Numerical calculation of second
     order perturbations

                Ian Huston
    Astronomy Unit, Queen Mary, University of London



         arXiv: 0907.2917
    with Karim Malik, accepted by JCAP
1
ϕ = ϕ0 + δϕ1 + δϕ2
              2
δϕ1 + 2Hδϕ1 + k 2δϕ1 + a2M1δϕ1
                     = 0
δϕ2 + 2Hδϕ2 + k 2δϕ2 + a2M2δϕ2
       + S(δϕ1, δϕ1 ) = 0


Malik, JCAP 0703 (2007) 004, astro-ph/0610864.
δϕ1(q i)δϕ1(k i − q i)d3q
code():
Following Salopek et al. (1989), Martin & Ringeval (2006)
×10−4

              3


              2


              1
√1 k 2 δϕ1
     3




              0
 2π




             −1


             −2


             −3
                          64   63           62   61
                                    nend − n

                               First order
10−1
      10−2
      10−3
      10−4
      10−5
      10−6
      10−7
|S|




      10−8
      10−9
      10−10
      10−11
      10−12
      10−13
      10−14
           70   60   50      40       30   20   10   0
                              nend − n

                          Source term
×10−93

              4

              3

              2

              1
   k 2 δϕ2
 1 3




              0
2π




             −1

             −2

             −3

             −4
                   61      60          59      58   57
                                    nend − n

                                Second order
v1.0:
   1000+ k modes
   Slow roll source term
   Parallelisable
Need to go beyond 1st order
Convolution required
Next steps: full eqn, multi-field
arXiv: 0907.2917

Cosmo09 presentation

  • 1.
    Numerical calculation ofsecond order perturbations Ian Huston Astronomy Unit, Queen Mary, University of London arXiv: 0907.2917 with Karim Malik, accepted by JCAP
  • 2.
    1 ϕ = ϕ0+ δϕ1 + δϕ2 2
  • 3.
    δϕ1 + 2Hδϕ1+ k 2δϕ1 + a2M1δϕ1 = 0
  • 4.
    δϕ2 + 2Hδϕ2+ k 2δϕ2 + a2M2δϕ2 + S(δϕ1, δϕ1 ) = 0 Malik, JCAP 0703 (2007) 004, astro-ph/0610864.
  • 5.
  • 6.
    code(): Following Salopek etal. (1989), Martin & Ringeval (2006)
  • 7.
    ×10−4 3 2 1 √1 k 2 δϕ1 3 0 2π −1 −2 −3 64 63 62 61 nend − n First order
  • 8.
    10−1 10−2 10−3 10−4 10−5 10−6 10−7 |S| 10−8 10−9 10−10 10−11 10−12 10−13 10−14 70 60 50 40 30 20 10 0 nend − n Source term
  • 9.
    ×10−93 4 3 2 1 k 2 δϕ2 1 3 0 2π −1 −2 −3 −4 61 60 59 58 57 nend − n Second order
  • 10.
    v1.0: 1000+ k modes Slow roll source term Parallelisable
  • 11.
    Need to gobeyond 1st order Convolution required Next steps: full eqn, multi-field arXiv: 0907.2917