–β†’0 βˆ’
1
(2πœ‹)2
∫ 𝑑4
π‘˜
𝑒 π‘–π‘˜ 𝜎( π‘₯βˆ’π‘₯β€²)
𝜎
βˆ’π‘˜ πœ‡ π‘˜ πœ‡ + 𝑀2 + π‘–πœ–
=
1
2
𝑖
2πœ‹
∫ 𝑑3
π‘˜βƒ—
1
π‘˜0
𝑒 π‘–π‘˜0 ( π‘₯0
βˆ’ π‘₯β€² 0)
π‘’βˆ’π‘–π‘˜βƒ— βˆ™( π‘₯βˆ’ π‘₯β€² )
Θ( π‘₯0
βˆ’ π‘₯β€² 0)
βˆ’
1
2
𝑖
2πœ‹
∫ 𝑑3
π‘˜βƒ—
1
π‘˜0
𝑒 π‘–π‘˜0
(π‘₯β€²0
βˆ’ π‘₯0
)
π‘’βˆ’π‘–π‘˜βƒ— βˆ™( π‘₯βˆ’ π‘₯β€²
)
Θ(π‘₯β€²0
βˆ’ π‘₯0
)
Note here that we have set ( π‘˜0
)2
= πœ”2
(π‘˜βƒ— ) = π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2
as evaluated in the limit as πœ– β†’ 0,
where to first order in πœ– , 𝑏′
β‰ˆ √ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2 +
π‘–πœ–
2√ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2
, while inserting the Theta functions
Θ in (9) by hand to distinguish the given causality of each major term there.
Say for the moment, we have a massless scalar so that π‘˜0
= |π‘˜βƒ— | = π‘˜ π‘Ÿ and specify the causality
π‘₯0
> π‘₯β€²0
, given for | π‘₯| > |π‘₯β€²βƒ—βƒ—βƒ— | . By this, we can reduce (9) into
(10)
𝐺( π‘₯ βˆ’ π‘₯β€²) =
𝑖
2
∫ π‘‘π‘˜ π‘Ÿ 𝑒 π‘–π‘˜ π‘Ÿ(π‘₯0
βˆ’ π‘₯β€²0
)
∫ π‘‘πœ‘ π‘˜ π‘Ÿ sin πœ‘ π‘’βˆ’π‘– π‘˜ π‘Ÿ| π‘₯βˆ’ π‘₯β€²| cos πœ‘
0 < πœ‘ < πœ‹
Then we note the integral result
(11)
∫ π‘‘πœ‘ π‘˜ π‘Ÿ sin πœ‘ π‘’βˆ’π‘– π‘˜ π‘Ÿ| π‘₯βˆ’ π‘₯β€²| cos πœ‘
πœ‹
0
=
1
𝑖| π‘₯ βˆ’ π‘₯β€²|
( 𝑒 𝑖 π‘˜ π‘Ÿ| π‘₯βˆ’ π‘₯β€²|
βˆ’ π‘’βˆ’π‘– π‘˜ π‘Ÿ| π‘₯βˆ’ π‘₯β€²|
)
so we may able to write (9) as
(12)
𝐺( π‘₯ βˆ’ π‘₯β€²) =
1
2| π‘₯ βˆ’ π‘₯β€²|
(∫ π‘‘π‘˜ π‘Ÿ 𝑒
π‘–π‘˜ π‘Ÿ(( π‘₯0
βˆ’ π‘₯β€²0
) + | π‘₯βˆ’ π‘₯β€²| )
βˆ’ ∫ π‘‘π‘˜ π‘Ÿ 𝑒
π‘–π‘˜ π‘Ÿ(( π‘₯0
βˆ’ π‘₯β€²0
) βˆ’ | π‘₯βˆ’ π‘₯β€²| )
)
If we are to integrate over the integration variable π‘˜ π‘Ÿ from βˆ’βˆž to ∞, then the remaining integrals
in (12) are just the integral definitions of delta functions. Thus, for a massless scalar field, we
have as its Green’s function the following form
(13)
𝐺( π‘₯ βˆ’ π‘₯β€²) =
2πœ‹
2| π‘₯ βˆ’ π‘₯β€²|
(𝛿 ((π‘₯0
βˆ’ π‘₯β€²0
) + | π‘₯ βˆ’ π‘₯β€²|)βˆ’ 𝛿 ((π‘₯0
βˆ’ π‘₯β€²0
) βˆ’ | π‘₯ βˆ’ π‘₯β€²|) )
where the first major part refers to the backward traveling wave, while the second to the forward
traveling wave as specified with causality π‘₯0
> π‘₯β€²0
, given for | π‘₯| > |π‘₯β€²βƒ—βƒ—βƒ— |.
For example, we choose the wave to be a forward traveling wave so we may plug the appropriate
form of (13) in (4)
(14)
πœ‘π‘( π‘₯) =
1
(2πœ‹)2
∫ 𝑑3
π‘₯β€²
∫ 𝑑 π‘₯β€²0
𝐺( π‘₯ βˆ’ π‘₯β€²) 𝐽(π‘₯β€²
)
𝐽( π‘₯β€² ) = 𝐽(π‘₯β€²
, π‘₯β€²0
)
Say from (13) we have
(15)
𝐺( π‘₯ βˆ’ π‘₯β€²) = βˆ’
2πœ‹
2| π‘₯ βˆ’ π‘₯β€²|
𝛿 ((π‘₯0
βˆ’ π‘₯β€²0
) βˆ’ | π‘₯ βˆ’ π‘₯β€²|)
in (14) and the picking is at π‘₯β€²0
= π‘₯0
βˆ’ | π‘₯ βˆ’ π‘₯β€²| . Then (14) would just involve a time-retarded
source
(16)
πœ‘π‘( π‘₯) = βˆ’
1
2
2πœ‹
(2πœ‹)2
∫ 𝑑3
π‘₯β€²
1
| π‘₯ βˆ’ π‘₯β€²|
𝐽( π‘₯β€²
,(π‘₯0
βˆ’ | π‘₯ βˆ’ π‘₯β€²|) )
In other attachments, we will continue on massive scalar.
[stopped: pp. 1H, Prep Notes: Scalar Field Theories - … ]
Ref’s
[1]Roa, F. J. P., Field Theory Highlights 2015 Set A (slideshare)
[2]W. Hollik, Quantum field theory and the Standard Model, arXiv:1012.3883v1 [hep-ph]
[3]Baal, P., A COURSE IN FIELD THEORY,
http://www.lorentz.leidenuniv.nl/~vanbaal/FTcourse.html
[4]’t Hooft, G., THE CONCEPTUAL BASIS OF QUANTUM FIELD THEORY,
http://www.phys.uu.nl/~thooft/
[5]Siegel, W., FIELDS, arXiv:hep-th/9912205 v2
[6]Cardy, J., Introduction to Quantum Field Theory
[7]Gaberdiel, M., Gehrmann-De Ridder, A., Quantum Field Theory

More Related Content

What's hot

Sw2gr1 set a
Sw2gr1 set aSw2gr1 set a
Sw2gr1 set a
foxtrot jp R
Β 
Summerp62016update2 slideshare sqd
Summerp62016update2 slideshare  sqdSummerp62016update2 slideshare  sqd
Summerp62016update2 slideshare sqd
foxtrot jp R
Β 
Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1
foxtrot jp R
Β 
Fieldtheoryhighlights2015
Fieldtheoryhighlights2015Fieldtheoryhighlights2015
Fieldtheoryhighlights2015
foxtrot jp R
Β 
Summerp62016update3 slideshare sqrdver2
Summerp62016update3 slideshare   sqrdver2Summerp62016update3 slideshare   sqrdver2
Summerp62016update3 slideshare sqrdver2
foxtrot jp R
Β 
Hawkinrad a sourceasd
Hawkinrad a sourceasdHawkinrad a sourceasd
Hawkinrad a sourceasd
foxtrot jp R
Β 
Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016
foxtrot jp R
Β 
Hawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedHawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _secured
foxtrot jp R
Β 
Sweeping discussion on_dirac_fields_secured
Sweeping discussion on_dirac_fields_securedSweeping discussion on_dirac_fields_secured
Sweeping discussion on_dirac_fields_secured
foxtrot jp R
Β 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
Tony Yen
Β 
Stringhighlights2015 seta update
Stringhighlights2015 seta updateStringhighlights2015 seta update
Stringhighlights2015 seta update
foxtrot jp R
Β 
Higgsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsplyHiggsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsply
foxtrot jp R
Β 
Very brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrdVery brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrd
foxtrot jp R
Β 
Parallel tansport sssqrd
Parallel tansport sssqrdParallel tansport sssqrd
Parallel tansport sssqrd
foxtrot jp R
Β 
HashiamKadhimFNLHD
HashiamKadhimFNLHDHashiamKadhimFNLHD
HashiamKadhimFNLHDHashiam Kadhim
Β 
One particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrdOne particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrd
foxtrot jp R
Β 
Very brief highlights on some key details 2
Very brief highlights on some key details 2Very brief highlights on some key details 2
Very brief highlights on some key details 2
foxtrot jp R
Β 
One particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplayOne particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplay
foxtrot jp R
Β 

What's hot (19)

Sw2gr1 set a
Sw2gr1 set aSw2gr1 set a
Sw2gr1 set a
Β 
Summerp62016update2 slideshare sqd
Summerp62016update2 slideshare  sqdSummerp62016update2 slideshare  sqd
Summerp62016update2 slideshare sqd
Β 
Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1
Β 
Fieldtheoryhighlights2015
Fieldtheoryhighlights2015Fieldtheoryhighlights2015
Fieldtheoryhighlights2015
Β 
Summerp62016update3 slideshare sqrdver2
Summerp62016update3 slideshare   sqrdver2Summerp62016update3 slideshare   sqrdver2
Summerp62016update3 slideshare sqrdver2
Β 
Hawkinrad a sourceasd
Hawkinrad a sourceasdHawkinrad a sourceasd
Hawkinrad a sourceasd
Β 
Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016
Β 
Hawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedHawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _secured
Β 
Sweeping discussion on_dirac_fields_secured
Sweeping discussion on_dirac_fields_securedSweeping discussion on_dirac_fields_secured
Sweeping discussion on_dirac_fields_secured
Β 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
Β 
Stringhighlights2015 seta update
Stringhighlights2015 seta updateStringhighlights2015 seta update
Stringhighlights2015 seta update
Β 
Higgsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsplyHiggsbosontoelectron positron decay_dsply
Higgsbosontoelectron positron decay_dsply
Β 
Very brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrdVery brief highlights on some key details tosssqrd
Very brief highlights on some key details tosssqrd
Β 
Parallel tansport sssqrd
Parallel tansport sssqrdParallel tansport sssqrd
Parallel tansport sssqrd
Β 
HashiamKadhimFNLHD
HashiamKadhimFNLHDHashiamKadhimFNLHD
HashiamKadhimFNLHD
Β 
One particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrdOne particle to_onepartlce_scattering_sqrd
One particle to_onepartlce_scattering_sqrd
Β 
FGRessay
FGRessayFGRessay
FGRessay
Β 
Very brief highlights on some key details 2
Very brief highlights on some key details 2Very brief highlights on some key details 2
Very brief highlights on some key details 2
Β 
One particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplayOne particle to_onepartlce_scattering_12082020_fordisplay
One particle to_onepartlce_scattering_12082020_fordisplay
Β 

Similar to Dealinggreensfncsolft sqrd

One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1
foxtrot jp R
Β 
One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020
foxtrot jp R
Β 
One particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpyOne particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpy
foxtrot jp R
Β 
Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18
foxtrot jp R
Β 
Fieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbbFieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbb
foxtrot jp R
Β 
Fieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setbFieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setb
foxtrot jp R
Β 
Change variablethm
Change variablethmChange variablethm
Change variablethm
Jasonleav
Β 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Rai University
Β 
E0561719
E0561719E0561719
E0561719
IOSR Journals
Β 
On The Numerical Solution of Picard Iteration Method for Fractional Integro -...
On The Numerical Solution of Picard Iteration Method for Fractional Integro -...On The Numerical Solution of Picard Iteration Method for Fractional Integro -...
On The Numerical Solution of Picard Iteration Method for Fractional Integro -...
DavidIlejimi
Β 
Bc4301300308
Bc4301300308Bc4301300308
Bc4301300308IJERA Editor
Β 
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
foxtrot jp R
Β 
A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...
iosrjce
Β 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
mathsjournal
Β 
A05330107
A05330107A05330107
A05330107
IOSR-JEN
Β 
Uniformity of the Local Convergence of Chord Method for Generalized Equations
Uniformity of the Local Convergence of Chord Method for Generalized EquationsUniformity of the Local Convergence of Chord Method for Generalized Equations
Uniformity of the Local Convergence of Chord Method for Generalized Equations
IOSR Journals
Β 
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric SpaceFixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
inventionjournals
Β 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
Rai University
Β 
new math seminar paper
new math seminar papernew math seminar paper
new math seminar paperCharlesha Simmons
Β 
A Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionA Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary Condition
IJMERJOURNAL
Β 

Similar to Dealinggreensfncsolft sqrd (20)

One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1One particle to_onepartlce_scatteringsqrdcpy1
One particle to_onepartlce_scatteringsqrdcpy1
Β 
One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020One particle to_onepartlce_scattering_18052020
One particle to_onepartlce_scattering_18052020
Β 
One particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpyOne particle to_onepartlce_scattering_5302020_pdfcpy
One particle to_onepartlce_scattering_5302020_pdfcpy
Β 
Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18Fieldtheoryhighlights2015 setb 16jan18
Fieldtheoryhighlights2015 setb 16jan18
Β 
Fieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbbFieldtheoryhighlights2015 setbb
Fieldtheoryhighlights2015 setbb
Β 
Fieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setbFieldtheoryhighlights2015 setb
Fieldtheoryhighlights2015 setb
Β 
Change variablethm
Change variablethmChange variablethm
Change variablethm
Β 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Β 
E0561719
E0561719E0561719
E0561719
Β 
On The Numerical Solution of Picard Iteration Method for Fractional Integro -...
On The Numerical Solution of Picard Iteration Method for Fractional Integro -...On The Numerical Solution of Picard Iteration Method for Fractional Integro -...
On The Numerical Solution of Picard Iteration Method for Fractional Integro -...
Β 
Bc4301300308
Bc4301300308Bc4301300308
Bc4301300308
Β 
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
1+3 gr reduced_as_1+1_gravity_set_1 280521fordsply
Β 
A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...
Β 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
Β 
A05330107
A05330107A05330107
A05330107
Β 
Uniformity of the Local Convergence of Chord Method for Generalized Equations
Uniformity of the Local Convergence of Chord Method for Generalized EquationsUniformity of the Local Convergence of Chord Method for Generalized Equations
Uniformity of the Local Convergence of Chord Method for Generalized Equations
Β 
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric SpaceFixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Β 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
Β 
new math seminar paper
new math seminar papernew math seminar paper
new math seminar paper
Β 
A Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionA Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary Condition
Β 

Recently uploaded

filosofia boliviana introducciΓ³n jsjdjd.pptx
filosofia boliviana introducciΓ³n jsjdjd.pptxfilosofia boliviana introducciΓ³n jsjdjd.pptx
filosofia boliviana introducciΓ³n jsjdjd.pptx
IvanMallco1
Β 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
Β 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
Scintica Instrumentation
Β 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
muralinath2
Β 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
AADYARAJPANDEY1
Β 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
Β 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
Areesha Ahmad
Β 
Anemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditionsAnemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditions
muralinath2
Β 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
YOGESH DOGRA
Β 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...
SΓ©rgio Sacani
Β 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
muralinath2
Β 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
Richard Gill
Β 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
SΓ©rgio Sacani
Β 
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
NathanBaughman3
Β 
justice-and-fairness-ethics with example
justice-and-fairness-ethics with examplejustice-and-fairness-ethics with example
justice-and-fairness-ethics with example
azzyixes
Β 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
AlguinaldoKong
Β 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
anitaento25
Β 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
silvermistyshot
Β 
Viksit bharat till 2047 India@2047.pptx
Viksit bharat till 2047  India@2047.pptxViksit bharat till 2047  India@2047.pptx
Viksit bharat till 2047 India@2047.pptx
rakeshsharma20142015
Β 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
Β 

Recently uploaded (20)

filosofia boliviana introducciΓ³n jsjdjd.pptx
filosofia boliviana introducciΓ³n jsjdjd.pptxfilosofia boliviana introducciΓ³n jsjdjd.pptx
filosofia boliviana introducciΓ³n jsjdjd.pptx
Β 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Β 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
Β 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Β 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
Β 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
Β 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
Β 
Anemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditionsAnemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditions
Β 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
Β 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...
Β 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
Β 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
Β 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Β 
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Β 
justice-and-fairness-ethics with example
justice-and-fairness-ethics with examplejustice-and-fairness-ethics with example
justice-and-fairness-ethics with example
Β 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
Β 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
Β 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
Β 
Viksit bharat till 2047 India@2047.pptx
Viksit bharat till 2047  India@2047.pptxViksit bharat till 2047  India@2047.pptx
Viksit bharat till 2047 India@2047.pptx
Β 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Β 

Dealinggreensfncsolft sqrd

  • 1. Dealing With Green’s Functions: A Basic Refresher [Field Theory Highlights 2015 Set B] Roa, F. J. P. This is now the continuing part of Field Theory Highlights 2015, came the year 2016 though I have chosen a different title for this present document that deals mainly on Green’s functions at a basic utilitarian level as applied to scalar fields. In [1] it is discussed that we can outline a basic Higgs boson theory from a basic SU(2)XU(1) construction that excludes the needed fermions in the complete Electroweak theory. The lagrangian of such a basic Higgs boson theory can be given by (1.1)   3222 2 2)( )(222 4 1 cos2 1 )( 2 1 )()( 2 1           ο€­  ο€­  ZZWWQxJmL T (1.2) 222)( )(2 cos2 1 2)(        yZZWWQxJT  οƒΈ οƒΆ     ο€­  This is fundamentally a scalar field theory with the usual self-interaction terms that involve 2  and 3  that come with the coupling constants  and  though in addition to these, there are also another self-interaction terms that involve 2  in which the massive gauge fields W and Z partake in such terms. Our initial approach towards the classical solutions is to consider the perturbative solution say, in generic form (2) πœ‚ = πœ‚0 + βˆ‘ πœ†2𝑙 πœ‚π‘™ ∞ 𝑙=1 With respect to the coupling constant πœ† the 0th order field here is πœ‚0 and its corresponding equation of motion is given by
  • 2. (3) πœ•πœ‡ πœ• πœ‡ πœ‚0 + π‘š πœ‚ 2 πœ‚0 = 2𝑄′2 π‘Šπœ‡ (+) π‘Š(βˆ’) πœ‡ πœ‚0 + 𝑄′2 π‘π‘œπ‘ 2 𝛼 π‘πœ‡ 𝑍 πœ‡ πœ‚0 βˆ’ 𝐽 𝑇 Aside from the conventional source term that contains the source 𝐽 𝑇 we have the additional source terms that contain the self-interacting scalar field πœ‚0 along with the massive gauge fields. In the presence of sources, we may consider a generic Green’s function solution in the following form (4) πœ‘π‘ = 1 (2πœ‹)2 ∫ 𝑑4 π‘₯β€² 𝐺( π‘₯ βˆ’ π‘₯β€²) 𝐽(π‘₯β€² ) (Here, note my placement of the integration variable π‘₯β€² in the Green’s function and I am used to this notation although we may resort to the symmetry of Green’s function in the integration to interchange its place with the picking variable x but in doing so we must be specific of the chosen causality.) In my particular convention I write the fourier integral form of the Green’s function as (5) 𝐺( π‘₯ βˆ’ π‘₯β€²) = βˆ’ 1 (2πœ‹)2 ∫ 𝑑4 π‘˜ 𝑒 π‘–π‘˜ 𝜎(π‘₯βˆ’π‘₯β€² ) 𝜎 βˆ’π‘˜ πœ‡ π‘˜ πœ‡ + 𝑀2 + π‘–πœ– where the fourier component is (6) 𝐺̃( π‘˜) = βˆ’ 1 βˆ’π‘˜ πœ‡ π‘˜ πœ‡ + 𝑀2 + π‘–πœ– In this, I have already included the term π‘–πœ– to shift the poles whenever we perform the contour integration. The metric signature used in this document is negative two so for instance, we can write π‘˜2 = π‘˜ πœ‡ π‘˜ πœ‡ = (π‘˜0 )2 βˆ’ π‘˜βƒ— βˆ™ π‘˜βƒ— .
  • 3. To continue, let us tackle on (5) as applied in the scalar solution (4), deriving the form of the Green’s function suited for the case in which the scalar is massless and resort to stationary phase approximation to obtain for the form for the case wherein the scalar is massive. The fourier integral form (5) assumes continuous four-momenta as the integration variables so we may write the differential 1+3 volume as (7.1) 𝑑4 π‘˜ = π‘‘π‘˜0 𝑑3 π‘˜βƒ— and considering the spherical momentum space we may actually write this as (7.2) 𝑑4 π‘˜ = π‘‘π‘˜0 π‘‘π‘˜ π‘Ÿ π‘˜ π‘Ÿ 2 π‘‘πœ‘sin πœ‘ π‘‘πœ™ 0 < πœ‘ < πœ‹ , 0 < πœ™ < 2πœ‹ So in the metric signature of negative two, we can separate out the integrations indicated in (5) and re-writing this into the following form (8.1) 𝐺( π‘₯ βˆ’ π‘₯β€²) = 1 (2πœ‹)2 ∫ 𝑑3 π‘˜βƒ— π‘’βˆ’π‘–π‘˜βƒ— βˆ™ βˆ†π‘₯ ∫ π‘‘π‘˜0 𝑒 π‘–π‘˜0 βˆ†π‘₯0 (π‘˜0)2 βˆ’ 𝑏′2 (8.2) 𝑏′2 = 𝑏2 + π‘–πœ– = π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2 + π‘–πœ– (8.3) βˆ†π‘₯0 = π‘₯0 βˆ’ π‘₯β€² 0 (8.4) βˆ†π‘₯ = π‘₯ βˆ’ π‘₯β€²
  • 4. (8.5) π‘˜βƒ— βˆ™ βˆ†π‘₯ = π‘˜ π‘Ÿ |βˆ†π‘₯| cos πœ‘ |π‘˜βƒ— | = π‘˜ π‘Ÿ We perform contour integration for the integral ∫ π‘‘π‘˜0 𝑒 π‘–π‘˜0 βˆ†π‘₯0 (π‘˜0)2 βˆ’ 𝑏′2 contained in (8.1) and let us simply quote the results here as taken in the limit πœ– β†’ 0. We shall show the details of such contour integration in future attachments. So quoting the results of the said contour integration we have (9) 𝐺( π‘₯ βˆ’ π‘₯β€²) = βˆ’ 1 (2πœ‹)2 ∫ 𝑑4 π‘˜ 𝑒 𝑖 π‘˜ 𝜎( π‘₯βˆ’π‘₯β€²) 𝜎 βˆ’π‘˜ πœ‡ π‘˜ πœ‡ + 𝑀2 = π‘™π‘–π‘š πœ–β†’0 βˆ’ 1 (2πœ‹)2 ∫ 𝑑4 π‘˜ 𝑒 π‘–π‘˜ 𝜎( π‘₯βˆ’π‘₯β€²) 𝜎 βˆ’π‘˜ πœ‡ π‘˜ πœ‡ + 𝑀2 + π‘–πœ– = 1 2 𝑖 2πœ‹ ∫ 𝑑3 π‘˜βƒ— 1 π‘˜0 𝑒 π‘–π‘˜0 ( π‘₯0 βˆ’ π‘₯β€² 0) π‘’βˆ’π‘–π‘˜βƒ— βˆ™( π‘₯βˆ’ π‘₯β€² ) Θ( π‘₯0 βˆ’ π‘₯β€² 0) βˆ’ 1 2 𝑖 2πœ‹ ∫ 𝑑3 π‘˜βƒ— 1 π‘˜0 𝑒 π‘–π‘˜0 (π‘₯β€²0 βˆ’ π‘₯0 ) π‘’βˆ’π‘–π‘˜βƒ— βˆ™( π‘₯βˆ’ π‘₯β€² ) Θ(π‘₯β€²0 βˆ’ π‘₯0 ) Note here that we have set ( π‘˜0 )2 = πœ”2 (π‘˜βƒ— ) = π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2 as evaluated in the limit as πœ– β†’ 0, where to first order in πœ– , 𝑏′ β‰ˆ √ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2 + π‘–πœ– 2√ π‘˜βƒ— βˆ™ π‘˜βƒ— + 𝑀2 , while inserting the Theta functions Θ in (9) by hand to distinguish the given causality of each major term there. Say for the moment, we have a massless scalar so that π‘˜0 = |π‘˜βƒ— | = π‘˜ π‘Ÿ and specify the causality π‘₯0 > π‘₯β€²0 , given for | π‘₯| > |π‘₯β€²βƒ—βƒ—βƒ— | . By this, we can reduce (9) into (10) 𝐺( π‘₯ βˆ’ π‘₯β€²) = 𝑖 2 ∫ π‘‘π‘˜ π‘Ÿ 𝑒 π‘–π‘˜ π‘Ÿ(π‘₯0 βˆ’ π‘₯β€²0 ) ∫ π‘‘πœ‘ π‘˜ π‘Ÿ sin πœ‘ π‘’βˆ’π‘– π‘˜ π‘Ÿ| π‘₯βˆ’ π‘₯β€²| cos πœ‘
  • 5. 0 < πœ‘ < πœ‹ Then we note the integral result (11) ∫ π‘‘πœ‘ π‘˜ π‘Ÿ sin πœ‘ π‘’βˆ’π‘– π‘˜ π‘Ÿ| π‘₯βˆ’ π‘₯β€²| cos πœ‘ πœ‹ 0 = 1 𝑖| π‘₯ βˆ’ π‘₯β€²| ( 𝑒 𝑖 π‘˜ π‘Ÿ| π‘₯βˆ’ π‘₯β€²| βˆ’ π‘’βˆ’π‘– π‘˜ π‘Ÿ| π‘₯βˆ’ π‘₯β€²| ) so we may able to write (9) as (12) 𝐺( π‘₯ βˆ’ π‘₯β€²) = 1 2| π‘₯ βˆ’ π‘₯β€²| (∫ π‘‘π‘˜ π‘Ÿ 𝑒 π‘–π‘˜ π‘Ÿ(( π‘₯0 βˆ’ π‘₯β€²0 ) + | π‘₯βˆ’ π‘₯β€²| ) βˆ’ ∫ π‘‘π‘˜ π‘Ÿ 𝑒 π‘–π‘˜ π‘Ÿ(( π‘₯0 βˆ’ π‘₯β€²0 ) βˆ’ | π‘₯βˆ’ π‘₯β€²| ) ) If we are to integrate over the integration variable π‘˜ π‘Ÿ from βˆ’βˆž to ∞, then the remaining integrals in (12) are just the integral definitions of delta functions. Thus, for a massless scalar field, we have as its Green’s function the following form (13) 𝐺( π‘₯ βˆ’ π‘₯β€²) = 2πœ‹ 2| π‘₯ βˆ’ π‘₯β€²| (𝛿 ((π‘₯0 βˆ’ π‘₯β€²0 ) + | π‘₯ βˆ’ π‘₯β€²|)βˆ’ 𝛿 ((π‘₯0 βˆ’ π‘₯β€²0 ) βˆ’ | π‘₯ βˆ’ π‘₯β€²|) ) where the first major part refers to the backward traveling wave, while the second to the forward traveling wave as specified with causality π‘₯0 > π‘₯β€²0 , given for | π‘₯| > |π‘₯β€²βƒ—βƒ—βƒ— |. For example, we choose the wave to be a forward traveling wave so we may plug the appropriate form of (13) in (4) (14) πœ‘π‘( π‘₯) = 1 (2πœ‹)2 ∫ 𝑑3 π‘₯β€² ∫ 𝑑 π‘₯β€²0 𝐺( π‘₯ βˆ’ π‘₯β€²) 𝐽(π‘₯β€² ) 𝐽( π‘₯β€² ) = 𝐽(π‘₯β€² , π‘₯β€²0 ) Say from (13) we have
  • 6. (15) 𝐺( π‘₯ βˆ’ π‘₯β€²) = βˆ’ 2πœ‹ 2| π‘₯ βˆ’ π‘₯β€²| 𝛿 ((π‘₯0 βˆ’ π‘₯β€²0 ) βˆ’ | π‘₯ βˆ’ π‘₯β€²|) in (14) and the picking is at π‘₯β€²0 = π‘₯0 βˆ’ | π‘₯ βˆ’ π‘₯β€²| . Then (14) would just involve a time-retarded source (16) πœ‘π‘( π‘₯) = βˆ’ 1 2 2πœ‹ (2πœ‹)2 ∫ 𝑑3 π‘₯β€² 1 | π‘₯ βˆ’ π‘₯β€²| 𝐽( π‘₯β€² ,(π‘₯0 βˆ’ | π‘₯ βˆ’ π‘₯β€²|) ) In other attachments, we will continue on massive scalar. [stopped: pp. 1H, Prep Notes: Scalar Field Theories - … ] Ref’s [1]Roa, F. J. P., Field Theory Highlights 2015 Set A (slideshare) [2]W. Hollik, Quantum field theory and the Standard Model, arXiv:1012.3883v1 [hep-ph] [3]Baal, P., A COURSE IN FIELD THEORY, http://www.lorentz.leidenuniv.nl/~vanbaal/FTcourse.html [4]’t Hooft, G., THE CONCEPTUAL BASIS OF QUANTUM FIELD THEORY, http://www.phys.uu.nl/~thooft/ [5]Siegel, W., FIELDS, arXiv:hep-th/9912205 v2 [6]Cardy, J., Introduction to Quantum Field Theory [7]Gaberdiel, M., Gehrmann-De Ridder, A., Quantum Field Theory