(1) The document discusses linear perturbations of the metric around a Schwarzschild black hole. It derives the Regge-Wheeler equation, which governs axial perturbations and takes the form of a wave equation with an effective potential.
(2) It shows that the Regge-Wheeler potential has a maximum just outside the event horizon. This allows it to be considered as a scattering potential barrier for wave packets.
(3) It concludes that Schwarzschild black holes are stable under smooth, compactly supported exterior perturbations, as these perturbations will remain bounded for all times according to properties of the Regge-Wheeler equation and solutions to the Schrodinger equation.