SlideShare a Scribd company logo
López-Martínez,             P. Papathanassoiu,         Alonso-
                           Carlos López Martínez Kostanstinos P Papathanassoiu Alberto Alonso
                                                                     González , Xavier Fàbregas,



   IGARSS-2011           Universitat Politècnica de Catalunya – UPC
                                                                                German Aerospace Center - DLR
                         Signal Theory and Communications Department – TSC
                                                                                          Microwaves and Radar
      July-2011          Remote Sensing Laboratory - RSLab., Barcelona, Spain
                                                                                Institute –HR, Wessling, Germany
Vancouver (BC), Canada   carlos.lopez@tsc.upc.edu
Outline



               RVoG coherent scattering model

               Separation of scattering contributions

               Retrieval of interferometric information

               Validation based on Simulated PolInSAR data

               Validation based on Experimental X-band PolInSAR data


                                                                         Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu   2   Signal Theory and Communications Dept.
                                                                         Universitat Politècnica de Catalunya
Polarimetric SAR Interferometry
Random Volume over Ground RVoG coherent scattering model
                                                 g

                                                                                                                                                         Τ11 Ω12 
                                                                                                                                                   Τ6           
                                                                                                                                                        Ω 21 Τ22 
                                                                                                      Topo. phase
                                                                                                     1 : topo. phase                                      PolInSAR
                                                                                                                                                        coherency matrix
                                                                                                     2 : canopy bottom
                                                                                                              phase


               PolSAR information
                                           2 hv                               2 hv hv   2 z                                 hv            2 z 
                                                                          
                Τ11  Τ22  I  ev
                                 1
                                           cos0
                                                   I   g
                                                       1          I e
                                                                   v
                                                                   1
                                                                               cos 0
                                                                                     e
                                                                                          cos0
                                                                                                   Τv d 
                                                                                                      dz                  I     z e
                                                                                                                           g
                                                                                                                           1
                                                                                                                                              cos0
                                                                                                                                                       Τg d   Τg
                                                                                                                                                          dz
                                                                                     0                                          0


               PolInSAR information
                                               2 hv                           2 hv hv            2 z                        hv            2 z 
                                                                          
               Ω12  e j2 I v  e j1 e
                             2
                                               cos0    g
                                                       I2         Iv  e
                                                                   2
                                                                               cos0
                                                                                     e
                                                                                          j z z  cos 0
                                                                                               e            Τv dz        I 2     z e
                                                                                                                            g                 cos0
                                                                                                                                                       Τ g dz   Τ g
                                                                                     0                                          0


                                                                   1 0 0                                                                       1         t12    0
                         Volume                            Τv  mv 0  0 
                                                                                                      Ground     Τ g  mg t12 t22
                                                                                                                             
                                                                                                                                                                   0 
                       contribution                                                                 contribution          
                                                                   0 0  
                                                                                                                                              0         0     t33 
                                                                                                                                                                      
                                                                                                                                Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu                                                    3         Signal Theory and Communications Dept.
                                                                                                                                Universitat Politècnica de Catalunya
Polarimetric SAR Interferometry
Interferometric coherence under the hypothesis of the RVoG model
                                                                            Topo. phase
                   H
                 w Ω 12 w          m w                                     sol. #2
 w                     e j1 v                                                     1
                 w H Τ11w         1  m w                                                  v               w
                                    mg  w 
                 m w                                                                                               1
                                   mv  w  I 0                                                                              Topo. phase
                                                                                                                                sol.
                                                                                                                                sol #1
              Ground-to-volume ratio

                           hV
                                            2 z ' 
                       I   e jz z ' exp          dz '
            I                               cos0 
    v                    0

            I0                hV
                                   2 z ' 
                       I0   exp                                       No direct access neither to the
                                            dz '
                            0      cos0                           underneath topography nor the volume
                 Volume coherence
                                                                      coherence due to the limitation on the
                                                                          visible line length of the linear
                                                                        dependency of the interferometric
                               
                       z                                            coherence w.r.t. th polarization state
                                                                        h              t the l i ti         t t
                              sin(0 )
                                                                                                  Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu                  4             Signal Theory and Communications Dept.
                                                                                                  Universitat Politècnica de Catalunya
PolInSAR Complex Correlation Coefficient
In the most g
            general case, the complex correlation coefficient is defined in terms of
                          ,       p
two generalized scattering mechanisms
                                                                             H
                                                                           w 1 Ω12 w 2
                                                 w1, w 2  
                                                                       H         H
                                                                     w 1 Τ11w 1w 2 Τ 22 w 2

                                                                             Assumption of the RVoG model
                                                                            H
                                                                          w 1 Ω 12 w 2
                                                w1 , w 2  
                                                                       H         H
                                                                     w 1 Τ11w 1w 2 Τ11 w 2



                                                                                       2  hv
                                                                 j v           j1
                                                                                     
                                                                                       cos  0 g
                                                                                                 
                                                           w1  e I 2  e e
                                                             H          2
                                                                                              I2  w 2
                                                                                                
                          w1 , w 2                                                          
                                                                  2  hv                             2  hv
                                                        v      
                                                                  cos  0 g
                                                                                        v        
                                                                                                     cos  0 g
                                                                                                               
                                                   w 1  I1  e
                                                     H
                                                                          I1  w 1w 2  I1  e
                                                                                     H
                                                                                                            I1  w 2
                                                                                                            
                                                                                                            

                                                                                                      Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu                            5       Signal Theory and Communications Dept.
                                                                                                      Universitat Politècnica de Catalunya
PolInSAR Complex Correlation Coefficient
Separation, in terms of the numerator, of the complex correlation coefficient, under
   p      ,                                ,                 p               ,
the assumption of the RVoG coherent scattering model
                        w1 , w 2   v  w1 , w 2    g  w1 , w 2 
               Volume contribution
                                                                 e j2 w1 I v w 2
                                                                        H
               v  w1 , w 2                                              2
                                                    2 h                       2 h
                                            v  cosv g              v  cosv g 
                                        w1  I1  e
                                         H               0
                                                           I1  w1w 2  I1  e
                                                                    H               0
                                                                                      I1  w 2
                                                                                      
                                                                                      
               Ground (double bounce) contribution
                                                                           2 hv
                                                                       
                                                                           cos0
                                                             e j1 e                H g
                                                                                   w1 I 2 w 2
               g  w1 , w 2  
                                                    2 h                       2 h
                                            v  cosv g              v  cosv g 
                                        w1  I1  e
                                         H               0
                                                           I1  w1w 2  I1  e
                                                                    H               0
                                                                                      I1  w 2
                                                                                      
                                                                                      

Cancelation, in terms of the numerator, of one of the previous components
       w1 , w 2 that cancel the volume or the ground contribution
                                              g
       w1 , w 2 that cancel one component while maximizing the other one
                                                                                                    Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu                              6   Signal Theory and Communications Dept.
                                                                                                    Universitat Politècnica de Catalunya
Cancelation of the Volume Component
Volume component can be cancelled considering
          p                                 g
                                                                         1 0 0 
                                                          e j2 mv Cv w1 0  0  w 2  0
                                                                       H
                                                                               
       e j2 w1 I v w 2  0
              H                                                          0 0  
                                                                               
                  2
                                                                     2 hv hv            2 z 

                                                          Cv  e     cos 0
                                                                            e
                                                                                 j z z  cos0
                                                                                      e            dz        where: arg Cv   arg   v 
                                                                            0

               Cancellation can be independent of the volume properties
                                                  1 0 0   w21 
                                                                                                                w11w21  0
                                                                                                                   *

                         w
                         
                             *
                                   w  *
                                            w13  0  0   w22   0
                                             *
                                                       
                             11       12
                                                                                                     w12 w22  w13 w23  0
                                                                                                      *         *
                                                  0 0    w23 
                                                         

               Optimization of the ground component                                           maximize                w1 , w 2 
               can be considered                                                              subject to           w11w21  0
                                                                                                                    *


                                                                                                                   w12 w22  w13 w23  0
                                                                                                                    *         *


                                                                                                                   w1 Τ11w1  ct
                                                                                                                     H
                                                                                                                                 t
                                                                                                                   w 2 Τ11w 2  ct
                                                                                                                     H

                                                                                                                  Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu                                        7       Signal Theory and Communications Dept.
                                                                                                                  Universitat Politècnica de Catalunya
Cancelation of the Ground Component
Ground (double bounce) component can be cancelled considering
       (             )    p                                 g

                             
                                 2 hv                                                     2 hv          1              t12      0
                                                                                      
                                                                                                    mg w1 t12                     0  w2  0
                                 cos0
                   e j1 e               w1 I 2 w 2  0
                                          H g
                                                                            e j1 e        cos0        H   
                                                                                                                          t22
                                                                                                                                     
                                                                                                          0
                                                                                                                          0      t33 
                                                                                                                                      

               Cancelation is performed using different normalized eigenvectors of the
               g
               ground scattering matrix
                               g
                                                                                                                    T
                                                               t  t      t11  t22   4 t12
                                                                                           2             2      
                                                          wa                                               1 0
                                                                 11  22

                                                                              *
                                                                             2t12                               
                                                                                                               
                                                                                                                    T
                                                               t  t      t11  t22 
                                                                                           2
                                                                                                4 t12
                                                                                                         2      
                                                          wb                                               1 0
                                                                 11  22

                                                                            2t *
                                                                                12
                                                                                                                
                                                                                                               
                                                          w c   0 0 1
                                                                       T




                      The third eigenvector can not be considered as it is also an eigenvector
                      of the volume scattering matrix

               Estimation of the ground contribution necessary
                                                                                                                        Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu                                            8         Signal Theory and Communications Dept.
                                                                                                                        Universitat Politècnica de Catalunya
Phase Component Analysis
Volumetric and ground contributions have been separated, but the phase component
               g                                p      ,         p        p
of the remaining coherence terms presents polarimetric and interferometric
contributions
                          2 hv                     2 hv   Cv mv e j  mg          mg t12                          0             
                        
                          cos0
                                                  
                                                    cos0                                                                           
      Ω12  e j1 e               Ω12  e j1 e
                                                           
                                                                       *
                                                                  mg t12        Cv mv e j  mg t22                  0             
                                                                    0                    0              Cv mv e j        mg t33 
                                                                                                                                    

               Under the basis that w1 and w2 cancel the volume contribution of coherence

                                                  arg w 2 Ω12 w1    arg w1 Ω12 w 2 
                                                         H
                                                                             H
                                                                                 

               Under the basis that w1 and w2 cancel the ground contribution of coherence

                                       w1 Ω12 w 2  Cv  w11w21   w12 w22   w13 w23   Cv w
                                        H                 *          *           *



                                      w 2 Ω12 w1  Cv  w21w11   w22 w12   w23 w13   Cv w*
                                        H                *          *           *




     These properties will allow to remove polarimetric information from phase
                                                                                                  Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu                         9      Signal Theory and Communications Dept.
                                                                                                  Universitat Politècnica de Catalunya
Cancelation of the Volume Component
Assuming the cancelation of the volume contribution in coherence
       g
                                      2 h
                                j  cosv H
                                1                     
                                                       
       arg w1 Ω12 w 2   arg e e
             H                             0
                                                  w 2   1  arg w1 Ω12 w 2 
                                             w1 Ω12                   H
                                                                         
                               
                                                      
                                                       
                                  2 h
                            j  cosv H
                            1                      
                                                    
   arg w 2 Ω12 w1   arg e e
          H                            0
                                         w 2 Ω12 w1   1  arg w 2 Ω12 w1   1  arg w1 Ω12 w 2 
                                                                   H
                                                                                           H
                                                                                               
                           
                                                   
                                                    
A non biased estimation of the underlying ground topography on vegetated areas is
  non-biased
obtained through the analytical expression

                                                          1
                                                   1  arg w1 Ω12 w 2  w 2 Ω12 w1 
                                                          g H               H

                                                          2

Generalization of previous results
                                     1
    EUSAR 2010 (Aachen, Germany) 1  arg Ω12 1, 2  Ω12  2,1
                                     2

          IGARSS 2010 (Honolulu, USA)                                1  arg Ω12 1, 2  T11  2,1

                      C. López-Martínez and K. P. Papathanassiou, “Cancelation of Scattering Mechanisms in
                       PolInSAR: Application to Undelying Topography Estimation,” Submitted to IEEE TGRS
                                                                                             Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu                   10      Signal Theory and Communications Dept.
                                                                                             Universitat Politècnica de Catalunya
Cancelation of the Ground Component
Assuming the cancelation of the g
       g                        ground contribution in coherence
                                   w1 Ω12 w 2  Cv  w11w21   w12 w22   w13 w23   Cv w
                                    H                 *          *           *



                                   w 2 Ω12 w1  Cv  w21w11   w22 w12   w23 w13   Cv w*
                                     H                *          *           *




                                                                        e j2 w1 I v w 2
                                                                               H
                            v  w1 , w 2                                        2
                                                                 2 h                       2 h
                                                         v  cosv g              v  cosv g 
                                                     w1  I1  e
                                                      H               0
                                                                        I1  w1w 2  I1  e
                                                                                 H               0
                                                                                                   I1  w 2
                                                                                                   
                                                                                                   

A non-biased estimation of the interferometric phase associated to the volume
  non biased
scattering center on vegetated areas is obtained through the analytical expression
                                                                                          2 hv
                                                                                      
                                                                                          cos 0           2
                                        e j 22 w1 Ω12 w 2  w 2 Ω12 w1  e j 22 e
                                                 H             H
                                                                                                   Cv2 w


                                                       1
                                     arg Cv           arg e j 22 w1 Ω12 w 2  w 2 Ω12 w1   2
                                                                       H             H

                                                       2

                                                                                                           Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu                            11           Signal Theory and Communications Dept.
                                                                                                           Universitat Politècnica de Catalunya
Validation Based on Simulated Data
            Underlying topography estimation 1
                  y g p g p y                                                                    Speckle noise effects
                                                                                                  p
              considering hv=20 m and η=0.1                                              0.5
                                                    3          3
                                            0                                              0




                                                                          Mean  [rad]
                                                    4 8           4
           12000




                                                                                1
                                                                                         -0.5

                    9x9 MLT                                                               -1

           10000                                                                         -1.5
                                                                                             2   4        6        8          10      12       14       16
                                                                                                                  Mlt size [size]

            8000                                                                                                1 =0 rad
# counts




                                                                                           2
            6000
                                                                                         1.5




                                                                          Mean  [rad]
                                                                                           1
            4000




                                                                                1
                                                                                         0.5

                                                                                           0
            2000                                                                         -0.5
                                                                                             2   4        6        8          10      12       14       16
                                                                                                                  Mlt size [size]

               0
                         -2
                          2                0                    2                                             1 =3π/8 rad
                                                                                                                  3π/8
                                      angle [rad]

                                                                                 Unbiased estimation of the ground
                                                                                  topography on vegetated areas
                                                                                    p g p y        g


                                                                                                               Remote Sensing Lab.
     © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu                              12        Signal Theory and Communications Dept.
                                                                                                               Universitat Politècnica de Catalunya
Validation Based on Simulated Data
           Estimation of the interferometric phase
                                             p                                                                 Speckle noise effects
                                                                                                                p
           associated to the volumetric scattering                                                     -0.1

                 center arg{Cv} and η=0.1




                                                                                  Mean arg{C } [rad]
                                                                                                       -0.2

                    4                                                                                  -0.3




                                                                                            v
                 x 10
                                                                                                       -0.4
                                                                                                        0.4




                                                                                       a
            2                                                 h =5 m
                                                                                                       -0.5
                                                                v                                      -0.6
                                                                                                           2   4        6       8          10      12       14       16
                                                              h =10 m                                                          Mlt size [size]
                                                                v
           1.5                                                h =15 m
                                                                v
                                                                                                                            hv =10 m
# counts




                                                              h =20 m                                    0
                                                                v




                                                                                  Mean arg{C } [rad]
            1                                                                                          -0.5




                                                                                            v
                                                         9x9 MLT




                                                                                       a
                                                                                                        -1

           0.5
                                                                                                       -1.5
                                                                                                           2   4        6       8          10      12       14       16
                                                                                                                               Mlt size [size]


            0                                                                                                               hv =20 m
                                                                                                                                20
            -1.5        -1     -0.5     0      0.5              1           1.5
                                   angle [rad]
                                                                                                     Unbiased estimation of the
                                                                                                 volumetric scattering center phase
                                                                                                                     g        p


                                                                                                                            Remote Sensing Lab.
       © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu                                          13       Signal Theory and Communications Dept.
                                                                                                                            Universitat Politècnica de Catalunya
Results: Experimental X-band PolInSAR Data
Underlying topography estimation: X-band experimental PolInSAR data
                                  X band

               TanDEM-X Feb 2011
                      X band Dual-Pol
                      X-band Dual Pol data: HH&VV
                      Bistatic cooperative mode
                      Effective spatial baseline: 39.22 m
                      Single pass acquisition
                      Incidence angle (scene center): 33.78º
                      Height of ambiguity: 134.46 m
                      kz: 0.0467 rad/m


               Boreal Forest
                      Snow depth (Folköping ski resort):
                      25 – 80 cms
                      Temperature (5:32am): -25º




                                                                          Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu   14   Signal Theory and Communications Dept.
                                                                          Universitat Politècnica de Catalunya
Results: Experimental X-band PolInSAR Data
                                                         X-
Forest areas that have been considered




 |VV1|                                                               |VV2|
                                                                                  Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu           15   Signal Theory and Communications Dept.
                                                                                  Universitat Politècnica de Catalunya
Results: Experimental X-band PolInSAR Data
                                                         X-
Polarimetric information content




                                 Scene 1                                                 Scene 2

                                              |C11|         |C11-2Re{C12}+C22|
                                                            |C11 2Re{C12}+C22|   |C22|

                                                                                         Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu               16      Signal Theory and Communications Dept.
                                                                                         Universitat Politècnica de Catalunya
Results: Experimental X-band PolInSAR Data
                                                         X-
PolSAR information content of Scene 1
      Master image



                                                                              PolInSAR information content
                                                                                     Master/Slave int.


                 |r(HH1+VV1,HH1-VV1)|                  |–(HH1+VV1,HH1-VV1)|

             Slave image



                                                                                 |r(HH1 VV1 HH2 VV2)|
                                                                                   (HH1+VV1,HH2-VV2)                |–(HH1 VV1 HH2 VV2)|
                                                                                                                      (HH1+VV1,HH2-VV2)


                                                                                    Coherence
                                                                                                 0                                   1


                                                                                        Phase
                                                                                        Ph
                                                                                                -180                                180
                 |r(HH2+VV2,HH2-VV2)|                  |–(HH2+VV2,HH2-VV2)|
                                                                                                Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu                    17        Signal Theory and Communications Dept.
                                                                                                Universitat Politècnica de Catalunya
Results: Experimental X-band PolInSAR Data
                                                         X-
PolSAR information content of Scene 1

               Master image Dual-PolSAR data eigendecomposition




                                        Entropy                                     α
                            0                                  1      0                               90
                                                                          Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu   18   Signal Theory and Communications Dept.
                                                                          Universitat Politècnica de Catalunya
Results: Experimental X-band PolInSAR Data
                                                         X-
PolSAR information content of Scene 2
      Master image



                                                                              PolInSAR information content
                                                                                     Master/Slave int.


                 |r(HH1+VV1,HH1-VV1)|                  |–(HH1+VV1,HH1-VV1)|

             Slave image



                                                                                 |r(HH1 VV1 HH2 VV2)|
                                                                                   (HH1+VV1,HH2-VV2)                |–(HH1 VV1 HH2 VV2)|
                                                                                                                      (HH1+VV1,HH2-VV2)


                                                                                    Coherence
                                                                                                 0                                   1


                                                                                        Phase
                                                                                        Ph
                                                                                                -180                                180
                 |r(HH2+VV2,HH2-VV2)|                  |–(HH2+VV2,HH2-VV2)|
                                                                                                Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu                    19        Signal Theory and Communications Dept.
                                                                                                Universitat Politècnica de Catalunya
Results: Experimental X-band PolInSAR Data
                                                         X-
PolSAR information content of Scene 2

               Master image Dual-PolSAR data eigendecomposition




                                        Entropy                                     α
                            0                                  1      0                               90
                                                                          Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu   20   Signal Theory and Communications Dept.
                                                                          Universitat Politècnica de Catalunya
Results: Experimental X-band PolInSAR Data
                                                          X-
Ground topography estimation on Scene 1
         p g p y
       Due to penetration properties at X-band, the estimated phase center could
       be considered as the lowest phase center, not the ground topography phase
       center
                                                                                                        Forest            Lake




             1  arg Ω12 1, 2  T11  2,1                f RPh=|–(HH1+VV1,HH2+VV2)|          Phase difference Δf=f1- f RPh
                                                                      (HH1 VV1,HH2 VV2)

                                                                 Reference phase
                                                              (Highest phase center)                 Lake: E{Δf} = 0.18 rad
                                                                                                           E{Δh} = 3.83 m
                                                            -180                       180
                                                 |C11|                                                Forest: E{Δf} = -0 19 rad
                                                                                                                       0.19
                                                                                                              E{Δh} = -4.16 m
                                                 |C11-2Re{C12}+C22|
                                                 |C22|
                                                                                                    Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu                           21     Signal Theory and Communications Dept.
                                                                                                    Universitat Politècnica de Catalunya
Results: Experimental X-band PolInSAR Data
                                                         X-
Ground topography estimation on Scene 2
         p g p y
                                                                                                             Forest 1               Forest 2




                1  arg Ω12 1 2  T11  2,1
                               1,          21                    f RPh=|–(HH1+VV1,HH2+VV2)|
                                                                       |–                                difference Δf=f1- f RPh
                                                                                                   Phase diff
                                                                                                   Ph
                                                                        Reference phase
                                                                     (Highest phase center)
                                                                                                    Forest 1: E{Δf} = -0.08 rad
                                                                                                              E{Δh} = -1 71 m
                                                                                                                       1.71
                                                              -180                        180
                                                                                                    Forest 2: E{Δf} = -0.05 rad
                                                                                                              E{Δh} = -1.04 m

                                                    |C11|
                                                     |C11-2Re{C12}+C22|
                                                    |C22|
                                                                                                    Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu                            22    Signal Theory and Communications Dept.
                                                                                                    Universitat Politècnica de Catalunya
Conclusions
    Extended analysis of the RVoG coherent scattering model for forested areas
                    y                               g
   characterization

    Use of orthogonal scattering mechanisms allows to separate different polarimetric
   scattering mechanisms
              Low coherence problem

    Direct, unbiased & unambiguous estimation of the underlying topography and the
   volumetric phase scattering center
              Analytical expression for the underlying topography
              Asymptotically unbiased estimation from an stochastic point of view

     Results validated with P-band data

     Results with X-band PolInSAR
              Presence of penetration in forests at X-band in the order of 1 to 5 meters
              Assumption of the RVoG at X-band
              Results subjected to the presence of a snow cover on the analyzed data


                                                                          Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu   23   Signal Theory and Communications Dept.
                                                                          Universitat Politècnica de Catalunya
Simulated PolInSAR Data
Underlying topography estimation: Simulated PolInSAR data
               Simulated scenario: Forest under the hypothesis of the RVoG model


                                                                      Forest, η=0.25, σ=0.3 dB/m
                                                                      Variable hv
                                                                                                                      μ=-5 dB
                                                                      Flat, rough, loamy terrain,
                                                                      2.2%
                                                                      2 2% water content (X-Bragg)
                                                                      Variable ground phase



               Imaging systems: DLR s E-SAR
                                    DLR’s E SAR
                   Range spatial resolution 1.5 m
                   Azimuth spatial resolution 1.5 m
                   Wavelength λ=0 23 m (L-band)
                                  λ=0.23
                   Flight height H=3000 m
                   Mean incidence angle θ=45 deg
                   Horizontal baseline B=5 m
               Statistical distribution: Wishart pdf
                                                                             Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu   24      Signal Theory and Communications Dept.
                                                                             Universitat Politècnica de Catalunya
Validation
Cancelation of the volume coherence and optimization of the ground coherence
                                         p                  g
       Numerical optimization procedure
                       1                                                                                                      0.2

                   0.8                                                                                                   0.15

                   0.6
                                                                                                                              0.1




                                                                                                                  | |
         | |




                   0.4
                                                                                                                         0.05
                   0.2

                       0                                                                                                          0
                        0    10   20               30                      40             50                                       0     10        20        30        40      50   60      70      80
                                       Iteration
                                                                                               η=0                                4
                                                                                                                                                                   Iteration
                                                                                                                                                                                                         η=0.25
                       4

                       2                                                                                                          2




                                                                                                                     angle(  )
          angle(  )




                       0                                                                                                          0


                       -2                                                                                                         -2


                       -4                                                                                                         -4
                         0   10   20               30                      40             50                                        0    10        20        30        40      50   60      70      80
                                       Iteration                                                                                                                   Iteration
                                                                 0.5

                                                                 0.4

                                                                 0.3                                                                                                                       |(w1 ,w2 )|
                                                        | |




                                                                 0.2
                                                                                                                                                                                           |v (w1 ,w2 )|
                                                                 0.1

                                                                     0
                                                                      0         10   20        30   40       50                   60    70    80        90
                                                                                                                                                                                           |g(w1 ,w2 )|
                                                                                                     Iteration
                                                                                                                                                             η=0.5
                                                                                                                                                                                         angle((w1 ,w2 ))
                                                                     4

                                                                     2
                                                                                                                                                                                         angle(v (w1 ,w2 ))
                                                         angle  )
                                                             e(




                                                                     0

                                                                     -2
                                                                                                                                                                                         angle(g(w1 ,w2 ))
                                                                     -4
                                                                       0        10   20        30   40       50                   60    70    80        90
                                                                                                     Iteration                                                    Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu                                                                            25                  Signal Theory and Communications Dept.
                                                                                                                                                                  Universitat Politècnica de Catalunya
Validation
Cancelation of the ground coherence
                   g
       The actual ground scattering matrix is considered
           η is provided




               The ground scattering matrix is estimated from data
                  η is provided




                                                                          Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu   26   Signal Theory and Communications Dept.
                                                                          Universitat Politècnica de Catalunya
Results: Experimental PolInSAR Data
Underlying topography estimation: P-band experimental PolInSAR data
                                  P band
               INDREX-II campaign Oct-Dec 2004
               Observation system: DLR E-SAR
                      P-band data
                        ba d
                      Spatial baselines B: 15 m, 30 m
                      Temporal baselines T: 20 min, 40 min
               Tropical forest
                      Mawas-E site, Central Kalimantan, Indonesia
                      Flat area
                      Tropical peat swamp forest types
                      Bi
                      Biomass range: 50 400 t /h
                                      50-400 ton/ha
                      Height range: 5-25 m




    Pauli RGC decomposition of the master data set |HH+VV| |HV| |HH-VV|            Aerial photograph
                                                                          Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu   27   Signal Theory and Communications Dept.
                                                                          Universitat Politècnica de Catalunya
Results: Experimental PolInSAR Data
Dataset: P-band, B=15 m
               ,
       Transformation to height [m] information included (κz)



                  Height retrieved from 1




          Phase center                   
                                S hv ,1S hv ,2
          height retrieved from




                          Height difference


                                                                          Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu   28   Signal Theory and Communications Dept.
                                                                          Universitat Politècnica de Catalunya
Results: Experimental PolInSAR Data
Dataset: P-band, B=30 m
               ,
       Transformation to height [m] information included (κz)



                   Height retrieved from 1




          Phase center                   
                                S hv ,1S hv ,2
          height retrieved from




                           Height difference


                                                                          Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu   29   Signal Theory and Communications Dept.
                                                                          Universitat Politècnica de Catalunya
Results: Experimental PolInSAR Data
Underlying topography estimation: Absolute height analysis
      y g p g p y                             g       y
                           Height retrieved from 1                  B = 15 m                                             
                                                                                            Height retrieved from Shv ,1S hv ,2




                                        Forest                       Un-vegetated                      Forest/Low vegetation
                  25
                                                                                                                 1 (B=15m)
                  20                                                                                                        *
                                                                                                                Ph. <Shv,1Shv,2> (B=15m)

                  15                                                                                             1 (B=30m)
                                                                                                                            *
                                                                                                                Ph. <Shv,1Shv,2> (B=30m)
     Height [m]




                  10
            [




                   5

                   0

                   -5

                  -10
                    3000        3200        3400             3600         3800      4000            4200             4400             4600
                                                                                                     Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu       # pixel           30        Signal Theory and Communications Dept.
                                                                                                     Universitat Politècnica de Catalunya
Results: Experimental PolInSAR Data
Underlying topography estimation: Height difference analysis
      y g p g p y                    g                  y




                                                                          B = 15 m
                                                                                                                           Area 1
                          4
                   x 10
              4
                                                          B = 15 m
             3.5                                          B = 30 m                         Area 2

              3                                                                      Area 1 mean value = - 0.57 m
             2.5
                                                                                     Area 2 mean value = 7 48 m
                                                                                     A             l     7.48
  # counts




              2

             1.5

              1




                                                                          B = 30 m
             0.5
                                                                                                                            Area 1
              0
              -20             -10          0         10              20
                                    Height dif [m]
                                                                                           Area 2

                                                                                     Area 1 mean value = - 0.32 m
                                                                                     Area 2 mean value = 6.83 m



                                                                                              Remote Sensing Lab.
© Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu                    31      Signal Theory and Communications Dept.
                                                                                              Universitat Politècnica de Catalunya

More Related Content

Viewers also liked

IG2011_Quartly_final.ppt
IG2011_Quartly_final.pptIG2011_Quartly_final.ppt
IG2011_Quartly_final.ppt
grssieee
 
Luo-IGARSS2011-2385.ppt
Luo-IGARSS2011-2385.pptLuo-IGARSS2011-2385.ppt
Luo-IGARSS2011-2385.ppt
grssieee
 
ABayesianApproachToLocalizedMultiKernelLearningUsingTheRelevanceVectorMachine...
ABayesianApproachToLocalizedMultiKernelLearningUsingTheRelevanceVectorMachine...ABayesianApproachToLocalizedMultiKernelLearningUsingTheRelevanceVectorMachine...
ABayesianApproachToLocalizedMultiKernelLearningUsingTheRelevanceVectorMachine...
grssieee
 
forPresentingAtIGARSS2011vertical.pdf
forPresentingAtIGARSS2011vertical.pdfforPresentingAtIGARSS2011vertical.pdf
forPresentingAtIGARSS2011vertical.pdf
grssieee
 
t4_20110728_IGARSS11_tsutomuy.pdf
t4_20110728_IGARSS11_tsutomuy.pdft4_20110728_IGARSS11_tsutomuy.pdf
t4_20110728_IGARSS11_tsutomuy.pdf
grssieee
 
PSD-T1-AT1-1107-042_TERRASAR-X_FOR_THE_MONITORING_OF_NATURAL_DISASTERS.ppt
PSD-T1-AT1-1107-042_TERRASAR-X_FOR_THE_MONITORING_OF_NATURAL_DISASTERS.pptPSD-T1-AT1-1107-042_TERRASAR-X_FOR_THE_MONITORING_OF_NATURAL_DISASTERS.ppt
PSD-T1-AT1-1107-042_TERRASAR-X_FOR_THE_MONITORING_OF_NATURAL_DISASTERS.ppt
grssieee
 
MO3.T10.5Ahmed.ppt
MO3.T10.5Ahmed.pptMO3.T10.5Ahmed.ppt
MO3.T10.5Ahmed.ppt
grssieee
 
pres_IGARSS_2011_LFF_poltom.pdf
pres_IGARSS_2011_LFF_poltom.pdfpres_IGARSS_2011_LFF_poltom.pdf
pres_IGARSS_2011_LFF_poltom.pdf
grssieee
 
FR4.T05.1.ppt
FR4.T05.1.pptFR4.T05.1.ppt
FR4.T05.1.ppt
grssieee
 

Viewers also liked (9)

IG2011_Quartly_final.ppt
IG2011_Quartly_final.pptIG2011_Quartly_final.ppt
IG2011_Quartly_final.ppt
 
Luo-IGARSS2011-2385.ppt
Luo-IGARSS2011-2385.pptLuo-IGARSS2011-2385.ppt
Luo-IGARSS2011-2385.ppt
 
ABayesianApproachToLocalizedMultiKernelLearningUsingTheRelevanceVectorMachine...
ABayesianApproachToLocalizedMultiKernelLearningUsingTheRelevanceVectorMachine...ABayesianApproachToLocalizedMultiKernelLearningUsingTheRelevanceVectorMachine...
ABayesianApproachToLocalizedMultiKernelLearningUsingTheRelevanceVectorMachine...
 
forPresentingAtIGARSS2011vertical.pdf
forPresentingAtIGARSS2011vertical.pdfforPresentingAtIGARSS2011vertical.pdf
forPresentingAtIGARSS2011vertical.pdf
 
t4_20110728_IGARSS11_tsutomuy.pdf
t4_20110728_IGARSS11_tsutomuy.pdft4_20110728_IGARSS11_tsutomuy.pdf
t4_20110728_IGARSS11_tsutomuy.pdf
 
PSD-T1-AT1-1107-042_TERRASAR-X_FOR_THE_MONITORING_OF_NATURAL_DISASTERS.ppt
PSD-T1-AT1-1107-042_TERRASAR-X_FOR_THE_MONITORING_OF_NATURAL_DISASTERS.pptPSD-T1-AT1-1107-042_TERRASAR-X_FOR_THE_MONITORING_OF_NATURAL_DISASTERS.ppt
PSD-T1-AT1-1107-042_TERRASAR-X_FOR_THE_MONITORING_OF_NATURAL_DISASTERS.ppt
 
MO3.T10.5Ahmed.ppt
MO3.T10.5Ahmed.pptMO3.T10.5Ahmed.ppt
MO3.T10.5Ahmed.ppt
 
pres_IGARSS_2011_LFF_poltom.pdf
pres_IGARSS_2011_LFF_poltom.pdfpres_IGARSS_2011_LFF_poltom.pdf
pres_IGARSS_2011_LFF_poltom.pdf
 
FR4.T05.1.ppt
FR4.T05.1.pptFR4.T05.1.ppt
FR4.T05.1.ppt
 

More from grssieee

Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...grssieee
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELSEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
grssieee
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
grssieee
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESTHE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
grssieee
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSGMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
grssieee
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
grssieee
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
Test
TestTest
Test
grssieee
 
test 34mb wo animations
test  34mb wo animationstest  34mb wo animations
test 34mb wo animationsgrssieee
 
2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf
grssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
Tana_IGARSS2011.ppt
Tana_IGARSS2011.pptTana_IGARSS2011.ppt
Tana_IGARSS2011.ppt
grssieee
 
Solaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptSolaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.ppt
grssieee
 

More from grssieee (20)

Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELSEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESTHE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSGMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
Test
TestTest
Test
 
test 34mb wo animations
test  34mb wo animationstest  34mb wo animations
test 34mb wo animations
 
Test 70MB
Test 70MBTest 70MB
Test 70MB
 
Test 70MB
Test 70MBTest 70MB
Test 70MB
 
2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf
 
DLR open house
DLR open houseDLR open house
DLR open house
 
DLR open house
DLR open houseDLR open house
DLR open house
 
DLR open house
DLR open houseDLR open house
DLR open house
 
Tana_IGARSS2011.ppt
Tana_IGARSS2011.pptTana_IGARSS2011.ppt
Tana_IGARSS2011.ppt
 
Solaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptSolaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.ppt
 

IGARSS_PolInSAR_TDX.pdf

  • 1. López-Martínez, P. Papathanassoiu, Alonso- Carlos López Martínez Kostanstinos P Papathanassoiu Alberto Alonso González , Xavier Fàbregas, IGARSS-2011 Universitat Politècnica de Catalunya – UPC German Aerospace Center - DLR Signal Theory and Communications Department – TSC Microwaves and Radar July-2011 Remote Sensing Laboratory - RSLab., Barcelona, Spain Institute –HR, Wessling, Germany Vancouver (BC), Canada carlos.lopez@tsc.upc.edu
  • 2. Outline RVoG coherent scattering model Separation of scattering contributions Retrieval of interferometric information Validation based on Simulated PolInSAR data Validation based on Experimental X-band PolInSAR data Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 2 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 3. Polarimetric SAR Interferometry Random Volume over Ground RVoG coherent scattering model g  Τ11 Ω12  Τ6    Ω 21 Τ22  Topo. phase 1 : topo. phase PolInSAR coherency matrix 2 : canopy bottom phase PolSAR information 2 hv 2 hv hv 2 z  hv 2 z    Τ11  Τ22  I  ev 1 cos0 I g 1 I e v 1 cos 0 e cos0 Τv d  dz I     z e g 1 cos0 Τg d   Τg dz 0 0 PolInSAR information 2 hv 2 hv hv 2 z  hv 2 z    Ω12  e j2 I v  e j1 e 2 cos0 g I2 Iv  e 2 cos0 e j z z  cos 0 e Τv dz  I 2     z e g cos0 Τ g dz   Τ g 0 0 1 0 0  1 t12 0 Volume Τv  mv 0  0   Ground Τ g  mg t12 t22  0  contribution  contribution  0 0      0 0 t33   Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 3 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 4. Polarimetric SAR Interferometry Interferometric coherence under the hypothesis of the RVoG model Topo. phase H w Ω 12 w   m w  sol. #2  w    e j1 v 1 w H Τ11w 1  m w  v w mg  w  m w   1 mv  w  I 0 Topo. phase sol. sol #1 Ground-to-volume ratio hV  2 z '  I   e jz z ' exp   dz ' I  cos0  v  0 I0 hV  2 z '  I0   exp  No direct access neither to the  dz ' 0  cos0  underneath topography nor the volume Volume coherence coherence due to the limitation on the visible line length of the linear dependency of the interferometric  z  coherence w.r.t. th polarization state h t the l i ti t t sin(0 ) Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 4 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 5. PolInSAR Complex Correlation Coefficient In the most g general case, the complex correlation coefficient is defined in terms of , p two generalized scattering mechanisms H w 1 Ω12 w 2   w1, w 2   H H w 1 Τ11w 1w 2 Τ 22 w 2 Assumption of the RVoG model H w 1 Ω 12 w 2   w1 , w 2   H H w 1 Τ11w 1w 2 Τ11 w 2 2  hv  j v j1  cos  0 g  w1  e I 2  e e H 2 I2  w 2     w1 , w 2     2  hv 2  hv  v  cos  0 g   v  cos  0 g  w 1  I1  e H I1  w 1w 2  I1  e H I1  w 2         Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 5 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 6. PolInSAR Complex Correlation Coefficient Separation, in terms of the numerator, of the complex correlation coefficient, under p , , p , the assumption of the RVoG coherent scattering model   w1 , w 2   v  w1 , w 2    g  w1 , w 2  Volume contribution e j2 w1 I v w 2 H  v  w1 , w 2   2 2 h 2 h  v  cosv g   v  cosv g  w1  I1  e H 0 I1  w1w 2  I1  e H 0 I1  w 2         Ground (double bounce) contribution 2 hv  cos0 e j1 e H g w1 I 2 w 2  g  w1 , w 2   2 h 2 h  v  cosv g   v  cosv g  w1  I1  e H 0 I1  w1w 2  I1  e H 0 I1  w 2         Cancelation, in terms of the numerator, of one of the previous components w1 , w 2 that cancel the volume or the ground contribution g w1 , w 2 that cancel one component while maximizing the other one Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 6 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 7. Cancelation of the Volume Component Volume component can be cancelled considering p g 1 0 0  e j2 mv Cv w1 0  0  w 2  0 H   e j2 w1 I v w 2  0 H 0 0     2 2 hv hv 2 z  Cv  e cos 0 e j z z  cos0 e dz  where: arg Cv   arg   v  0 Cancellation can be independent of the volume properties 1 0 0   w21    w11w21  0 * w  * w * w13  0  0   w22   0 *   11 12 w12 w22  w13 w23  0 * * 0 0    w23     Optimization of the ground component maximize   w1 , w 2  can be considered subject to w11w21  0 * w12 w22  w13 w23  0 * * w1 Τ11w1  ct H t w 2 Τ11w 2  ct H Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 7 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 8. Cancelation of the Ground Component Ground (double bounce) component can be cancelled considering ( ) p g  2 hv 2 hv 1 t12 0  mg w1 t12 0  w2  0 cos0 e j1 e w1 I 2 w 2  0 H g e j1 e cos0 H  t22   0  0 t33   Cancelation is performed using different normalized eigenvectors of the g ground scattering matrix g T t  t   t11  t22   4 t12 2 2  wa   1 0 11 22  * 2t12    T t  t   t11  t22  2  4 t12 2  wb   1 0 11 22  2t * 12    w c   0 0 1 T The third eigenvector can not be considered as it is also an eigenvector of the volume scattering matrix Estimation of the ground contribution necessary Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 8 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 9. Phase Component Analysis Volumetric and ground contributions have been separated, but the phase component g p , p p of the remaining coherence terms presents polarimetric and interferometric contributions 2 hv 2 hv Cv mv e j  mg mg t12 0   cos0  cos0   Ω12  e j1 e Ω12  e j1 e   * mg t12 Cv mv e j  mg t22 0   0 0 Cv mv e j  mg t33    Under the basis that w1 and w2 cancel the volume contribution of coherence arg w 2 Ω12 w1    arg w1 Ω12 w 2  H  H  Under the basis that w1 and w2 cancel the ground contribution of coherence w1 Ω12 w 2  Cv  w11w21   w12 w22   w13 w23   Cv w H * * * w 2 Ω12 w1  Cv  w21w11   w22 w12   w23 w13   Cv w* H * * * These properties will allow to remove polarimetric information from phase Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 9 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 10. Cancelation of the Volume Component Assuming the cancelation of the volume contribution in coherence g 2 h  j  cosv H  1   arg w1 Ω12 w 2   arg e e H 0  w 2   1  arg w1 Ω12 w 2  w1 Ω12 H      2 h  j  cosv H  1   arg w 2 Ω12 w1   arg e e H 0 w 2 Ω12 w1   1  arg w 2 Ω12 w1   1  arg w1 Ω12 w 2   H  H      A non biased estimation of the underlying ground topography on vegetated areas is non-biased obtained through the analytical expression 1 1  arg w1 Ω12 w 2  w 2 Ω12 w1  g H H 2 Generalization of previous results 1 EUSAR 2010 (Aachen, Germany) 1  arg Ω12 1, 2  Ω12  2,1 2 IGARSS 2010 (Honolulu, USA) 1  arg Ω12 1, 2  T11  2,1 C. López-Martínez and K. P. Papathanassiou, “Cancelation of Scattering Mechanisms in PolInSAR: Application to Undelying Topography Estimation,” Submitted to IEEE TGRS Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 10 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 11. Cancelation of the Ground Component Assuming the cancelation of the g g ground contribution in coherence w1 Ω12 w 2  Cv  w11w21   w12 w22   w13 w23   Cv w H * * * w 2 Ω12 w1  Cv  w21w11   w22 w12   w23 w13   Cv w* H * * * e j2 w1 I v w 2 H  v  w1 , w 2   2 2 h 2 h  v  cosv g   v  cosv g  w1  I1  e H 0 I1  w1w 2  I1  e H 0 I1  w 2         A non-biased estimation of the interferometric phase associated to the volume non biased scattering center on vegetated areas is obtained through the analytical expression 2 hv  cos 0 2 e j 22 w1 Ω12 w 2  w 2 Ω12 w1  e j 22 e H H Cv2 w 1 arg Cv   arg e j 22 w1 Ω12 w 2  w 2 Ω12 w1   2 H H 2 Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 11 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 12. Validation Based on Simulated Data Underlying topography estimation 1 y g p g p y Speckle noise effects p considering hv=20 m and η=0.1 0.5  3 3 0 0 Mean  [rad] 4 8 4 12000 1 -0.5 9x9 MLT -1 10000 -1.5 2 4 6 8 10 12 14 16 Mlt size [size] 8000 1 =0 rad # counts 2 6000 1.5 Mean  [rad] 1 4000 1 0.5 0 2000 -0.5 2 4 6 8 10 12 14 16 Mlt size [size] 0 -2 2 0 2 1 =3π/8 rad 3π/8 angle [rad] Unbiased estimation of the ground topography on vegetated areas p g p y g Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 12 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 13. Validation Based on Simulated Data Estimation of the interferometric phase p Speckle noise effects p associated to the volumetric scattering -0.1 center arg{Cv} and η=0.1 Mean arg{C } [rad] -0.2 4 -0.3 v x 10 -0.4 0.4 a 2 h =5 m -0.5 v -0.6 2 4 6 8 10 12 14 16 h =10 m Mlt size [size] v 1.5 h =15 m v hv =10 m # counts h =20 m 0 v Mean arg{C } [rad] 1 -0.5 v 9x9 MLT a -1 0.5 -1.5 2 4 6 8 10 12 14 16 Mlt size [size] 0 hv =20 m 20 -1.5 -1 -0.5 0 0.5 1 1.5 angle [rad] Unbiased estimation of the volumetric scattering center phase g p Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 13 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 14. Results: Experimental X-band PolInSAR Data Underlying topography estimation: X-band experimental PolInSAR data X band TanDEM-X Feb 2011 X band Dual-Pol X-band Dual Pol data: HH&VV Bistatic cooperative mode Effective spatial baseline: 39.22 m Single pass acquisition Incidence angle (scene center): 33.78º Height of ambiguity: 134.46 m kz: 0.0467 rad/m Boreal Forest Snow depth (Folköping ski resort): 25 – 80 cms Temperature (5:32am): -25º Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 14 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 15. Results: Experimental X-band PolInSAR Data X- Forest areas that have been considered |VV1| |VV2| Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 15 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 16. Results: Experimental X-band PolInSAR Data X- Polarimetric information content Scene 1 Scene 2 |C11| |C11-2Re{C12}+C22| |C11 2Re{C12}+C22| |C22| Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 16 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 17. Results: Experimental X-band PolInSAR Data X- PolSAR information content of Scene 1 Master image PolInSAR information content Master/Slave int. |r(HH1+VV1,HH1-VV1)| |–(HH1+VV1,HH1-VV1)| Slave image |r(HH1 VV1 HH2 VV2)| (HH1+VV1,HH2-VV2) |–(HH1 VV1 HH2 VV2)| (HH1+VV1,HH2-VV2) Coherence 0 1 Phase Ph -180 180 |r(HH2+VV2,HH2-VV2)| |–(HH2+VV2,HH2-VV2)| Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 17 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 18. Results: Experimental X-band PolInSAR Data X- PolSAR information content of Scene 1 Master image Dual-PolSAR data eigendecomposition Entropy α 0 1 0 90 Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 18 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 19. Results: Experimental X-band PolInSAR Data X- PolSAR information content of Scene 2 Master image PolInSAR information content Master/Slave int. |r(HH1+VV1,HH1-VV1)| |–(HH1+VV1,HH1-VV1)| Slave image |r(HH1 VV1 HH2 VV2)| (HH1+VV1,HH2-VV2) |–(HH1 VV1 HH2 VV2)| (HH1+VV1,HH2-VV2) Coherence 0 1 Phase Ph -180 180 |r(HH2+VV2,HH2-VV2)| |–(HH2+VV2,HH2-VV2)| Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 19 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 20. Results: Experimental X-band PolInSAR Data X- PolSAR information content of Scene 2 Master image Dual-PolSAR data eigendecomposition Entropy α 0 1 0 90 Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 20 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 21. Results: Experimental X-band PolInSAR Data X- Ground topography estimation on Scene 1 p g p y Due to penetration properties at X-band, the estimated phase center could be considered as the lowest phase center, not the ground topography phase center Forest Lake 1  arg Ω12 1, 2  T11  2,1 f RPh=|–(HH1+VV1,HH2+VV2)| Phase difference Δf=f1- f RPh (HH1 VV1,HH2 VV2) Reference phase (Highest phase center) Lake: E{Δf} = 0.18 rad E{Δh} = 3.83 m -180 180 |C11| Forest: E{Δf} = -0 19 rad 0.19 E{Δh} = -4.16 m |C11-2Re{C12}+C22| |C22| Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 21 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 22. Results: Experimental X-band PolInSAR Data X- Ground topography estimation on Scene 2 p g p y Forest 1 Forest 2 1  arg Ω12 1 2  T11  2,1 1, 21 f RPh=|–(HH1+VV1,HH2+VV2)| |– difference Δf=f1- f RPh Phase diff Ph Reference phase (Highest phase center) Forest 1: E{Δf} = -0.08 rad E{Δh} = -1 71 m 1.71 -180 180 Forest 2: E{Δf} = -0.05 rad E{Δh} = -1.04 m |C11| |C11-2Re{C12}+C22| |C22| Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 22 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 23. Conclusions Extended analysis of the RVoG coherent scattering model for forested areas y g characterization Use of orthogonal scattering mechanisms allows to separate different polarimetric scattering mechanisms Low coherence problem Direct, unbiased & unambiguous estimation of the underlying topography and the volumetric phase scattering center Analytical expression for the underlying topography Asymptotically unbiased estimation from an stochastic point of view Results validated with P-band data Results with X-band PolInSAR Presence of penetration in forests at X-band in the order of 1 to 5 meters Assumption of the RVoG at X-band Results subjected to the presence of a snow cover on the analyzed data Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 23 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 24. Simulated PolInSAR Data Underlying topography estimation: Simulated PolInSAR data Simulated scenario: Forest under the hypothesis of the RVoG model Forest, η=0.25, σ=0.3 dB/m Variable hv μ=-5 dB Flat, rough, loamy terrain, 2.2% 2 2% water content (X-Bragg) Variable ground phase Imaging systems: DLR s E-SAR DLR’s E SAR Range spatial resolution 1.5 m Azimuth spatial resolution 1.5 m Wavelength λ=0 23 m (L-band) λ=0.23 Flight height H=3000 m Mean incidence angle θ=45 deg Horizontal baseline B=5 m Statistical distribution: Wishart pdf Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 24 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 25. Validation Cancelation of the volume coherence and optimization of the ground coherence p g Numerical optimization procedure 1 0.2 0.8 0.15 0.6 0.1 | | | | 0.4 0.05 0.2 0 0 0 10 20 30 40 50 0 10 20 30 40 50 60 70 80 Iteration η=0 4 Iteration η=0.25 4 2 2 angle(  ) angle(  ) 0 0 -2 -2 -4 -4 0 10 20 30 40 50 0 10 20 30 40 50 60 70 80 Iteration Iteration 0.5 0.4 0.3 |(w1 ,w2 )| | | 0.2 |v (w1 ,w2 )| 0.1 0 0 10 20 30 40 50 60 70 80 90 |g(w1 ,w2 )| Iteration η=0.5 angle((w1 ,w2 )) 4 2 angle(v (w1 ,w2 )) angle  ) e( 0 -2 angle(g(w1 ,w2 )) -4 0 10 20 30 40 50 60 70 80 90 Iteration Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 25 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 26. Validation Cancelation of the ground coherence g The actual ground scattering matrix is considered η is provided The ground scattering matrix is estimated from data η is provided Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 26 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 27. Results: Experimental PolInSAR Data Underlying topography estimation: P-band experimental PolInSAR data P band INDREX-II campaign Oct-Dec 2004 Observation system: DLR E-SAR P-band data ba d Spatial baselines B: 15 m, 30 m Temporal baselines T: 20 min, 40 min Tropical forest Mawas-E site, Central Kalimantan, Indonesia Flat area Tropical peat swamp forest types Bi Biomass range: 50 400 t /h 50-400 ton/ha Height range: 5-25 m Pauli RGC decomposition of the master data set |HH+VV| |HV| |HH-VV| Aerial photograph Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 27 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 28. Results: Experimental PolInSAR Data Dataset: P-band, B=15 m , Transformation to height [m] information included (κz) Height retrieved from 1 Phase center  S hv ,1S hv ,2 height retrieved from Height difference Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 28 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 29. Results: Experimental PolInSAR Data Dataset: P-band, B=30 m , Transformation to height [m] information included (κz) Height retrieved from 1 Phase center  S hv ,1S hv ,2 height retrieved from Height difference Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 29 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 30. Results: Experimental PolInSAR Data Underlying topography estimation: Absolute height analysis y g p g p y g y Height retrieved from 1 B = 15 m  Height retrieved from Shv ,1S hv ,2 Forest Un-vegetated Forest/Low vegetation 25  1 (B=15m) 20 * Ph. <Shv,1Shv,2> (B=15m) 15  1 (B=30m) * Ph. <Shv,1Shv,2> (B=30m) Height [m] 10 [ 5 0 -5 -10 3000 3200 3400 3600 3800 4000 4200 4400 4600 Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu # pixel 30 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya
  • 31. Results: Experimental PolInSAR Data Underlying topography estimation: Height difference analysis y g p g p y g y B = 15 m Area 1 4 x 10 4 B = 15 m 3.5 B = 30 m Area 2 3 Area 1 mean value = - 0.57 m 2.5 Area 2 mean value = 7 48 m A l 7.48 # counts 2 1.5 1 B = 30 m 0.5 Area 1 0 -20 -10 0 10 20 Height dif [m] Area 2 Area 1 mean value = - 0.32 m Area 2 mean value = 6.83 m Remote Sensing Lab. © Carlos López-Martínez, 2011, UPC-RSLab, carlos.lopez@tsc.upc.edu 31 Signal Theory and Communications Dept. Universitat Politècnica de Catalunya