SlideShare a Scribd company logo
1 of 25
Download to read offline
TeraHertz three-dimensional plasma resonances in
     InGaAs diodes: a hydrodynamic study

   P. Ziadé1,2 , C. Palermo1 , H. Marinchio1 , T. Laurent1 ,
     G. Sabatini1 , P. Nouvel1 , Z. Kallassy2 , L. Varani1




                                                         TeraLab Montpellier
                  1Institut d’Electronique du Sud
                      UMR CNRS–UM2 5214
                  Université Montpellier 2, France

                2 Laboratoire de Physique Appliquée

             Université Libanaise, Faculté des Sciences 2
                  Campus Fanar, Jdeideh, Lebanon

               EuMW/EuMIC (Paris) — September 28, 2010
Outline

1 Introduction
     Context
     Motivation

2 Numerical protocol

3 Results and Analysis
     Reference sample
     Influence of the doping profile
     Influence of the geometry

4 Conclusion & Perspectives




                                        1 / 19
Outline

1 Introduction
     Context
     Motivation

2 Numerical protocol


3 Results and Analysis
     Reference sample
     Influence of the doping profile
     Influence of the geometry

4 Conclusion & Perspectives
Wanted!

                                    
         
               Medical Imaging      
                                     
            Security applications
                                    
Domains                                  need spectroscopic means:
         Non-destructive control
                                    
                                     
                            etc...
                                    


• non-ionizing radiations
• with underskin and/or underclothes penetration power → λ
• sensitive to various materials: metallic, non-metallic and
  organic → f

TeraHertz range:
Good candidate!


                                                                     2 / 19
However!




                                                             300 GHz
                              30 THz



                                            3 THz

                                                    1 THz
            Visible      IR                                            MW

                                       Te r a H e r t z
       0.1 μm



                  1 μm



                              10 μm



                                           100 μm

                                                    300 μm

                                                             1 mm



                                                                            10 mm
•   Frontier position: difficulties to make devices
•   Between Infrared and microwaves
•   Between electronics and optics → Different technologies
•   Main strategies: technology transposition

Technology transfer to the industry:
TeraHertz range is a gap
                                                                                    3 / 19
Motivation
Some specifications/keywords:


                low cost
        integrable
   room temperature
         spatial & spectral resolution
      emitter              continuous
            terahertz
      reliable                       detector
      tuneable                 integration time
                                                et caetera...

                                                                4 / 19
The plasmonic point of view
                          Lsd
                     Lw         Lw                                 • Optical beating excitation
                Lc        Lg         Lc
Contact                                               Gate
                                                                                                                        Vg
Cap layer                                         Schottky

Spacer                                         Delta doping                                                         G                   VT
                                                   Channel                                                                   Id
                                                                                                             S          D
Buffer
                                                 Substrate                                                                        R
                                                                                                                   Vd




                                                              Plasma waves peak frequency (GHz)
                                                                                                  0.65                                       experiments

                                                                                                  0.55                                       simulations

Gated 2D-plasma: k depending                                                                      0.45

                                                                                                                             Mode 3
                           e 2 nd                                                                 0.35

            ω2D =                         ·k                                                      0.25
                          κκ0 m∗
                                                                                                  0.15                       Mode 1
                            s                                                                     0.05
                                                                                                     1100   1300      1500       1700      1900     2100
• InGaAs HEMT:                                                                                                     Effective gate length (nm)

    • Boundary conditions:
      k ∝ 1/L                                                      • Shown numerically and
    • Small m∗ (∼ 10−2 m0 )                                                                       experimentally
                                                                                                                                                           5 / 19
Another possible way

 • 2D-gated (HEMT): promising way
     • Shown to work at room temperature
     • For emission & detection

 • Mode depending on geometry
      Tunability
      Small dimensions → power limitations

       • 3D electron gas
             powerfull (bulk)
             Not tunable a priori (no geometry           e 2n
                                                 ω3D =
             dependance)                                 m∗
=⇒         • Compromise

       • In0.53 Ga0.47 As:
            • ≈ 1 THz for n = 1016 cm−3
            • ≈ 10 THz for n = 1018 cm−3

                                                                6 / 19
Aim of this work



• How can the 3D-diodes work within the THz range?

• Characterization of the plasma modes of both zones

• 1st order study: excitation by a THz optical beating

Systematic study
Influence on E of the doping profile and the geometry?




                                                         7 / 19
Outline

1 Introduction
     Context
     Motivation

2 Numerical protocol


3 Results and Analysis
     Reference sample
     Influence of the doping profile
     Influence of the geometry

4 Conclusion & Perspectives
Optical beating

                             Purpose:
    THz optical beating
                              Force plasma wave oscillations @ THz

                              • Optical beating 2 × 1.55 µm
                                  • with a THz frequency difference
                                  • THz glittering infrared spot

                                                         Infrared carrier

                                                         THz enveloppe



                                  • not a THz propagating field

• InGaAs: 1.55 µm sensitive
    • spot ⇒ photogeneration pulsed at THz frequency

• Action on free electron density → plasma wave excitation
                                                                            8 / 19
Choice of a numerical model

• Physical approach: Drift-diffusion, Hydrodynamics, Monte Carlo

• Bias: high electric fields → Drift-diffusion
    • 2 junctions

• Fast materials
    • Velocity overshoots → Drift-diffusion
    • Far for equilibrium transport
    • non-uniform quantities

• Electrons photo-generation → Monte Carlo
     • Different time scales

Hydrodynamics
• 1D modeling (3 equations)
• Poisson equation (1 equation)

                                                                  9 / 19
The numerical strategy
• n(x, t), v (x, t), (x, t), E (x, t), are calculated

• Electric field: related to emission ability
                             infrared pulse




                              electric field


                               V

• Here: calculation of the impulse response of E (t)
    • in the middle of each zone
    • G (t) = G0 δ(t) & Fourier transform → all the THz range at one
      sight

                                                                       10 / 19
Outline

1 Introduction
     Context
     Motivation

2 Numerical protocol


3 Results and Analysis
     Reference sample
     Influence of the doping profile
     Influence of the geometry

4 Conclusion & Perspectives
Reference sample: (i) numerical results
Steady-state:                                                            Optical excitation:
                            10
                                                                         V = 0.5 V & G0 = 1026 cm−3 s−1
Current density (10 A.m )
−2




                            8                                                                 1    n+ region
                                                                                                                                 fR(n+) = 3.6 THz
                                                                                                    n region
8




                                                                      Normalized Amplitude
                            6                                                                0.8
                                                                                                             f3D(n) = 1.1 THz    f3D(n+) ≈ fR(n+)


                            4                                                                0.6

                                                                                             0.4
                            2                                                                                    fR(n) = 3 THz

                                                                                             0.2
                            0
                                 0   0.5   1    1.5     2   2.5   3
                                                                                              0
                                            Voltage (V)                                       0.001   0.01      0.1     1    10                100
                                                                                                             Frequency (THz)
  • n+ − n − n+ diode
  • Length: 500–500–500 nm                                                      • Higher amplitude in n+ -region
  • n = 1016 cm−3 ; n+ /n = 10                                                  • f3D (n+ )                  fR (n+ )
  • I − V : non-ohmic after 0.5 V                                               • Why does fR (n) = f3D (n)?


                                                                                                                                                    11 / 19
Reference sample: (ii) analysis




fR (n+ ) = f3D (n+ )   f3D (n) < fR (n) < f3D (n+ )   fR (n+ ) = f3D (n+ )

    • n−zone:
        • Resonance is redshifted
        • Coupling between f3D (n) and f3D (n+ )
        • Resonance at an intermediate frequency

    • n+ −zone:
        • Resonance at the awaited frequency
        • No mode coupling

    • Explanation: systematic study

                                                                       12 / 19
Influence of the doping profile: (i) n+ /n = const.
                            30
                                      fR(n +)               n+/n=10
                                                                             • n+ /n = 10
                            25         fR(n)
Frequency (THz)




                                           +
                                    f3D(n )
                            20
                                     f3D(n)
                                                                             • Frequencies    n+ -zones
                            15                                                   • fR (n ) = f3D (n+ )
                                                                                        +

                            10                                                   • No coupling
                             5                                                   • Doping: influence of n+
                             0
                              1016                  1017              1018   • Frequencies     n-zone
                                                       −3
                                                  n (cm )                        • f3D (n) < fR (n) < f3D (n+ )
                                        +                                        • doping: influence of n & n+
                            10−25     n −region
                                       n−region
   Amplitude (arb. units)




                                                                                 • Resonance “close to”
                            10
                              −26                                                  n-mode
                                                                                 • Reasonable coupling
                            10−27
                                                       n+/n=10               • Amplitudes
                            10−28
                                                                                 • Increase in both region
                                 1016               1017              1018         types
                                                           −3
                                                   n (cm )                       • Amp(n+ ) > Amp(n)

                                                                                                             13 / 19
Influence of the doping profile: (ii) n = const.
                           25
                                                     n+=1016 cm-3
                           20
                                                                                    • n = 1016 cm−3 ; n+ /n > 10
Frequency (THz)




                           15

                           10
                                                                                    • Frequencies    n+ -zones idem
                                                                                        • fR (n ) = f3D (n+ )
                                                                                               +
                               5
                                                                                        • doping: influence of n+
                               0
                                   0       50        100 150 200 250 300
                                                             +
                                                                                    • Frequencies     n-zone
                                                            n /n
                                                                                        • f3D (n) < fR (n) < f3D (n+ )
                            −25                                                         • coupling present
                          10                +
                                           n −region
                                            n−region                                    • Resonance “closer from” n+
 Amplitude (arb. units)




                          10
                            −26                                                           mode : stronger coupling

                                                                                    • Amplitudes: idem
                          10−27
                                                                     n+=1016 cm-3
                                                                                        • Increase with doping density
                                                                                        • Amplitudes : Stronger
                          10−28                                                           mode for higher doping
                                       0        50    100 150 200 250 300
                                                                 +
                                                             n /n

                                                                                                                    14 / 19
Influence of the doping profile: (iii) synthesis
• n+ −regions:
    • No coupling
    • No considerable effect of the doping ratio
    • fR corresponds to f3D and controled by n+
    • Stronger modes for higher concentrations

• n−region:
    • Mode coupling
    • Intermediate frequency
    • Stronger coupling [fR (n) → f3D (n+ )] when n+ /n increases

• Interpretation:
     • Coupling controled by the strongest mode (n+ )


Possible application:
Design n+ and n to tune fR (n)

                                                                    15 / 19
Influence of the device geometry: (i) results
                                       L(n)
                                                                                                                       L(n+)                   L(n+)



                                     variation
                                                                                                                      variation               variation

                  6                                                                                                                                         −26
                              Frequency (n)                                                                6                                              10
                                                          −26
                  5          Frequency (n+)             10




                                                                Amplitude (arb. units)
                              Amplitude (n)                                                                5                   fixed n zone




                                                                                                                                                                  Amplitude (arb. units)
Frequency (THz)




                  4          Amplitude (n+)




                                                                                         Frequency (THz)
                                                        10
                                                          −27                                              4
                  3                                                                                                                                       10−27
                                      fixed n zone
                                              +                                                            3
                  2                                       −28
                                                        10                                                 2
                  1
                                                                                                           1
                  0                                     10−29                                                                                             10−28
                      0      1000   2000      3000   4000                                                  0
                          Internal region length (nm)                                                          0         1000      2000      3000
                                                                                                                   External region length (nm)
 • When L(n) increases:
    • fR (n+ ) stays   constant                                                              • When L(n+ ) increases
    • fR (n) decreases to f3D (n)                                                               • Weak effect on frequencies
    • Strong effect on n                                                                         • Only amplitudes
      resonance                                                                                 • No considerable effect

                                                                                                                                                                        16 / 19
Influence of the device geometry: (ii) analysis
• Frequency coupling concerns only n−region

• n+ −region length is not a critical parameter




• n−region length influences the coupling
     • 3D-plasma mode from contacts: vanishes in the n−active region
     • L(n) increases: contact effects less important


When L(n) increases:
fR (n) → f3D (n)

                                                                       17 / 19
Outline

1 Introduction
     Context
     Motivation

2 Numerical protocol


3 Results and Analysis
     Reference sample
     Influence of the doping profile
     Influence of the geometry

4 Conclusion & Perspectives
Conclusion

• Presence of plasma modes
    • Awaited 3D-plasma mode in the n+ −region
    • Intermediate frequency within the n−region
    • Coupling controled by n+ -zones with strongest mode

• Doping concentration
    • Mode stronger for higher electron density
    • Stronger coupling for higher n+ /n
    • Tune fR (n) with n+ and n

• Geometry
    • Coupling not depending on the n+ -region length
    • Coupling decreases when the n−region length increases
    • Tune fR (n) with L(n)




                                                              18 / 19
Perspectives


• Behaviour when changing V
    • bias tunability?
    • Observed on 2D-gated

• Electrical perturbation
    • Instead of optical beating
    • Both perturbations (heterodyne detectors as in 2D-gated)

• Other materials
    • InAs and other rapid materials
    • GaN, InN and other nitrides

• Experimental measurements




                                                                 19 / 19
TeraHertz three-dimensional plasma resonances in
     InGaAs diodes: a hydrodynamic study

   P. Ziadé1,2 , C. Palermo1 , H. Marinchio1 , T. Laurent1 ,
     G. Sabatini1 , P. Nouvel1 , Z. Kallassy2 , L. Varani1




                                                         TeraLab Montpellier
                  1Institut d’Electronique du Sud
                      UMR CNRS–UM2 5214
                  Université Montpellier 2, France

                2 Laboratoire de Physique Appliquée

             Université Libanaise, Faculté des Sciences 2
                  Campus Fanar, Jdeideh, Lebanon

               EuMW/EuMIC (Paris) — September 28, 2010

More Related Content

What's hot (10)

4 ee600 lab2_grp
4 ee600 lab2_grp4 ee600 lab2_grp
4 ee600 lab2_grp
 
Weinstock - Quantum Electronic Solids - Spring Review 2012
Weinstock - Quantum Electronic Solids - Spring Review 2012Weinstock - Quantum Electronic Solids - Spring Review 2012
Weinstock - Quantum Electronic Solids - Spring Review 2012
 
Datasheet of IDH10SG60C
Datasheet of IDH10SG60CDatasheet of IDH10SG60C
Datasheet of IDH10SG60C
 
Range of Influence of Physical Impairments in Wavelength-Division Multiplexed...
Range of Influence of Physical Impairments in Wavelength-Division Multiplexed...Range of Influence of Physical Impairments in Wavelength-Division Multiplexed...
Range of Influence of Physical Impairments in Wavelength-Division Multiplexed...
 
Embedded System Microcontroller Interactive Course using BASCOM-AVR -Lecture7
Embedded System Microcontroller Interactive Course using BASCOM-AVR -Lecture7Embedded System Microcontroller Interactive Course using BASCOM-AVR -Lecture7
Embedded System Microcontroller Interactive Course using BASCOM-AVR -Lecture7
 
1 n4148 1n4448
1 n4148 1n44481 n4148 1n4448
1 n4148 1n4448
 
microTEC 2013 products and services
microTEC 2013 products and servicesmicroTEC 2013 products and services
microTEC 2013 products and services
 
Analytical Capabilities of a Pulsed RF Glow Discharge Plasma Source with GD-OES
Analytical Capabilities of a Pulsed RF Glow Discharge Plasma Source with GD-OESAnalytical Capabilities of a Pulsed RF Glow Discharge Plasma Source with GD-OES
Analytical Capabilities of a Pulsed RF Glow Discharge Plasma Source with GD-OES
 
Innovation Benefits Realization for Industrial Research (Part-3)
Innovation Benefits Realization for Industrial Research (Part-3)Innovation Benefits Realization for Industrial Research (Part-3)
Innovation Benefits Realization for Industrial Research (Part-3)
 
acarlen
acarlenacarlen
acarlen
 

Viewers also liked

Equations différentielles, DUT MP, CM 5
Equations différentielles, DUT MP, CM 5Equations différentielles, DUT MP, CM 5
Equations différentielles, DUT MP, CM 5Christophe Palermo
 
Electricité-électrotechnique : CM4 Machine à courant continu
Electricité-électrotechnique : CM4 Machine à courant continuElectricité-électrotechnique : CM4 Machine à courant continu
Electricité-électrotechnique : CM4 Machine à courant continuChristophe Palermo
 
Cours d'Electrotechnique 2 : machines tournantes
Cours d'Electrotechnique 2 : machines tournantesCours d'Electrotechnique 2 : machines tournantes
Cours d'Electrotechnique 2 : machines tournantesChristophe Palermo
 

Viewers also liked (6)

Equations différentielles, DUT MP, CM 5
Equations différentielles, DUT MP, CM 5Equations différentielles, DUT MP, CM 5
Equations différentielles, DUT MP, CM 5
 
CM Transformateur monophasé
CM Transformateur monophaséCM Transformateur monophasé
CM Transformateur monophasé
 
Securite electrique
Securite electriqueSecurite electrique
Securite electrique
 
Alternateur synchrone
Alternateur synchroneAlternateur synchrone
Alternateur synchrone
 
Electricité-électrotechnique : CM4 Machine à courant continu
Electricité-électrotechnique : CM4 Machine à courant continuElectricité-électrotechnique : CM4 Machine à courant continu
Electricité-électrotechnique : CM4 Machine à courant continu
 
Cours d'Electrotechnique 2 : machines tournantes
Cours d'Electrotechnique 2 : machines tournantesCours d'Electrotechnique 2 : machines tournantes
Cours d'Electrotechnique 2 : machines tournantes
 

Similar to TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynamic study

Extreme Rheology- Cardiff- 2009
Extreme Rheology- Cardiff- 2009Extreme Rheology- Cardiff- 2009
Extreme Rheology- Cardiff- 2009malcolmmackley
 
Parametric decay instability accompanying electron Bernstein wave heating in ...
Parametric decay instability accompanying electron Bernstein wave heating in ...Parametric decay instability accompanying electron Bernstein wave heating in ...
Parametric decay instability accompanying electron Bernstein wave heating in ...alexandersurkov
 
Dielectronic recombination and stability of warm gas in AGN
Dielectronic recombination and stability of warm gas in AGNDielectronic recombination and stability of warm gas in AGN
Dielectronic recombination and stability of warm gas in AGNAstroAtom
 
Pcb carolina scg_2010
Pcb carolina scg_2010Pcb carolina scg_2010
Pcb carolina scg_2010tcoyle72
 
Overview of Photonics Research at Calit2: Scaling from Nanometers to the Earth
Overview of Photonics Research at Calit2: Scaling from Nanometers to the EarthOverview of Photonics Research at Calit2: Scaling from Nanometers to the Earth
Overview of Photonics Research at Calit2: Scaling from Nanometers to the EarthLarry Smarr
 
MRS fall meeting 2009, Boston
MRS fall meeting 2009, BostonMRS fall meeting 2009, Boston
MRS fall meeting 2009, Bostonbmazumder
 
My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...
My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...
My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...Sanjay Ram
 
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTsFull-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTsayubimoak
 
Spie proceedings final_prof_eb_lpw
Spie proceedings final_prof_eb_lpwSpie proceedings final_prof_eb_lpw
Spie proceedings final_prof_eb_lpwaslamzia
 
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...Sanjay Ram
 
OFM Chem Eng Cambridge 2010
OFM Chem Eng Cambridge 2010OFM Chem Eng Cambridge 2010
OFM Chem Eng Cambridge 2010malcolmmackley
 
Sensor Research in NASA, Director Meyya Meyyappan, NASA Ames Research Center
Sensor Research in NASA, Director Meyya Meyyappan, NASA Ames Research CenterSensor Research in NASA, Director Meyya Meyyappan, NASA Ames Research Center
Sensor Research in NASA, Director Meyya Meyyappan, NASA Ames Research CenterBusiness Turku
 
Characterizing Carbon Nanotubes
Characterizing Carbon NanotubesCharacterizing Carbon Nanotubes
Characterizing Carbon NanotubesHORIBA Particle
 
Radiation detection and measurement
Radiation detection and measurement Radiation detection and measurement
Radiation detection and measurement Shahid Younas
 

Similar to TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynamic study (20)

Extreme Rheology- Cardiff- 2009
Extreme Rheology- Cardiff- 2009Extreme Rheology- Cardiff- 2009
Extreme Rheology- Cardiff- 2009
 
About byFlow R&D
About byFlow R&DAbout byFlow R&D
About byFlow R&D
 
Parametric decay instability accompanying electron Bernstein wave heating in ...
Parametric decay instability accompanying electron Bernstein wave heating in ...Parametric decay instability accompanying electron Bernstein wave heating in ...
Parametric decay instability accompanying electron Bernstein wave heating in ...
 
Dielectronic recombination and stability of warm gas in AGN
Dielectronic recombination and stability of warm gas in AGNDielectronic recombination and stability of warm gas in AGN
Dielectronic recombination and stability of warm gas in AGN
 
Pcb carolina scg_2010
Pcb carolina scg_2010Pcb carolina scg_2010
Pcb carolina scg_2010
 
Overview of Photonics Research at Calit2: Scaling from Nanometers to the Earth
Overview of Photonics Research at Calit2: Scaling from Nanometers to the EarthOverview of Photonics Research at Calit2: Scaling from Nanometers to the Earth
Overview of Photonics Research at Calit2: Scaling from Nanometers to the Earth
 
MRS fall meeting 2009, Boston
MRS fall meeting 2009, BostonMRS fall meeting 2009, Boston
MRS fall meeting 2009, Boston
 
My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...
My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...
My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...
 
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTsFull-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
Full-Band/Full-Wave Simulations of InGaAs-based Pseudomorphic HEMTs
 
Spie proceedings final_prof_eb_lpw
Spie proceedings final_prof_eb_lpwSpie proceedings final_prof_eb_lpw
Spie proceedings final_prof_eb_lpw
 
ultrasonics
ultrasonicsultrasonics
ultrasonics
 
5 mahjabin mobarak 7
5 mahjabin mobarak 75 mahjabin mobarak 7
5 mahjabin mobarak 7
 
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
Anomalous Behavior Of SSPC In Highly Crystallized Undoped Microcrystalline Si...
 
130 133
130 133130 133
130 133
 
OFM Chem Eng Cambridge 2010
OFM Chem Eng Cambridge 2010OFM Chem Eng Cambridge 2010
OFM Chem Eng Cambridge 2010
 
Sensor Research in NASA, Director Meyya Meyyappan, NASA Ames Research Center
Sensor Research in NASA, Director Meyya Meyyappan, NASA Ames Research CenterSensor Research in NASA, Director Meyya Meyyappan, NASA Ames Research Center
Sensor Research in NASA, Director Meyya Meyyappan, NASA Ames Research Center
 
X ray diffraction
X ray diffractionX ray diffraction
X ray diffraction
 
Characterizing Carbon Nanotubes
Characterizing Carbon NanotubesCharacterizing Carbon Nanotubes
Characterizing Carbon Nanotubes
 
PIR Sensor D203B www.onlineTPS.com
PIR Sensor D203B www.onlineTPS.comPIR Sensor D203B www.onlineTPS.com
PIR Sensor D203B www.onlineTPS.com
 
Radiation detection and measurement
Radiation detection and measurement Radiation detection and measurement
Radiation detection and measurement
 

More from Christophe Palermo

Electricité : sécurité électrique (CM1)
Electricité : sécurité électrique (CM1)Electricité : sécurité électrique (CM1)
Electricité : sécurité électrique (CM1)Christophe Palermo
 
Equations différentielles, DUT MP, CM 4
Equations différentielles, DUT MP, CM 4Equations différentielles, DUT MP, CM 4
Equations différentielles, DUT MP, CM 4Christophe Palermo
 
Equations différentielles, DUT MP, CM3
Equations différentielles, DUT MP, CM3Equations différentielles, DUT MP, CM3
Equations différentielles, DUT MP, CM3Christophe Palermo
 
Equations différentielles, DUT MP, CM 2
Equations différentielles, DUT MP, CM 2Equations différentielles, DUT MP, CM 2
Equations différentielles, DUT MP, CM 2Christophe Palermo
 
Equations différentielles, DUT MP, CM1
Equations différentielles, DUT MP, CM1Equations différentielles, DUT MP, CM1
Equations différentielles, DUT MP, CM1Christophe Palermo
 

More from Christophe Palermo (7)

Le moteur asynchrone
Le moteur asynchroneLe moteur asynchrone
Le moteur asynchrone
 
Systemes triphases
Systemes triphasesSystemes triphases
Systemes triphases
 
Electricité : sécurité électrique (CM1)
Electricité : sécurité électrique (CM1)Electricité : sécurité électrique (CM1)
Electricité : sécurité électrique (CM1)
 
Equations différentielles, DUT MP, CM 4
Equations différentielles, DUT MP, CM 4Equations différentielles, DUT MP, CM 4
Equations différentielles, DUT MP, CM 4
 
Equations différentielles, DUT MP, CM3
Equations différentielles, DUT MP, CM3Equations différentielles, DUT MP, CM3
Equations différentielles, DUT MP, CM3
 
Equations différentielles, DUT MP, CM 2
Equations différentielles, DUT MP, CM 2Equations différentielles, DUT MP, CM 2
Equations différentielles, DUT MP, CM 2
 
Equations différentielles, DUT MP, CM1
Equations différentielles, DUT MP, CM1Equations différentielles, DUT MP, CM1
Equations différentielles, DUT MP, CM1
 

Recently uploaded

Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 

Recently uploaded (20)

Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort ServiceHot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 

TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynamic study

  • 1. TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynamic study P. Ziadé1,2 , C. Palermo1 , H. Marinchio1 , T. Laurent1 , G. Sabatini1 , P. Nouvel1 , Z. Kallassy2 , L. Varani1 TeraLab Montpellier 1Institut d’Electronique du Sud UMR CNRS–UM2 5214 Université Montpellier 2, France 2 Laboratoire de Physique Appliquée Université Libanaise, Faculté des Sciences 2 Campus Fanar, Jdeideh, Lebanon EuMW/EuMIC (Paris) — September 28, 2010
  • 2. Outline 1 Introduction Context Motivation 2 Numerical protocol 3 Results and Analysis Reference sample Influence of the doping profile Influence of the geometry 4 Conclusion & Perspectives 1 / 19
  • 3. Outline 1 Introduction Context Motivation 2 Numerical protocol 3 Results and Analysis Reference sample Influence of the doping profile Influence of the geometry 4 Conclusion & Perspectives
  • 4. Wanted!     Medical Imaging   Security applications   Domains need spectroscopic means:  Non-destructive control    etc...   • non-ionizing radiations • with underskin and/or underclothes penetration power → λ • sensitive to various materials: metallic, non-metallic and organic → f TeraHertz range: Good candidate! 2 / 19
  • 5. However! 300 GHz 30 THz 3 THz 1 THz Visible IR MW Te r a H e r t z 0.1 μm 1 μm 10 μm 100 μm 300 μm 1 mm 10 mm • Frontier position: difficulties to make devices • Between Infrared and microwaves • Between electronics and optics → Different technologies • Main strategies: technology transposition Technology transfer to the industry: TeraHertz range is a gap 3 / 19
  • 6. Motivation Some specifications/keywords: low cost integrable room temperature spatial & spectral resolution emitter continuous terahertz reliable detector tuneable integration time et caetera... 4 / 19
  • 7. The plasmonic point of view Lsd Lw Lw • Optical beating excitation Lc Lg Lc Contact Gate Vg Cap layer Schottky Spacer Delta doping G VT Channel Id S D Buffer Substrate R Vd Plasma waves peak frequency (GHz) 0.65 experiments 0.55 simulations Gated 2D-plasma: k depending 0.45 Mode 3 e 2 nd 0.35 ω2D = ·k 0.25 κκ0 m∗ 0.15 Mode 1 s 0.05 1100 1300 1500 1700 1900 2100 • InGaAs HEMT: Effective gate length (nm) • Boundary conditions: k ∝ 1/L • Shown numerically and • Small m∗ (∼ 10−2 m0 ) experimentally 5 / 19
  • 8. Another possible way • 2D-gated (HEMT): promising way • Shown to work at room temperature • For emission & detection • Mode depending on geometry Tunability Small dimensions → power limitations • 3D electron gas powerfull (bulk) Not tunable a priori (no geometry e 2n ω3D = dependance) m∗ =⇒ • Compromise • In0.53 Ga0.47 As: • ≈ 1 THz for n = 1016 cm−3 • ≈ 10 THz for n = 1018 cm−3 6 / 19
  • 9. Aim of this work • How can the 3D-diodes work within the THz range? • Characterization of the plasma modes of both zones • 1st order study: excitation by a THz optical beating Systematic study Influence on E of the doping profile and the geometry? 7 / 19
  • 10. Outline 1 Introduction Context Motivation 2 Numerical protocol 3 Results and Analysis Reference sample Influence of the doping profile Influence of the geometry 4 Conclusion & Perspectives
  • 11. Optical beating Purpose: THz optical beating Force plasma wave oscillations @ THz • Optical beating 2 × 1.55 µm • with a THz frequency difference • THz glittering infrared spot Infrared carrier THz enveloppe • not a THz propagating field • InGaAs: 1.55 µm sensitive • spot ⇒ photogeneration pulsed at THz frequency • Action on free electron density → plasma wave excitation 8 / 19
  • 12. Choice of a numerical model • Physical approach: Drift-diffusion, Hydrodynamics, Monte Carlo • Bias: high electric fields → Drift-diffusion • 2 junctions • Fast materials • Velocity overshoots → Drift-diffusion • Far for equilibrium transport • non-uniform quantities • Electrons photo-generation → Monte Carlo • Different time scales Hydrodynamics • 1D modeling (3 equations) • Poisson equation (1 equation) 9 / 19
  • 13. The numerical strategy • n(x, t), v (x, t), (x, t), E (x, t), are calculated • Electric field: related to emission ability infrared pulse electric field V • Here: calculation of the impulse response of E (t) • in the middle of each zone • G (t) = G0 δ(t) & Fourier transform → all the THz range at one sight 10 / 19
  • 14. Outline 1 Introduction Context Motivation 2 Numerical protocol 3 Results and Analysis Reference sample Influence of the doping profile Influence of the geometry 4 Conclusion & Perspectives
  • 15. Reference sample: (i) numerical results Steady-state: Optical excitation: 10 V = 0.5 V & G0 = 1026 cm−3 s−1 Current density (10 A.m ) −2 8 1 n+ region fR(n+) = 3.6 THz n region 8 Normalized Amplitude 6 0.8 f3D(n) = 1.1 THz f3D(n+) ≈ fR(n+) 4 0.6 0.4 2 fR(n) = 3 THz 0.2 0 0 0.5 1 1.5 2 2.5 3 0 Voltage (V) 0.001 0.01 0.1 1 10 100 Frequency (THz) • n+ − n − n+ diode • Length: 500–500–500 nm • Higher amplitude in n+ -region • n = 1016 cm−3 ; n+ /n = 10 • f3D (n+ ) fR (n+ ) • I − V : non-ohmic after 0.5 V • Why does fR (n) = f3D (n)? 11 / 19
  • 16. Reference sample: (ii) analysis fR (n+ ) = f3D (n+ ) f3D (n) < fR (n) < f3D (n+ ) fR (n+ ) = f3D (n+ ) • n−zone: • Resonance is redshifted • Coupling between f3D (n) and f3D (n+ ) • Resonance at an intermediate frequency • n+ −zone: • Resonance at the awaited frequency • No mode coupling • Explanation: systematic study 12 / 19
  • 17. Influence of the doping profile: (i) n+ /n = const. 30 fR(n +) n+/n=10 • n+ /n = 10 25 fR(n) Frequency (THz) + f3D(n ) 20 f3D(n) • Frequencies n+ -zones 15 • fR (n ) = f3D (n+ ) + 10 • No coupling 5 • Doping: influence of n+ 0 1016 1017 1018 • Frequencies n-zone −3 n (cm ) • f3D (n) < fR (n) < f3D (n+ ) + • doping: influence of n & n+ 10−25 n −region n−region Amplitude (arb. units) • Resonance “close to” 10 −26 n-mode • Reasonable coupling 10−27 n+/n=10 • Amplitudes 10−28 • Increase in both region 1016 1017 1018 types −3 n (cm ) • Amp(n+ ) > Amp(n) 13 / 19
  • 18. Influence of the doping profile: (ii) n = const. 25 n+=1016 cm-3 20 • n = 1016 cm−3 ; n+ /n > 10 Frequency (THz) 15 10 • Frequencies n+ -zones idem • fR (n ) = f3D (n+ ) + 5 • doping: influence of n+ 0 0 50 100 150 200 250 300 + • Frequencies n-zone n /n • f3D (n) < fR (n) < f3D (n+ ) −25 • coupling present 10 + n −region n−region • Resonance “closer from” n+ Amplitude (arb. units) 10 −26 mode : stronger coupling • Amplitudes: idem 10−27 n+=1016 cm-3 • Increase with doping density • Amplitudes : Stronger 10−28 mode for higher doping 0 50 100 150 200 250 300 + n /n 14 / 19
  • 19. Influence of the doping profile: (iii) synthesis • n+ −regions: • No coupling • No considerable effect of the doping ratio • fR corresponds to f3D and controled by n+ • Stronger modes for higher concentrations • n−region: • Mode coupling • Intermediate frequency • Stronger coupling [fR (n) → f3D (n+ )] when n+ /n increases • Interpretation: • Coupling controled by the strongest mode (n+ ) Possible application: Design n+ and n to tune fR (n) 15 / 19
  • 20. Influence of the device geometry: (i) results L(n) L(n+) L(n+) variation variation variation 6 −26 Frequency (n) 6 10 −26 5 Frequency (n+) 10 Amplitude (arb. units) Amplitude (n) 5 fixed n zone Amplitude (arb. units) Frequency (THz) 4 Amplitude (n+) Frequency (THz) 10 −27 4 3 10−27 fixed n zone + 3 2 −28 10 2 1 1 0 10−29 10−28 0 1000 2000 3000 4000 0 Internal region length (nm) 0 1000 2000 3000 External region length (nm) • When L(n) increases: • fR (n+ ) stays constant • When L(n+ ) increases • fR (n) decreases to f3D (n) • Weak effect on frequencies • Strong effect on n • Only amplitudes resonance • No considerable effect 16 / 19
  • 21. Influence of the device geometry: (ii) analysis • Frequency coupling concerns only n−region • n+ −region length is not a critical parameter • n−region length influences the coupling • 3D-plasma mode from contacts: vanishes in the n−active region • L(n) increases: contact effects less important When L(n) increases: fR (n) → f3D (n) 17 / 19
  • 22. Outline 1 Introduction Context Motivation 2 Numerical protocol 3 Results and Analysis Reference sample Influence of the doping profile Influence of the geometry 4 Conclusion & Perspectives
  • 23. Conclusion • Presence of plasma modes • Awaited 3D-plasma mode in the n+ −region • Intermediate frequency within the n−region • Coupling controled by n+ -zones with strongest mode • Doping concentration • Mode stronger for higher electron density • Stronger coupling for higher n+ /n • Tune fR (n) with n+ and n • Geometry • Coupling not depending on the n+ -region length • Coupling decreases when the n−region length increases • Tune fR (n) with L(n) 18 / 19
  • 24. Perspectives • Behaviour when changing V • bias tunability? • Observed on 2D-gated • Electrical perturbation • Instead of optical beating • Both perturbations (heterodyne detectors as in 2D-gated) • Other materials • InAs and other rapid materials • GaN, InN and other nitrides • Experimental measurements 19 / 19
  • 25. TeraHertz three-dimensional plasma resonances in InGaAs diodes: a hydrodynamic study P. Ziadé1,2 , C. Palermo1 , H. Marinchio1 , T. Laurent1 , G. Sabatini1 , P. Nouvel1 , Z. Kallassy2 , L. Varani1 TeraLab Montpellier 1Institut d’Electronique du Sud UMR CNRS–UM2 5214 Université Montpellier 2, France 2 Laboratoire de Physique Appliquée Université Libanaise, Faculté des Sciences 2 Campus Fanar, Jdeideh, Lebanon EuMW/EuMIC (Paris) — September 28, 2010