This document presents a study comparing several machine learning models for personal credit scoring: logistic regression, multilayer perceptron, support vector machine, AdaBoostM1, and Hidden Layer Learning Vector Quantization (HLVQ-C). The models were tested on datasets from a Portuguese bank. HLVQ-C achieved the highest accuracy and was the most useful model according to a proposed measure that considers earnings from denying bad credits and losses from denying good credits. While other models had higher error rates for good credits, HLVQ-C balanced accuracy and usefulness the best, making it suitable for commercial credit scoring applications.