SlideShare a Scribd company logo
Contribution `a l’´etude du trafic routier sur r´eseaux
`a l’aide des ´equations d’Hamilton-Jacobi
Guillaume Costeseque
(with supervisors R. Monneau & J-P. Lebacque)
Universit´e Paris Est, Ecole des Ponts ParisTech & IFSTTAR
PhD defense, Champs-sur-Marne,
September 12, 2014
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 1 / 86
Motivation
Traffic flows on a network
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 2 / 86
Motivation
Traffic flows on a network
Road network ≡ graph made of edges and vertices
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 3 / 86
Motivation
Breakthrough in traffic monitoring
Traffic monitoring
“old”: loop detectors at fixed locations (Eulerian)
“new”: GPS devices moving within the traffic (Lagrangian)
Data assimilation of Floating Car Data
[Mobile Millenium, 2008]
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 4 / 86
Motivation
Outline
1 Introduction to traffic
2 Micro to macro in traffic models
3 Variational principle applied to GSOM models
4 HJ equations on a junction
5 Conclusions and perspectives
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 5 / 86
Introduction to traffic
Outline
1 Introduction to traffic
2 Micro to macro in traffic models
3 Variational principle applied to GSOM models
4 HJ equations on a junction
5 Conclusions and perspectives
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 6 / 86
Introduction to traffic Microscopic models
Notations: microscopic
Speed
Time
(i − 1)Space
x
Spacing
Headway
t
(i) vehicle position xi (t),
instantaneous speed ˙xi (t),
acceleration ¨xi (t),
spacing
Si (t) = xi+1(t) − xi (t) > 0
relative speed ˙Si (t)
...
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 7 / 86
Introduction to traffic Microscopic models
Microscopic models
Proposition (Models classification)
Assume the following classification of microscopic models
General expression Examples
(1) ˙xi (t) = F(Si (t)) Pipes; Forbes
(2) ˙xi (t + τ) = F(Si (t), ˙xi (t)) Chandler; Gazis; Newell
(3) ˙xi (t + τ) = F(Si (t), ˙xi (t), ˙xi−1(t)) Kometani; Gipps; Krauss
(4) ¨xi (t + τ) = F(Si (t), ˙Si (t), ˙xi (t), ¨xi (t)) Bando; Helly; Treiber
where τ is a time delay.
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 8 / 86
Introduction to traffic Macroscopic models
Convention for vehicle labeling
N
x
t
Flow
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 9 / 86
Introduction to traffic Macroscopic models
Notations: macroscopic
N(t, x) vehicle label at (t, x)
the flow Q(t, x) = lim
∆t→0
N(t + ∆t, x) − N(t, x)
∆t
,
x
N(x, t ± ∆t)
the density ρ(t, x) = lim
∆x→0
N(t, x) − N(t, x + ∆x)
∆x
,
x
∆x
N(x ± ∆x, t)
the stream speed (mean spatial speed) V (t, x).
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 10 / 86
Introduction to traffic Macroscopic models
Macroscopic models
Hydrodynamics analogy
Two main categories: first and second order models
Two common equations:



∂tρ(t, x) + ∂x Q(t, x) = 0 conservation equation
Q(t, x) = ρ(t, x).V (t, x) definition of flow speed
(1)
x x + ∆x
ρ(x, t)∆x
Q(x, t)∆t Q(x + ∆x, t)∆t
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 11 / 86
Introduction to traffic Focus on LWR model
First order: the LWR model
Scalar one dimensional conservation law
ρt(t, x) + Fx(ρ(t, x)) = 0 (2)
[Lighthill and Whitham, 1955], [Richards, 1956]
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 12 / 86
Introduction to traffic Focus on LWR model
Three representations of traffic flow
Moskowitz’ surface
Flow
x
t
N
x
See also [Makigami et al, 1971], [Laval and Leclercq, 2013]
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 13 / 86
Introduction to traffic Focus on LWR model
Overview: conservation laws (CL) / Hamilton-Jacobi (HJ)
Eulerian Lagrangian
t − x t − n
Variable (CL) Density ρ Spacing r
Equation (CL) ∂tρ + ∂x F(ρ) = 0 ∂tr + ∂x V (r) = 0
Variable (HJ) Label N Position X
N(t, x) =
+∞
x
ρ(t, ξ)dξ X(t, n) =
+∞
n
r(t, η)dη
Equation (HJ) ∂tN + H (∂x N) = 0 ∂tX + V (∂x X) = 0
Hamiltonian H(p) = −F(−p) V(p) = −V (−p)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 14 / 86
Introduction to traffic Focus on LWR model
Fundamental diagram (FD)
Flow-density fundamental diagram F : ρ → ρI(ρ)
Empirical function with
ρmax the maximal or jam density,
ρc the critical density
Flux is increasing for ρ ≤ ρc: free-flow phase
Flux is decreasing for ρ ≥ ρc: congestion phase
ρmax
Density, ρ
ρmax
Density, ρ
0
Flow, F
0
Flow, F
0 ρmax
Flow, F
Density, ρ
[Garavello and Piccoli, 2006]
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 15 / 86
Introduction to traffic Second order models
Motivation for higher order models
Experimental evidences
fundamental diagram: multi-valued in congested case
[S. Fan, U. Illinois], NGSIM dataset
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 16 / 86
Introduction to traffic Second order models
Motivation for higher order models
Experimental evidences
fundamental diagram: multi-valued in congested case
phenomena not accounted for: bounded acceleration, capacity drop...
Need for models able to integrate measurements of different traffic
quantities (acceleration, fuel consumption, noise)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 17 / 86
Introduction to traffic Second order models
GSOM family [Lebacque, Mammar, Haj-Salem 2007]
Generic Second Order Models (GSOM) family



∂tρ + ∂x (ρv) = 0 Conservation of vehicles,
∂t(ρI) + ∂x (ρvI) = ρϕ(I) Dynamics of the driver attribute I,
v = I(ρ, I) Fundamental diagram,
(3)
Specific driver attribute I
the driver aggressiveness,
the driver origin / destination,
the vehicle class,
...
Flow-density fundamental diagram
F : (ρ, I) → ρI(ρ, I).
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 18 / 86
Micro to macro in traffic models
Outline
1 Introduction to traffic
2 Micro to macro in traffic models
3 Variational principle applied to GSOM models
4 HJ equations on a junction
5 Conclusions and perspectives
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 19 / 86
Micro to macro in traffic models Homogenization
Setting
Let i be the discrete position index
Assume a pseudo continuum of vehicles
Definition of continuous variables n and t
n = iε and t = εs
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 20 / 86
Micro to macro in traffic models Homogenization
Setting
Let i be the discrete position index
Assume a pseudo continuum of vehicles
Definition of continuous variables n and t
n = iε and t = εs
Proposition (Rescaling)
Let consider
xi (s) =
1
ε
Xε
(εs, iε) (4)
with ε > 0 representing a scale factor such that Xε describes the rescaled
position of the vehicle. It implies that
Xε
(t, n) = ε.x⌊n
ε
⌋
t
ε
(5)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 20 / 86
Micro to macro in traffic models Homogenization
General result
Let consider
the simplest microscopic model;
˙xi (t) = F(xi−1(t) − xi (t)) (6)
the LWR macroscopic model (HJ equation in Lagrangian):
∂tX0
= F(−∂nX0
) (7)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 21 / 86
Micro to macro in traffic models Homogenization
General result
Let consider
the simplest microscopic model;
˙xi (t) = F(xi−1(t) − xi (t)) (6)
the LWR macroscopic model (HJ equation in Lagrangian):
∂tX0
= F(−∂nX0
) (7)
Theorem (Convergence to the viscosity solution)
If Xε(t, n) := εx⌊n
ε
⌋
t
ε
with (xi )i∈Z solution of (6) and X0 the unique
solution of HJ (7), then under suitable assumptions,
|Xε
− X0
|L∞(K) −→
ε→0
0, ∀K compact set.
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 21 / 86
Micro to macro in traffic models Multi-anticipative traffic
Toy model
Vehicles consider m ≥ 1 leaders
First order multi-anticipative model
˙xi (t + τ) = max

0, Vmax −
m
j=1
f (xi−j(t) − xi (t))

 (8)
f speed-spacing function
non-negative
non-increasing
Speed-spacing Fundamental Diagram
F {xk − xi }i−1≥k≥i−m := Vmax −
m
j=1
f (xi−j(t) − xi (t))
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 22 / 86
Micro to macro in traffic models Multi-anticipative traffic
Homogenization
Proposition ((R. Monneau) Convergence)
Assume m ≥ 1 fixed.
If τ is small enough, if Xε(t, n) := εx⌊n
ε
⌋
t
ε
with (xi )i∈Z solution of (8)
and if X0(n, t) solves
∂tX0
= ¯V −∂nX0
, m (9)
with
¯V (r, m) = max

0, Vmax −
m
j=1
f (jr)

 ,
then under suitable assumptions,
|Xε
− X0
|L∞(K) −→
ε→0
0, ∀K compact set.
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 23 / 86
Micro to macro in traffic models Multi-anticipative traffic
Multi-anticipatory macroscopic model
χj the fraction of j-anticipatory vehicles
traffic flow ≡ superposition of traffic of j-anticipatory vehicles
χ = (χj )j=1,...,m , with 0 ≤ χj ≤ 1 and
m
j=1
χj = 1
GSOM model with driver attribute I = χ



∂tρ + ∂x (ρv) = 0,
v :=
m
j=1
χj
¯V (1/ρ, j) = W (1/ρ, χ),
∂t(ρχ) + ∂x (ρχv) = 0.
(10)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 24 / 86
Micro to macro in traffic models Numerical schemes
Numerical resolution
Godunov-like schemes with (∆t, ∆xk) steps ⇒ CFL condition
Variational formulation and dynamic programming techniques [2]
Particle methods in the Lagrangian framework (t, n)
xt+1
n = xt
n + ∆tW (rt
n, χt
n)
rt
n =
xt
n−1 − xt
n
∆n
χt+1
n = χt
n
(11)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 25 / 86
Micro to macro in traffic models Numerical schemes
Numerical example
0 5 10 15 20 25 30 35 40
0
5
10
15
20
25
Spacing r (m)
Speed−spacing diagrams
Speedv(m/s)
1
2
3
4
5
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 26 / 86
Micro to macro in traffic models Numerical schemes
Numerical example: (χj)j
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 27 / 86
Micro to macro in traffic models Numerical schemes
Numerical example: Lagrangian trajectories
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 28 / 86
Micro to macro in traffic models Numerical schemes
Numerical example: Eulerian trajectories
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 29 / 86
Variational principle applied to GSOM models
Outline
1 Introduction to traffic
2 Micro to macro in traffic models
3 Variational principle applied to GSOM models
4 HJ equations on a junction
5 Conclusions and perspectives
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 30 / 86
Variational principle applied to GSOM models LWR model
LWR in Eulerian (t, x)
Cumulative vehicles count (CVC) or Moskowitz surface N(t, x)
f = ∂tN and ρ = −∂x N
If density ρ satisfies the scalar (LWR) conservation law
∂tρ + ∂x F(ρ) = 0
Then N satisfies the first order Hamilton-Jacobi equation
∂tN − F(−∂x N) = 0 (12)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 31 / 86
Variational principle applied to GSOM models LWR model
LWR in Eulerian (t, x)
Legendre-Fenchel transform with F concave (relative capacity)
M(q) = sup
ρ
[F(ρ) − ρq]
M(q)
u
w
Density ρ
q
q
Flow F
w u
q
Transform M
−wρmax
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 32 / 86
Variational principle applied to GSOM models LWR model
LWR in Eulerian (t, x)
(continued)
Lax-Hopf formula (representation formula) [Daganzo, 2006]
N(T, xT ) = min
u(.),(t0,x0)
T
t0
M(u(τ))dτ + N(t0, x0),
˙X = u
u ∈ U
X(t0) = x0, X(T) = xT
(t0, x0) ∈ J
(13) Time
Space
J
(T, xT )˙X(τ)
(t0, x0)
Viability theory [Claudel and Bayen, 2010]
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 33 / 86
Variational principle applied to GSOM models LWR model
LWR in Eulerian (t, x)
(Historical note)
Dynamic programming [Daganzo, 2006] for triangular FD
(u and w free and congested speeds)
Flow, F
w
u
0 ρmax
Density, ρ
u
x
w
t
Time
Space
(t, x)
Minimum principle [Newell, 1993]
N(t, x) = min N t −
x − xu
u
, xu ,
N t −
x − xw
w
, xw + ρmax(xw − x) ,
(14)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 34 / 86
Variational principle applied to GSOM models LWR model
LWR in Lagrangian (n, t)
Consider X(t, n) the location of vehicle n at time t ≥ 0
v = ∂tX and r = −∂nX
If the spacing r := 1/ρ satisfies the LWR model (Lagrangian coord.)
∂tr + ∂nV(r) = 0
with the speed-spacing FD V : r → I (1/r) ,
Then X satisfies the first order Hamilton-Jacobi equation
∂tX − V(−∂nX) = 0. (15)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 35 / 86
Variational principle applied to GSOM models LWR model
LWR in Lagrangian (n, t)
(continued)
Dynamic programming for triangular FD
1/ρcrit
Speed, V
u
−wρmax
Spacing, r
1/ρmax
−wρmax
n
t
(t, n)
Time
Label
Minimum principle ⇒ car following model [Newell, 2002]
X(t, n) = min X(t0, n) + u(t − t0),
X(t0, n + wρmax (t − t0)) + w(t − t0) .
(16)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 36 / 86
Variational principle applied to GSOM models GSOM family
GSOM in Lagrangian (n, t)
From [Lebacque and Khoshyaran, 2013], GSOM in Lagrangian



∂tr + ∂N v = 0 Conservation of vehicles,
∂tI = ϕ(N, I, t) Dynamics of I,
v = W(N, r, t) := V(r, I(N, t)) Fundamental diagram.
(17)
Position X(N, t) :=
t
−∞
v(N, τ)dτ satisfies the HJ equation
∂tX − W(N, −∂N X, t) = 0, (18)
And I(N, t) solves the ODE
∂tI(N, t) = ϕ(N, I, t),
I(N, 0) = i0(N), for any N.
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 37 / 86
Variational principle applied to GSOM models GSOM family
GSOM in Lagrangian (n, t)
(continued)
Legendre-Fenchel transform of W according to r
M(N, c, t) = sup
r∈R
{W(N, r, t) − cr}
M(N, p, t)
pq
W(N, q, t)
W(N, r, t)
q r
p
p
u
c
Transform M
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 38 / 86
Variational principle applied to GSOM models GSOM family
GSOM in Lagrangian (n, t)
(continued)
Lax-Hopf formula
X(NT , T) = min
u(.),(N0,t0)
T
t0
M(N, u, t)dt + ξ(N0, t0),
˙N = u
u ∈ U
N(t0) = N0, N(T) = NT
(N0, t0) ∈ J
(19)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 39 / 86
Variational principle applied to GSOM models GSOM family
GSOM in Lagrangian (n, t)
(continued)
Optimal trajectories = characteristics
˙N = ∂r W(N, r, t),
˙r = −∂N W(N, r, t),
(20)
System of ODEs to solve
Difficulty: not straight lines in the general case
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 40 / 86
Variational principle applied to GSOM models Methodology
General ideas
First key element: Lax-Hopf formula
Computations only for the characteristics
X(NT , T) = min
(N0,r0,t0)
T
t0
M(N, ∂r W(N, r, t), t)dt + ξ(N0, t0),
˙N(t) = ∂r W(N, r, t)
˙r(t) = −∂NW(N, r, t)
N(t0) = N0, r(t0) = r0, N(T) = NT
(N0, r0, t0) ∈ K
(21)
K is the set of initial/boundary values
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 41 / 86
Variational principle applied to GSOM models Methodology
General ideas
(continued)
Second key element: inf-morphism prop. [Aubin et al, 2011]
Consider a union of sets (initial and boundary conditions)
K =
l
Kl ,
then the global minimum is
X(NT , T) = min
l
Xl (NT , T), (22)
with Xl partial solution to sub-problem Kl .
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 42 / 86
Variational principle applied to GSOM models Numerical example
Fundamental Diagram and Driver Attribute
0 20 40 60 80 100 120 140 160 180 200
0
500
1000
1500
2000
2500
3000
3500
Density ρ (veh/km)
FlowF(veh/h)
Fundamental diagram F(ρ,I)
0 5 10 15 20 25 30 35 40 45 50
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Label N
Initial conditions I(N,t
0
)
DriverattributeI
0
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 43 / 86
Variational principle applied to GSOM models Numerical example
Initial and Boundaries Conditions
0 5 10 15 20 25 30 35 40 45 50
5
10
15
20
25
30
35
40
45
50
Label N
Initial conditions r(N,t
0
)
Spacingr0
(m)
0 5 10 15 20 25 30 35 40 45 50
−1400
−1200
−1000
−800
−600
−400
−200
0
Label N
PositionX(m)
Initial positions X(N,t
0
)
0 20 40 60 80 100 120
12
14
16
18
20
22
24
26
28
30
Time t (s)
Spacing r(N
0
,t)
Spacingr
0
(m.s
−1
)
0 20 40 60 80 100 120
0
500
1000
1500
2000
2500
Time t (s)
PositionX0
(m)
Position X(N
0
,t)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 44 / 86
Variational principle applied to GSOM models Numerical example
Numerical result (Initial cond. + first traj.)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 45 / 86
Variational principle applied to GSOM models Numerical example
Numerical result (Initial cond. + first traj.)
0 20 40 60 80 100 120
−1500
−1000
−500
0
500
1000
1500
2000
2500
Location(m)
Time (s)
Vehicles trajectories
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 46 / 86
Variational principle applied to GSOM models Numerical example
Numerical result (Initial cond.+ 3 traj.)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 47 / 86
Variational principle applied to GSOM models Numerical example
Numerical result (Initial cond. + 3 traj.)
0 20 40 60 80 100 120
−1500
−1000
−500
0
500
1000
1500
2000
2500
Location(m)
Time (s)
Vehicles trajectories
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 48 / 86
Variational principle applied to GSOM models Numerical example
Numerical result (Initial cond. + 3 traj. + Eulerian data)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 49 / 86
HJ equations on a junction
Outline
1 Introduction to traffic
2 Micro to macro in traffic models
3 Variational principle applied to GSOM models
4 HJ equations on a junction
5 Conclusions and perspectives
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 50 / 86
HJ equations on a junction
Motivation
Classical approaches:
Macroscopic modeling on (homogeneous) sections
Coupling conditions at (pointwise) junction
For instance, consider



ρt + (Q(ρ))x = 0, scalar conservation law,
ρ(., t = 0) = ρ0(.), initial conditions,
ψ(ρ(x = 0−, t), ρ(x = 0+, t)) = 0, coupling condition.
(23)
See Garavello, Piccoli [3], Lebacque, Khoshyaran [6] and Bressan et al. [1]
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 51 / 86
HJ equations on a junction HJ junction model
Star-shaped junction
JN
J1
J2
branch Jα
x
x
0
x
x
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 52 / 86
HJ equations on a junction HJ junction model
Junction model
Proposition (Junction model [IMZ, ’13])
That leads to the following junction model (see [5])



uα
t + Hα(uα
x ) = 0, x > 0, α = 1, . . . , N
uα = uβ =: u, x = 0,
ut + H(u1
x , . . . , uN
x ) = 0, x = 0
(24)
with initial condition uα(0, x) = uα
0 (x) and
H(u1
x , . . . , uN
x ) = max
α=1,...,N
H−
α (uα
x )
from optimal control
.
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 53 / 86
HJ equations on a junction HJ junction model
Basic assumptions
For all α = 1, . . . , N,
(A0) The initial condition uα
0 is Lipschitz continuous.
(A1) The Hamiltonians Hα are C1(R) and convex such that:
p
H−
α (p) H+
α (p)
pα
0
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 54 / 86
HJ equations on a junction Numerical scheme
Presentation of the scheme
Proposition (Numerical Scheme)
Let us consider the discrete space and time derivatives:
pα,n
i :=
Uα,n
i+1 − Uα,n
i
∆x
and (DtU)α,n
i :=
Uα,n+1
i − Uα,n
i
∆t
Then we have the following numerical scheme:



(DtU)α,n
i + max{H+
α (pα,n
i−1), H−
α (pα,n
i )} = 0, i ≥ 1
Un
0 := Uα,n
0 , i = 0, α = 1, ..., N
(DtU)n
0 + max
α=1,...,N
H−
α (pα,n
0 ) = 0, i = 0
(25)
With the initial condition Uα,0
i := uα
0 (i∆x).
∆x and ∆t = space and time steps satisfying a CFL condition
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 55 / 86
HJ equations on a junction Numerical scheme
CFL condition
The natural CFL condition is given by:
∆x
∆t
≥ sup
α=1,...,N
i≥0, 0≤n≤nT
|H′
α(pα,n
i )| (26)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 56 / 86
HJ equations on a junction Mathematical results
Gradient estimates
Theorem (Time and Space Gradient estimates)
Assume (A0)-(A1). If the CFL condition (26) is satisfied, then we have
that:
(i) Considering Mn = sup
α,i
(DtU)α,n
i and mn = inf
α,i
(DtU)α,n
i , we have the
following time derivative estimate:
m0
≤ mn
≤ mn+1
≤ Mn+1
≤ Mn
≤ M0
(ii) Considering pα
= (H−
α )−1(−m0) and pα = (H+
α )−1(−m0), we have
the following gradient estimate:
pα
≤ pα,n
i ≤ pα, for all i ≥ 0, n ≥ 0 and α = 1, ..., N
Proof
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 57 / 86
HJ equations on a junction Mathematical results
Stronger CFL condition
−m0
pα
p
Hα(p)
pα
As for any α = 1, . . . , N, we have that:
pα
≤ pα,n
i ≤ pα for all i, n ≥ 0
Then the CFL condition becomes:
∆x
∆t
≥ sup
α=1,...,N
pα∈[pα
,pα]
|H′
α(pα)| (27)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 58 / 86
HJ equations on a junction Mathematical results
Existence and uniqueness
(A2) Technical assumption (Legendre-Fenchel transform)
Hα(p) = sup
q∈R
(pq − Lα(q)) with L′′
α ≥ δ > 0, for all index α
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 59 / 86
HJ equations on a junction Mathematical results
Existence and uniqueness
(A2) Technical assumption (Legendre-Fenchel transform)
Hα(p) = sup
q∈R
(pq − Lα(q)) with L′′
α ≥ δ > 0, for all index α
Theorem (Existence and uniqueness [IMZ, ’13])
Under (A0)-(A1)-(A2), there exists a unique viscosity solution u of (24) on
the junction, satisfying for some constant CT > 0
|u(t, y) − u0(y)| ≤ CT for all (t, y) ∈ JT .
Moreover the function u is Lipschitz continuous with respect to (t, y).
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 59 / 86
HJ equations on a junction Mathematical results
Convergence
Theorem (Convergence from discrete to continuous [CML, ’13])
Assume that (A0)-(A1)-(A2) and the CFL condition (27) are satisfied.
Then the numerical solution converges uniformly to u the unique viscosity
solution of (24) when ε → 0, locally uniformly on any compact set K:
lim sup
ε→0
sup
(n∆t,i∆x)∈K
|uα
(n∆t, i∆x) − Uα,n
i | = 0
Proof
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 60 / 86
HJ equations on a junction Traffic interpretation
Setting
J1
JNI
JNI +1
JNI +NO
x < 0 x = 0 x > 0
Jβ
γβ Jλ
γλ
NI incoming and NO outgoing roads
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 61 / 86
HJ equations on a junction Traffic interpretation
Vehicle densities
The car density ρα solves the LWR equation on branch α:
ρα
t + (Qα
(ρα
))x = 0
By definition
ρα
= γα
∂x Uα
on branch α
And
uα(t, x) = −Uα(−x, t), x > 0, for incoming roads
uα(t, x) = −Uα(t, x), x > 0, for outgoing roads
where the vehicle index uα solves the HJ equation on branch α:
uα
t + Hα
(uα
x ) = 0, for x > 0
Setting
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 62 / 86
HJ equations on a junction Traffic interpretation
Flow
Hα(p) :=



−
1
γα
Qα(γαp) for α = 1, ..., NI
−
1
γα
Qα(−γαp) for α = NI + 1, ..., NI + NO
Incoming roads Outgoing roads
ρcrit
γα
ρmax
γα
p
−
Qmax
γα
p
−
Qmax
γα
HαHα
H−
α H−
α H+
αH+
α
−
ρmax
γα
−
ρcrit
γα
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 63 / 86
HJ equations on a junction Traffic interpretation
Links with “classical” approach
Definition (Discrete car density)
The discrete vehicle density ρα,n
i with n ≥ 0 and i ∈ Z is given by:
ρα,n
i :=



γαpα,n
|i|−1 for α = 1, ..., NI , i ≤ −1
−γαpα,n
i for α = NI + 1, ..., NI + NO, i ≥ 0
(28)
J1
JNI
JNI +1
JNI +NO
x < 0 x > 0
−2
−1
2
1
0
−2
−2
−1
−1
1
1
2
2
Jβ
Jλ
ρλ,n
1
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 64 / 86
HJ equations on a junction Traffic interpretation
Traffic interpretation
Proposition (Scheme for vehicles densities)
The scheme deduced from (25) for the discrete densities is given by:
∆x
∆t
{ρα,n+1
i − ρα,n
i } =



Fα(ρα,n
i−1, ρα,n
i ) − Fα(ρα,n
i , ρα,n
i+1) for i = 0, −1
Fα
0 (ρ·,n
0 ) − Fα(ρα,n
i , ρα,n
i+1) for i = 0
Fα(ρα,n
i−1, ρα,n
i ) − Fα
0 (ρ·,n
0 ) for i = −1
With



Fα(ρα,n
i−1, ρα,n
i ) := min Qα
D(ρα,n
i−1), Qα
S (ρα,n
i )
Fα
0 (ρ·,n
0 ) := γα min min
β≤NI
1
γβ
Qβ
D(ρβ,n
0 ), min
λ>NI
1
γλ
Qλ
S (ρλ,n
0 )
incoming outgoing
ρλ,n
0ρβ,n
−1ρβ,n
−2 ρλ,n
1
x
x = 0
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 65 / 86
HJ equations on a junction Traffic interpretation
Supply and demand functions
Remark
It recovers the seminal Godunov scheme with passing flow = minimum
between upstream demand QD and downstream supply QS.
Density ρ
ρcrit ρmax
Supply QS
Qmax
Density ρ
ρcrit ρmax
Flow Q
Qmax
Density ρ
ρcrit
Demand QD
Qmax
From [Lebacque ’93, ’96]
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 66 / 86
HJ equations on a junction Numerical simulation
Example of a Diverge
An off-ramp:
J1
ρ1
J2
ρ2
ρ3
J3
with 


γe = 1,
γl = 0.75,
γr = 0.25
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 67 / 86
HJ equations on a junction Numerical simulation
Fundamental Diagrams
0 50 100 150 200 250 300 350
0
500
1000
1500
2000
2500
3000
3500
4000
(ρ
c
,f
max
)
(ρ
c
,f
max
)
Density (veh/km)
Flow(veh/h)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 68 / 86
HJ equations on a junction Numerical simulation
Initial conditions (t=0s)
−200 −150 −100 −50 0
0
10
20
30
40
50
60
70
Road n° 1 (t= 0s)
Position (m)
Density(veh/km)
0 50 100 150 200
0
10
20
30
40
50
60
70
Road n° 2 (t= 0s)
Position (m)
Density(veh/km)
0 50 100 150 200
0
10
20
30
40
50
60
70
Road n° 3 (t= 0s)
Position (m)
Density(veh/km)
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 69 / 86
HJ equations on a junction Numerical simulation
Numerical solution: densities
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 70 / 86
HJ equations on a junction Numerical simulation
Numerical solution: Hamilton-Jacobi
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 71 / 86
HJ equations on a junction Numerical simulation
Trajectories
1
2
3
4
56
7
78
8
9
9
10
10
11
11
12
12
13
13
Trajectories on road n° 1
Position (m)
Time(s)
−200 −150 −100 −50 0
0
5
10
15
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10
10
11
12
Trajectories on road n° 2
Position (m)
Time(s)
0 50 100 150 200
0
5
10
15
0
0
1
1
2
2
3
3
4
4
5
56
6
7
7
8
8
9
10
11
12
Trajectories on road n° 3
Position (m)
Time(s)
0 50 100 150 200
0
5
10
15
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 72 / 86
HJ equations on a junction Recent developments
New junction model
Proposition (Junction model [IM, ’14])
From [4], we have



uα
t + Hα(uα
x ) = 0, x > 0, α = 1, . . . , N
uα = uβ =: u, x = 0,
ut + H(u1
x , . . . , uN
x ) = 0, x = 0
(29)
with initial condition uα(0, x) = uα
0 (x) and
H(u1
x , . . . , uN
x ) = max
flux limiter
L , max
α=1,...,N
H−
α (uα
x )
minimum between
demand and supply
.
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 73 / 86
HJ equations on a junction Recent developments
Weaker assumptions on the Hamiltonians
For all α = 1, . . . , N,
(A0) The initial condition uα
0 is Lipschitz continuous.
(A1) The Hamiltonians Hα are continuous and quasi-convex i.e.
there exists points pα
0 such that



Hα is non-increasing on (−∞, pα
0 ],
Hα is non-decreasing on [pα
0 , +∞).
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 74 / 86
HJ equations on a junction Recent developments
Homogenization on a network
Proposition (Homogenization on a periodic network [IM’14])
Assume (A0)-(A1). Consider a periodic network.
If uε satisfies (oscillating) HJ equation on network,
then uε converges uniformly towards u0 when ε → 0,
with u0 solution of
u0
t + H ∇x u0
= 0, t > 0, x ∈ Rd
(30)
See [4]
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 75 / 86
HJ equations on a junction Recent developments
Numerical homogenization on a network
Numerical scheme adapted to the cell problem
Traffic
Traffic eH
γH
eV
γH
γV
γV
i = 0
i =
N
2
i = −
N
2
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 76 / 86
HJ equations on a junction Recent developments
First example
Proposition (Effective Hamiltonian for fixed coefficients [IM’14])
If (γH , γV ) are fixed, then the
(Hamiltonian) effective Hamiltonian H is given by
H(uH,x , uV ,x ) = max L, max
i={H,V }
H(ui,x ) ,
(traffic flow) effective flow Q is given by
Q(ρH , ρV ) = min −L,
Q(ρH)
γH
,
Q(ρV )
γV
.
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 77 / 86
HJ equations on a junction Recent developments
First example
Numerics: assume Q(ρ) = 4ρ(1 − ρ) and L = −1.5,
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 78 / 86
HJ equations on a junction Recent developments
Second example
Two consecutive traffic signals on a 1D road
flow
l LL
x1 x2xE
E
xS
S
Homogenization theory by [G. Galise, C. Imbert, R. Monneau, ’14]
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 79 / 86
HJ equations on a junction Recent developments
Second example
Effective flux limiter −L (numerics only)
0 5 10 15 20 25 30
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Offset (s)
Fluxlimiter
l=0 m
l=5 m
l=10 m
l=20 m
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 80 / 86
Conclusions and perspectives
Outline
1 Introduction to traffic
2 Micro to macro in traffic models
3 Variational principle applied to GSOM models
4 HJ equations on a junction
5 Conclusions and perspectives
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 81 / 86
Conclusions and perspectives
Personal conclusions
Advantages Drawbacks
Micro-macro link Limited time delay
Homogeneous Explicit solutions Concavity of the FD
link Data assimilation
Exactness
Multilane
Uniqueness of the solution Fixed proportions
Junction Homogenization result
Multilane
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 82 / 86
Conclusions and perspectives
Perspectives
Open questions:
Micro-macro: higher time delay? Relaxing comparison principle?
Extend the Lax-Hopf algorithm for non-zero dynamics ϕ(I) = 0
Confront the results with real data (NGSIM/MOCoPo datasets)
Data assimilation on junctions?
“Simple” formula for time/space dependent Hamiltonians?
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 83 / 86
References
Some references I
A. Bressan, S. Canic, M. Garavello, M. Herty, and B. Piccoli, Flows
on networks: recent results and perspectives, EMS Surveys in Mathematical
Sciences, (2014).
G. Costeseque and J.-P. Lebacque, A variational formulation for higher order
macroscopic traffic flow models: numerical investigation, Transp. Res. Part B:
Methodological, (2014).
M. Garavello and B. Piccoli, Traffic flow on networks, American institute of
mathematical sciences Springfield, MO, USA, 2006.
C. Imbert and R. Monneau, Level-set convex Hamilton–Jacobi equations on
networks, (2014).
C. Imbert, R. Monneau, and H. Zidani, A Hamilton–Jacobi approach to
junction problems and application to traffic flows, ESAIM: Control, Optimisation
and Calculus of Variations, 19 (2013), pp. 129–166.
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 84 / 86
References
Some references II
J.-P. Lebacque and M. M. Khoshyaran, First-order macroscopic traffic flow
models: Intersection modeling, network modeling, in Transportation and Traffic
Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on
Transportation and Traffic Theory, 2005.
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 85 / 86
References
Thanks for your attention
guillaume.costeseque@cermics.enpc.fr
guillaume.costeseque@ifsttar.fr
G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 86 / 86

More Related Content

What's hot

Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Guillaume Costeseque
 
Representation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a networkRepresentation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a network
Guillaume Costeseque
 
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formulaHamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Guillaume Costeseque
 
RuleML2015: Learning Characteristic Rules in Geographic Information Systems
RuleML2015: Learning Characteristic Rules in Geographic Information SystemsRuleML2015: Learning Characteristic Rules in Geographic Information Systems
RuleML2015: Learning Characteristic Rules in Geographic Information Systems
RuleML
 
Applying reinforcement learning to single and multi-agent economic problems
Applying reinforcement learning to single and multi-agent economic problemsApplying reinforcement learning to single and multi-agent economic problems
Applying reinforcement learning to single and multi-agent economic problems
anucrawfordphd
 
Supervised Planetary Unmixing with Optimal Transport
Supervised Planetary Unmixing with Optimal TransportSupervised Planetary Unmixing with Optimal Transport
Supervised Planetary Unmixing with Optimal Transport
Sina Nakhostin
 
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
Elementary Landscape Decomposition of the Hamiltonian Path Optimization ProblemElementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
jfrchicanog
 
Continuous and Discrete-Time Analysis of SGD
Continuous and Discrete-Time Analysis of SGDContinuous and Discrete-Time Analysis of SGD
Continuous and Discrete-Time Analysis of SGD
Valentin De Bortoli
 
A Compositional Encoding for the Asynchronous Pi-Calculus into the Join-Calculus
A Compositional Encoding for the Asynchronous Pi-Calculus into the Join-CalculusA Compositional Encoding for the Asynchronous Pi-Calculus into the Join-Calculus
A Compositional Encoding for the Asynchronous Pi-Calculus into the Join-Calculus
smennicke
 
Macrocanonical models for texture synthesis
Macrocanonical models for texture synthesisMacrocanonical models for texture synthesis
Macrocanonical models for texture synthesis
Valentin De Bortoli
 
Queue length estimation on urban corridors
Queue length estimation on urban corridorsQueue length estimation on urban corridors
Queue length estimation on urban corridors
Guillaume Costeseque
 
ABC in Roma
ABC in RomaABC in Roma
ABC in Roma
Christian Robert
 
Shanghai tutorial
Shanghai tutorialShanghai tutorial
Shanghai tutorial
Christian Robert
 
Sparse-Bayesian Approach to Inverse Problems with Partial Differential Equati...
Sparse-Bayesian Approach to Inverse Problems with Partial Differential Equati...Sparse-Bayesian Approach to Inverse Problems with Partial Differential Equati...
Sparse-Bayesian Approach to Inverse Problems with Partial Differential Equati...
DrSebastianEngel
 
SASA 2016
SASA 2016SASA 2016
A nonlinear approximation of the Bayesian Update formula
A nonlinear approximation of the Bayesian Update formulaA nonlinear approximation of the Bayesian Update formula
A nonlinear approximation of the Bayesian Update formula
Alexander Litvinenko
 
Sampling Spectrahedra: Volume Approximation and Optimization
Sampling Spectrahedra: Volume Approximation and OptimizationSampling Spectrahedra: Volume Approximation and Optimization
Sampling Spectrahedra: Volume Approximation and Optimization
Apostolos Chalkis
 
d-VMP: Distributed Variational Message Passing (PGM2016)
d-VMP: Distributed Variational Message Passing (PGM2016)d-VMP: Distributed Variational Message Passing (PGM2016)
d-VMP: Distributed Variational Message Passing (PGM2016)
AMIDST Toolbox
 
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modelingHamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Guillaume Costeseque
 
Robust Portfolio Optimization with Multivariate Copulas: A Worst-Case CVaR Ap...
Robust Portfolio Optimization with Multivariate Copulas: A Worst-Case CVaR Ap...Robust Portfolio Optimization with Multivariate Copulas: A Worst-Case CVaR Ap...
Robust Portfolio Optimization with Multivariate Copulas: A Worst-Case CVaR Ap...
Fernando A. B. Sabino da Silva
 

What's hot (20)

Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...
 
Representation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a networkRepresentation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a network
 
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formulaHamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
 
RuleML2015: Learning Characteristic Rules in Geographic Information Systems
RuleML2015: Learning Characteristic Rules in Geographic Information SystemsRuleML2015: Learning Characteristic Rules in Geographic Information Systems
RuleML2015: Learning Characteristic Rules in Geographic Information Systems
 
Applying reinforcement learning to single and multi-agent economic problems
Applying reinforcement learning to single and multi-agent economic problemsApplying reinforcement learning to single and multi-agent economic problems
Applying reinforcement learning to single and multi-agent economic problems
 
Supervised Planetary Unmixing with Optimal Transport
Supervised Planetary Unmixing with Optimal TransportSupervised Planetary Unmixing with Optimal Transport
Supervised Planetary Unmixing with Optimal Transport
 
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
Elementary Landscape Decomposition of the Hamiltonian Path Optimization ProblemElementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem
 
Continuous and Discrete-Time Analysis of SGD
Continuous and Discrete-Time Analysis of SGDContinuous and Discrete-Time Analysis of SGD
Continuous and Discrete-Time Analysis of SGD
 
A Compositional Encoding for the Asynchronous Pi-Calculus into the Join-Calculus
A Compositional Encoding for the Asynchronous Pi-Calculus into the Join-CalculusA Compositional Encoding for the Asynchronous Pi-Calculus into the Join-Calculus
A Compositional Encoding for the Asynchronous Pi-Calculus into the Join-Calculus
 
Macrocanonical models for texture synthesis
Macrocanonical models for texture synthesisMacrocanonical models for texture synthesis
Macrocanonical models for texture synthesis
 
Queue length estimation on urban corridors
Queue length estimation on urban corridorsQueue length estimation on urban corridors
Queue length estimation on urban corridors
 
ABC in Roma
ABC in RomaABC in Roma
ABC in Roma
 
Shanghai tutorial
Shanghai tutorialShanghai tutorial
Shanghai tutorial
 
Sparse-Bayesian Approach to Inverse Problems with Partial Differential Equati...
Sparse-Bayesian Approach to Inverse Problems with Partial Differential Equati...Sparse-Bayesian Approach to Inverse Problems with Partial Differential Equati...
Sparse-Bayesian Approach to Inverse Problems with Partial Differential Equati...
 
SASA 2016
SASA 2016SASA 2016
SASA 2016
 
A nonlinear approximation of the Bayesian Update formula
A nonlinear approximation of the Bayesian Update formulaA nonlinear approximation of the Bayesian Update formula
A nonlinear approximation of the Bayesian Update formula
 
Sampling Spectrahedra: Volume Approximation and Optimization
Sampling Spectrahedra: Volume Approximation and OptimizationSampling Spectrahedra: Volume Approximation and Optimization
Sampling Spectrahedra: Volume Approximation and Optimization
 
d-VMP: Distributed Variational Message Passing (PGM2016)
d-VMP: Distributed Variational Message Passing (PGM2016)d-VMP: Distributed Variational Message Passing (PGM2016)
d-VMP: Distributed Variational Message Passing (PGM2016)
 
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modelingHamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
 
Robust Portfolio Optimization with Multivariate Copulas: A Worst-Case CVaR Ap...
Robust Portfolio Optimization with Multivariate Copulas: A Worst-Case CVaR Ap...Robust Portfolio Optimization with Multivariate Copulas: A Worst-Case CVaR Ap...
Robust Portfolio Optimization with Multivariate Copulas: A Worst-Case CVaR Ap...
 

Similar to Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d'Hamilton-Jacobi

Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networks
Guillaume Costeseque
 
Damiano Pasetto
Damiano PasettoDamiano Pasetto
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
SYRTO Project
 
A Strategic Model For Dynamic Traffic Assignment
A Strategic Model For Dynamic Traffic AssignmentA Strategic Model For Dynamic Traffic Assignment
A Strategic Model For Dynamic Traffic Assignment
Kelly Taylor
 
The moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approachThe moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approach
Guillaume Costeseque
 
Projection methods for stochastic structural dynamics
Projection methods for stochastic structural dynamicsProjection methods for stochastic structural dynamics
Projection methods for stochastic structural dynamics
University of Glasgow
 
Mesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sectionsMesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sections
Guillaume Costeseque
 
Road junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equationsRoad junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equations
Guillaume Costeseque
 
Review of Optimum speed model
Review of Optimum speed modelReview of Optimum speed model
Review of Optimum speed model
Ibrahim Tanko Abe
 
Spatial GAS Models for Systemic Risk Measurement - Blasques F., Koopman S.J.,...
Spatial GAS Models for Systemic Risk Measurement - Blasques F., Koopman S.J.,...Spatial GAS Models for Systemic Risk Measurement - Blasques F., Koopman S.J.,...
Spatial GAS Models for Systemic Risk Measurement - Blasques F., Koopman S.J.,...
SYRTO Project
 
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
Chiheb Ben Hammouda
 
Sequential and parallel algorithm to find maximum flow on extended mixed netw...
Sequential and parallel algorithm to find maximum flow on extended mixed netw...Sequential and parallel algorithm to find maximum flow on extended mixed netw...
Sequential and parallel algorithm to find maximum flow on extended mixed netw...
csandit
 
SEQUENTIAL AND PARALLEL ALGORITHM TO FIND MAXIMUM FLOW ON EXTENDED MIXED NETW...
SEQUENTIAL AND PARALLEL ALGORITHM TO FIND MAXIMUM FLOW ON EXTENDED MIXED NETW...SEQUENTIAL AND PARALLEL ALGORITHM TO FIND MAXIMUM FLOW ON EXTENDED MIXED NETW...
SEQUENTIAL AND PARALLEL ALGORITHM TO FIND MAXIMUM FLOW ON EXTENDED MIXED NETW...
cscpconf
 
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Guillaume Costeseque
 
Congrès SMAI 2019
Congrès SMAI 2019Congrès SMAI 2019
Congrès SMAI 2019
Hamed Zakerzadeh
 
A Review Of Major Paradigms And Models For The Design Of Civil Engineering Sy...
A Review Of Major Paradigms And Models For The Design Of Civil Engineering Sy...A Review Of Major Paradigms And Models For The Design Of Civil Engineering Sy...
A Review Of Major Paradigms And Models For The Design Of Civil Engineering Sy...
Tracy Morgan
 
Learning from (dis)similarity data
Learning from (dis)similarity dataLearning from (dis)similarity data
Learning from (dis)similarity data
tuxette
 
Cambridge 2014 Complexity, tails and trends
Cambridge 2014  Complexity, tails and trendsCambridge 2014  Complexity, tails and trends
Cambridge 2014 Complexity, tails and trends
Nick Watkins
 
Blind separation of complex-valued satellite-AIS data for marine surveillance...
Blind separation of complex-valued satellite-AIS data for marine surveillance...Blind separation of complex-valued satellite-AIS data for marine surveillance...
Blind separation of complex-valued satellite-AIS data for marine surveillance...
IJECEIAES
 
QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...
QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...
QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...
The Statistical and Applied Mathematical Sciences Institute
 

Similar to Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d'Hamilton-Jacobi (20)

Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networks
 
Damiano Pasetto
Damiano PasettoDamiano Pasetto
Damiano Pasetto
 
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
 
A Strategic Model For Dynamic Traffic Assignment
A Strategic Model For Dynamic Traffic AssignmentA Strategic Model For Dynamic Traffic Assignment
A Strategic Model For Dynamic Traffic Assignment
 
The moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approachThe moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approach
 
Projection methods for stochastic structural dynamics
Projection methods for stochastic structural dynamicsProjection methods for stochastic structural dynamics
Projection methods for stochastic structural dynamics
 
Mesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sectionsMesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sections
 
Road junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equationsRoad junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equations
 
Review of Optimum speed model
Review of Optimum speed modelReview of Optimum speed model
Review of Optimum speed model
 
Spatial GAS Models for Systemic Risk Measurement - Blasques F., Koopman S.J.,...
Spatial GAS Models for Systemic Risk Measurement - Blasques F., Koopman S.J.,...Spatial GAS Models for Systemic Risk Measurement - Blasques F., Koopman S.J.,...
Spatial GAS Models for Systemic Risk Measurement - Blasques F., Koopman S.J.,...
 
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
 
Sequential and parallel algorithm to find maximum flow on extended mixed netw...
Sequential and parallel algorithm to find maximum flow on extended mixed netw...Sequential and parallel algorithm to find maximum flow on extended mixed netw...
Sequential and parallel algorithm to find maximum flow on extended mixed netw...
 
SEQUENTIAL AND PARALLEL ALGORITHM TO FIND MAXIMUM FLOW ON EXTENDED MIXED NETW...
SEQUENTIAL AND PARALLEL ALGORITHM TO FIND MAXIMUM FLOW ON EXTENDED MIXED NETW...SEQUENTIAL AND PARALLEL ALGORITHM TO FIND MAXIMUM FLOW ON EXTENDED MIXED NETW...
SEQUENTIAL AND PARALLEL ALGORITHM TO FIND MAXIMUM FLOW ON EXTENDED MIXED NETW...
 
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
 
Congrès SMAI 2019
Congrès SMAI 2019Congrès SMAI 2019
Congrès SMAI 2019
 
A Review Of Major Paradigms And Models For The Design Of Civil Engineering Sy...
A Review Of Major Paradigms And Models For The Design Of Civil Engineering Sy...A Review Of Major Paradigms And Models For The Design Of Civil Engineering Sy...
A Review Of Major Paradigms And Models For The Design Of Civil Engineering Sy...
 
Learning from (dis)similarity data
Learning from (dis)similarity dataLearning from (dis)similarity data
Learning from (dis)similarity data
 
Cambridge 2014 Complexity, tails and trends
Cambridge 2014  Complexity, tails and trendsCambridge 2014  Complexity, tails and trends
Cambridge 2014 Complexity, tails and trends
 
Blind separation of complex-valued satellite-AIS data for marine surveillance...
Blind separation of complex-valued satellite-AIS data for marine surveillance...Blind separation of complex-valued satellite-AIS data for marine surveillance...
Blind separation of complex-valued satellite-AIS data for marine surveillance...
 
QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...
QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...
QMC: Operator Splitting Workshop, Using Sequences of Iterates in Inertial Met...
 

More from Guillaume Costeseque

Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Guillaume Costeseque
 
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchésNouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Guillaume Costeseque
 
Cours its-ecn-2021
Cours its-ecn-2021Cours its-ecn-2021
Cours its-ecn-2021
Guillaume Costeseque
 
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Guillaume Costeseque
 
Cours its-ecn-2020
Cours its-ecn-2020Cours its-ecn-2020
Cours its-ecn-2020
Guillaume Costeseque
 
A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...
Guillaume Costeseque
 
Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019
Guillaume Costeseque
 
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routierTramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
Guillaume Costeseque
 
A new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionA new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junction
Guillaume Costeseque
 
Some recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulationSome recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulation
Guillaume Costeseque
 
The impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flowThe impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flow
Guillaume Costeseque
 
Dynamic road traffic modeling: some elements
Dynamic road traffic modeling: some elementsDynamic road traffic modeling: some elements
Dynamic road traffic modeling: some elements
Guillaume Costeseque
 
ORESTE Inria-Berkeley associated team
ORESTE Inria-Berkeley associated teamORESTE Inria-Berkeley associated team
ORESTE Inria-Berkeley associated team
Guillaume Costeseque
 

More from Guillaume Costeseque (13)

Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
 
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchésNouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchés
 
Cours its-ecn-2021
Cours its-ecn-2021Cours its-ecn-2021
Cours its-ecn-2021
 
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
 
Cours its-ecn-2020
Cours its-ecn-2020Cours its-ecn-2020
Cours its-ecn-2020
 
A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...
 
Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019
 
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routierTramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
 
A new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionA new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junction
 
Some recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulationSome recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulation
 
The impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flowThe impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flow
 
Dynamic road traffic modeling: some elements
Dynamic road traffic modeling: some elementsDynamic road traffic modeling: some elements
Dynamic road traffic modeling: some elements
 
ORESTE Inria-Berkeley associated team
ORESTE Inria-Berkeley associated teamORESTE Inria-Berkeley associated team
ORESTE Inria-Berkeley associated team
 

Recently uploaded

BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
LAXMAREDDY22
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
RamonNovais6
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
gerogepatton
 
Casting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdfCasting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdf
zubairahmad848137
 
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
Las Vegas Warehouse
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 
gray level transformation unit 3(image processing))
gray level transformation unit 3(image processing))gray level transformation unit 3(image processing))
gray level transformation unit 3(image processing))
shivani5543
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
171ticu
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
Dr Ramhari Poudyal
 
UNLOCKING HEALTHCARE 4.0: NAVIGATING CRITICAL SUCCESS FACTORS FOR EFFECTIVE I...
UNLOCKING HEALTHCARE 4.0: NAVIGATING CRITICAL SUCCESS FACTORS FOR EFFECTIVE I...UNLOCKING HEALTHCARE 4.0: NAVIGATING CRITICAL SUCCESS FACTORS FOR EFFECTIVE I...
UNLOCKING HEALTHCARE 4.0: NAVIGATING CRITICAL SUCCESS FACTORS FOR EFFECTIVE I...
amsjournal
 
Engine Lubrication performance System.pdf
Engine Lubrication performance System.pdfEngine Lubrication performance System.pdf
Engine Lubrication performance System.pdf
mamamaam477
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
abbyasa1014
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
IJECEIAES
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
Anant Corporation
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
SUTEJAS
 
Hematology Analyzer Machine - Complete Blood Count
Hematology Analyzer Machine - Complete Blood CountHematology Analyzer Machine - Complete Blood Count
Hematology Analyzer Machine - Complete Blood Count
shahdabdulbaset
 
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
shadow0702a
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
JamalHussainArman
 

Recently uploaded (20)

BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
 
Casting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdfCasting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdf
 
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 
gray level transformation unit 3(image processing))
gray level transformation unit 3(image processing))gray level transformation unit 3(image processing))
gray level transformation unit 3(image processing))
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
 
UNLOCKING HEALTHCARE 4.0: NAVIGATING CRITICAL SUCCESS FACTORS FOR EFFECTIVE I...
UNLOCKING HEALTHCARE 4.0: NAVIGATING CRITICAL SUCCESS FACTORS FOR EFFECTIVE I...UNLOCKING HEALTHCARE 4.0: NAVIGATING CRITICAL SUCCESS FACTORS FOR EFFECTIVE I...
UNLOCKING HEALTHCARE 4.0: NAVIGATING CRITICAL SUCCESS FACTORS FOR EFFECTIVE I...
 
Engine Lubrication performance System.pdf
Engine Lubrication performance System.pdfEngine Lubrication performance System.pdf
Engine Lubrication performance System.pdf
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
 
Hematology Analyzer Machine - Complete Blood Count
Hematology Analyzer Machine - Complete Blood CountHematology Analyzer Machine - Complete Blood Count
Hematology Analyzer Machine - Complete Blood Count
 
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
 

Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d'Hamilton-Jacobi

  • 1. Contribution `a l’´etude du trafic routier sur r´eseaux `a l’aide des ´equations d’Hamilton-Jacobi Guillaume Costeseque (with supervisors R. Monneau & J-P. Lebacque) Universit´e Paris Est, Ecole des Ponts ParisTech & IFSTTAR PhD defense, Champs-sur-Marne, September 12, 2014 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 1 / 86
  • 2. Motivation Traffic flows on a network G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 2 / 86
  • 3. Motivation Traffic flows on a network Road network ≡ graph made of edges and vertices G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 3 / 86
  • 4. Motivation Breakthrough in traffic monitoring Traffic monitoring “old”: loop detectors at fixed locations (Eulerian) “new”: GPS devices moving within the traffic (Lagrangian) Data assimilation of Floating Car Data [Mobile Millenium, 2008] G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 4 / 86
  • 5. Motivation Outline 1 Introduction to traffic 2 Micro to macro in traffic models 3 Variational principle applied to GSOM models 4 HJ equations on a junction 5 Conclusions and perspectives G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 5 / 86
  • 6. Introduction to traffic Outline 1 Introduction to traffic 2 Micro to macro in traffic models 3 Variational principle applied to GSOM models 4 HJ equations on a junction 5 Conclusions and perspectives G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 6 / 86
  • 7. Introduction to traffic Microscopic models Notations: microscopic Speed Time (i − 1)Space x Spacing Headway t (i) vehicle position xi (t), instantaneous speed ˙xi (t), acceleration ¨xi (t), spacing Si (t) = xi+1(t) − xi (t) > 0 relative speed ˙Si (t) ... G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 7 / 86
  • 8. Introduction to traffic Microscopic models Microscopic models Proposition (Models classification) Assume the following classification of microscopic models General expression Examples (1) ˙xi (t) = F(Si (t)) Pipes; Forbes (2) ˙xi (t + τ) = F(Si (t), ˙xi (t)) Chandler; Gazis; Newell (3) ˙xi (t + τ) = F(Si (t), ˙xi (t), ˙xi−1(t)) Kometani; Gipps; Krauss (4) ¨xi (t + τ) = F(Si (t), ˙Si (t), ˙xi (t), ¨xi (t)) Bando; Helly; Treiber where τ is a time delay. G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 8 / 86
  • 9. Introduction to traffic Macroscopic models Convention for vehicle labeling N x t Flow G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 9 / 86
  • 10. Introduction to traffic Macroscopic models Notations: macroscopic N(t, x) vehicle label at (t, x) the flow Q(t, x) = lim ∆t→0 N(t + ∆t, x) − N(t, x) ∆t , x N(x, t ± ∆t) the density ρ(t, x) = lim ∆x→0 N(t, x) − N(t, x + ∆x) ∆x , x ∆x N(x ± ∆x, t) the stream speed (mean spatial speed) V (t, x). G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 10 / 86
  • 11. Introduction to traffic Macroscopic models Macroscopic models Hydrodynamics analogy Two main categories: first and second order models Two common equations:    ∂tρ(t, x) + ∂x Q(t, x) = 0 conservation equation Q(t, x) = ρ(t, x).V (t, x) definition of flow speed (1) x x + ∆x ρ(x, t)∆x Q(x, t)∆t Q(x + ∆x, t)∆t G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 11 / 86
  • 12. Introduction to traffic Focus on LWR model First order: the LWR model Scalar one dimensional conservation law ρt(t, x) + Fx(ρ(t, x)) = 0 (2) [Lighthill and Whitham, 1955], [Richards, 1956] G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 12 / 86
  • 13. Introduction to traffic Focus on LWR model Three representations of traffic flow Moskowitz’ surface Flow x t N x See also [Makigami et al, 1971], [Laval and Leclercq, 2013] G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 13 / 86
  • 14. Introduction to traffic Focus on LWR model Overview: conservation laws (CL) / Hamilton-Jacobi (HJ) Eulerian Lagrangian t − x t − n Variable (CL) Density ρ Spacing r Equation (CL) ∂tρ + ∂x F(ρ) = 0 ∂tr + ∂x V (r) = 0 Variable (HJ) Label N Position X N(t, x) = +∞ x ρ(t, ξ)dξ X(t, n) = +∞ n r(t, η)dη Equation (HJ) ∂tN + H (∂x N) = 0 ∂tX + V (∂x X) = 0 Hamiltonian H(p) = −F(−p) V(p) = −V (−p) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 14 / 86
  • 15. Introduction to traffic Focus on LWR model Fundamental diagram (FD) Flow-density fundamental diagram F : ρ → ρI(ρ) Empirical function with ρmax the maximal or jam density, ρc the critical density Flux is increasing for ρ ≤ ρc: free-flow phase Flux is decreasing for ρ ≥ ρc: congestion phase ρmax Density, ρ ρmax Density, ρ 0 Flow, F 0 Flow, F 0 ρmax Flow, F Density, ρ [Garavello and Piccoli, 2006] G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 15 / 86
  • 16. Introduction to traffic Second order models Motivation for higher order models Experimental evidences fundamental diagram: multi-valued in congested case [S. Fan, U. Illinois], NGSIM dataset G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 16 / 86
  • 17. Introduction to traffic Second order models Motivation for higher order models Experimental evidences fundamental diagram: multi-valued in congested case phenomena not accounted for: bounded acceleration, capacity drop... Need for models able to integrate measurements of different traffic quantities (acceleration, fuel consumption, noise) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 17 / 86
  • 18. Introduction to traffic Second order models GSOM family [Lebacque, Mammar, Haj-Salem 2007] Generic Second Order Models (GSOM) family    ∂tρ + ∂x (ρv) = 0 Conservation of vehicles, ∂t(ρI) + ∂x (ρvI) = ρϕ(I) Dynamics of the driver attribute I, v = I(ρ, I) Fundamental diagram, (3) Specific driver attribute I the driver aggressiveness, the driver origin / destination, the vehicle class, ... Flow-density fundamental diagram F : (ρ, I) → ρI(ρ, I). G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 18 / 86
  • 19. Micro to macro in traffic models Outline 1 Introduction to traffic 2 Micro to macro in traffic models 3 Variational principle applied to GSOM models 4 HJ equations on a junction 5 Conclusions and perspectives G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 19 / 86
  • 20. Micro to macro in traffic models Homogenization Setting Let i be the discrete position index Assume a pseudo continuum of vehicles Definition of continuous variables n and t n = iε and t = εs G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 20 / 86
  • 21. Micro to macro in traffic models Homogenization Setting Let i be the discrete position index Assume a pseudo continuum of vehicles Definition of continuous variables n and t n = iε and t = εs Proposition (Rescaling) Let consider xi (s) = 1 ε Xε (εs, iε) (4) with ε > 0 representing a scale factor such that Xε describes the rescaled position of the vehicle. It implies that Xε (t, n) = ε.x⌊n ε ⌋ t ε (5) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 20 / 86
  • 22. Micro to macro in traffic models Homogenization General result Let consider the simplest microscopic model; ˙xi (t) = F(xi−1(t) − xi (t)) (6) the LWR macroscopic model (HJ equation in Lagrangian): ∂tX0 = F(−∂nX0 ) (7) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 21 / 86
  • 23. Micro to macro in traffic models Homogenization General result Let consider the simplest microscopic model; ˙xi (t) = F(xi−1(t) − xi (t)) (6) the LWR macroscopic model (HJ equation in Lagrangian): ∂tX0 = F(−∂nX0 ) (7) Theorem (Convergence to the viscosity solution) If Xε(t, n) := εx⌊n ε ⌋ t ε with (xi )i∈Z solution of (6) and X0 the unique solution of HJ (7), then under suitable assumptions, |Xε − X0 |L∞(K) −→ ε→0 0, ∀K compact set. G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 21 / 86
  • 24. Micro to macro in traffic models Multi-anticipative traffic Toy model Vehicles consider m ≥ 1 leaders First order multi-anticipative model ˙xi (t + τ) = max  0, Vmax − m j=1 f (xi−j(t) − xi (t))   (8) f speed-spacing function non-negative non-increasing Speed-spacing Fundamental Diagram F {xk − xi }i−1≥k≥i−m := Vmax − m j=1 f (xi−j(t) − xi (t)) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 22 / 86
  • 25. Micro to macro in traffic models Multi-anticipative traffic Homogenization Proposition ((R. Monneau) Convergence) Assume m ≥ 1 fixed. If τ is small enough, if Xε(t, n) := εx⌊n ε ⌋ t ε with (xi )i∈Z solution of (8) and if X0(n, t) solves ∂tX0 = ¯V −∂nX0 , m (9) with ¯V (r, m) = max  0, Vmax − m j=1 f (jr)   , then under suitable assumptions, |Xε − X0 |L∞(K) −→ ε→0 0, ∀K compact set. G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 23 / 86
  • 26. Micro to macro in traffic models Multi-anticipative traffic Multi-anticipatory macroscopic model χj the fraction of j-anticipatory vehicles traffic flow ≡ superposition of traffic of j-anticipatory vehicles χ = (χj )j=1,...,m , with 0 ≤ χj ≤ 1 and m j=1 χj = 1 GSOM model with driver attribute I = χ    ∂tρ + ∂x (ρv) = 0, v := m j=1 χj ¯V (1/ρ, j) = W (1/ρ, χ), ∂t(ρχ) + ∂x (ρχv) = 0. (10) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 24 / 86
  • 27. Micro to macro in traffic models Numerical schemes Numerical resolution Godunov-like schemes with (∆t, ∆xk) steps ⇒ CFL condition Variational formulation and dynamic programming techniques [2] Particle methods in the Lagrangian framework (t, n) xt+1 n = xt n + ∆tW (rt n, χt n) rt n = xt n−1 − xt n ∆n χt+1 n = χt n (11) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 25 / 86
  • 28. Micro to macro in traffic models Numerical schemes Numerical example 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 Spacing r (m) Speed−spacing diagrams Speedv(m/s) 1 2 3 4 5 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 26 / 86
  • 29. Micro to macro in traffic models Numerical schemes Numerical example: (χj)j G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 27 / 86
  • 30. Micro to macro in traffic models Numerical schemes Numerical example: Lagrangian trajectories G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 28 / 86
  • 31. Micro to macro in traffic models Numerical schemes Numerical example: Eulerian trajectories G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 29 / 86
  • 32. Variational principle applied to GSOM models Outline 1 Introduction to traffic 2 Micro to macro in traffic models 3 Variational principle applied to GSOM models 4 HJ equations on a junction 5 Conclusions and perspectives G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 30 / 86
  • 33. Variational principle applied to GSOM models LWR model LWR in Eulerian (t, x) Cumulative vehicles count (CVC) or Moskowitz surface N(t, x) f = ∂tN and ρ = −∂x N If density ρ satisfies the scalar (LWR) conservation law ∂tρ + ∂x F(ρ) = 0 Then N satisfies the first order Hamilton-Jacobi equation ∂tN − F(−∂x N) = 0 (12) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 31 / 86
  • 34. Variational principle applied to GSOM models LWR model LWR in Eulerian (t, x) Legendre-Fenchel transform with F concave (relative capacity) M(q) = sup ρ [F(ρ) − ρq] M(q) u w Density ρ q q Flow F w u q Transform M −wρmax G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 32 / 86
  • 35. Variational principle applied to GSOM models LWR model LWR in Eulerian (t, x) (continued) Lax-Hopf formula (representation formula) [Daganzo, 2006] N(T, xT ) = min u(.),(t0,x0) T t0 M(u(τ))dτ + N(t0, x0), ˙X = u u ∈ U X(t0) = x0, X(T) = xT (t0, x0) ∈ J (13) Time Space J (T, xT )˙X(τ) (t0, x0) Viability theory [Claudel and Bayen, 2010] G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 33 / 86
  • 36. Variational principle applied to GSOM models LWR model LWR in Eulerian (t, x) (Historical note) Dynamic programming [Daganzo, 2006] for triangular FD (u and w free and congested speeds) Flow, F w u 0 ρmax Density, ρ u x w t Time Space (t, x) Minimum principle [Newell, 1993] N(t, x) = min N t − x − xu u , xu , N t − x − xw w , xw + ρmax(xw − x) , (14) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 34 / 86
  • 37. Variational principle applied to GSOM models LWR model LWR in Lagrangian (n, t) Consider X(t, n) the location of vehicle n at time t ≥ 0 v = ∂tX and r = −∂nX If the spacing r := 1/ρ satisfies the LWR model (Lagrangian coord.) ∂tr + ∂nV(r) = 0 with the speed-spacing FD V : r → I (1/r) , Then X satisfies the first order Hamilton-Jacobi equation ∂tX − V(−∂nX) = 0. (15) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 35 / 86
  • 38. Variational principle applied to GSOM models LWR model LWR in Lagrangian (n, t) (continued) Dynamic programming for triangular FD 1/ρcrit Speed, V u −wρmax Spacing, r 1/ρmax −wρmax n t (t, n) Time Label Minimum principle ⇒ car following model [Newell, 2002] X(t, n) = min X(t0, n) + u(t − t0), X(t0, n + wρmax (t − t0)) + w(t − t0) . (16) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 36 / 86
  • 39. Variational principle applied to GSOM models GSOM family GSOM in Lagrangian (n, t) From [Lebacque and Khoshyaran, 2013], GSOM in Lagrangian    ∂tr + ∂N v = 0 Conservation of vehicles, ∂tI = ϕ(N, I, t) Dynamics of I, v = W(N, r, t) := V(r, I(N, t)) Fundamental diagram. (17) Position X(N, t) := t −∞ v(N, τ)dτ satisfies the HJ equation ∂tX − W(N, −∂N X, t) = 0, (18) And I(N, t) solves the ODE ∂tI(N, t) = ϕ(N, I, t), I(N, 0) = i0(N), for any N. G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 37 / 86
  • 40. Variational principle applied to GSOM models GSOM family GSOM in Lagrangian (n, t) (continued) Legendre-Fenchel transform of W according to r M(N, c, t) = sup r∈R {W(N, r, t) − cr} M(N, p, t) pq W(N, q, t) W(N, r, t) q r p p u c Transform M G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 38 / 86
  • 41. Variational principle applied to GSOM models GSOM family GSOM in Lagrangian (n, t) (continued) Lax-Hopf formula X(NT , T) = min u(.),(N0,t0) T t0 M(N, u, t)dt + ξ(N0, t0), ˙N = u u ∈ U N(t0) = N0, N(T) = NT (N0, t0) ∈ J (19) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 39 / 86
  • 42. Variational principle applied to GSOM models GSOM family GSOM in Lagrangian (n, t) (continued) Optimal trajectories = characteristics ˙N = ∂r W(N, r, t), ˙r = −∂N W(N, r, t), (20) System of ODEs to solve Difficulty: not straight lines in the general case G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 40 / 86
  • 43. Variational principle applied to GSOM models Methodology General ideas First key element: Lax-Hopf formula Computations only for the characteristics X(NT , T) = min (N0,r0,t0) T t0 M(N, ∂r W(N, r, t), t)dt + ξ(N0, t0), ˙N(t) = ∂r W(N, r, t) ˙r(t) = −∂NW(N, r, t) N(t0) = N0, r(t0) = r0, N(T) = NT (N0, r0, t0) ∈ K (21) K is the set of initial/boundary values G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 41 / 86
  • 44. Variational principle applied to GSOM models Methodology General ideas (continued) Second key element: inf-morphism prop. [Aubin et al, 2011] Consider a union of sets (initial and boundary conditions) K = l Kl , then the global minimum is X(NT , T) = min l Xl (NT , T), (22) with Xl partial solution to sub-problem Kl . G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 42 / 86
  • 45. Variational principle applied to GSOM models Numerical example Fundamental Diagram and Driver Attribute 0 20 40 60 80 100 120 140 160 180 200 0 500 1000 1500 2000 2500 3000 3500 Density ρ (veh/km) FlowF(veh/h) Fundamental diagram F(ρ,I) 0 5 10 15 20 25 30 35 40 45 50 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Label N Initial conditions I(N,t 0 ) DriverattributeI 0 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 43 / 86
  • 46. Variational principle applied to GSOM models Numerical example Initial and Boundaries Conditions 0 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50 Label N Initial conditions r(N,t 0 ) Spacingr0 (m) 0 5 10 15 20 25 30 35 40 45 50 −1400 −1200 −1000 −800 −600 −400 −200 0 Label N PositionX(m) Initial positions X(N,t 0 ) 0 20 40 60 80 100 120 12 14 16 18 20 22 24 26 28 30 Time t (s) Spacing r(N 0 ,t) Spacingr 0 (m.s −1 ) 0 20 40 60 80 100 120 0 500 1000 1500 2000 2500 Time t (s) PositionX0 (m) Position X(N 0 ,t) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 44 / 86
  • 47. Variational principle applied to GSOM models Numerical example Numerical result (Initial cond. + first traj.) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 45 / 86
  • 48. Variational principle applied to GSOM models Numerical example Numerical result (Initial cond. + first traj.) 0 20 40 60 80 100 120 −1500 −1000 −500 0 500 1000 1500 2000 2500 Location(m) Time (s) Vehicles trajectories G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 46 / 86
  • 49. Variational principle applied to GSOM models Numerical example Numerical result (Initial cond.+ 3 traj.) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 47 / 86
  • 50. Variational principle applied to GSOM models Numerical example Numerical result (Initial cond. + 3 traj.) 0 20 40 60 80 100 120 −1500 −1000 −500 0 500 1000 1500 2000 2500 Location(m) Time (s) Vehicles trajectories G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 48 / 86
  • 51. Variational principle applied to GSOM models Numerical example Numerical result (Initial cond. + 3 traj. + Eulerian data) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 49 / 86
  • 52. HJ equations on a junction Outline 1 Introduction to traffic 2 Micro to macro in traffic models 3 Variational principle applied to GSOM models 4 HJ equations on a junction 5 Conclusions and perspectives G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 50 / 86
  • 53. HJ equations on a junction Motivation Classical approaches: Macroscopic modeling on (homogeneous) sections Coupling conditions at (pointwise) junction For instance, consider    ρt + (Q(ρ))x = 0, scalar conservation law, ρ(., t = 0) = ρ0(.), initial conditions, ψ(ρ(x = 0−, t), ρ(x = 0+, t)) = 0, coupling condition. (23) See Garavello, Piccoli [3], Lebacque, Khoshyaran [6] and Bressan et al. [1] G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 51 / 86
  • 54. HJ equations on a junction HJ junction model Star-shaped junction JN J1 J2 branch Jα x x 0 x x G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 52 / 86
  • 55. HJ equations on a junction HJ junction model Junction model Proposition (Junction model [IMZ, ’13]) That leads to the following junction model (see [5])    uα t + Hα(uα x ) = 0, x > 0, α = 1, . . . , N uα = uβ =: u, x = 0, ut + H(u1 x , . . . , uN x ) = 0, x = 0 (24) with initial condition uα(0, x) = uα 0 (x) and H(u1 x , . . . , uN x ) = max α=1,...,N H− α (uα x ) from optimal control . G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 53 / 86
  • 56. HJ equations on a junction HJ junction model Basic assumptions For all α = 1, . . . , N, (A0) The initial condition uα 0 is Lipschitz continuous. (A1) The Hamiltonians Hα are C1(R) and convex such that: p H− α (p) H+ α (p) pα 0 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 54 / 86
  • 57. HJ equations on a junction Numerical scheme Presentation of the scheme Proposition (Numerical Scheme) Let us consider the discrete space and time derivatives: pα,n i := Uα,n i+1 − Uα,n i ∆x and (DtU)α,n i := Uα,n+1 i − Uα,n i ∆t Then we have the following numerical scheme:    (DtU)α,n i + max{H+ α (pα,n i−1), H− α (pα,n i )} = 0, i ≥ 1 Un 0 := Uα,n 0 , i = 0, α = 1, ..., N (DtU)n 0 + max α=1,...,N H− α (pα,n 0 ) = 0, i = 0 (25) With the initial condition Uα,0 i := uα 0 (i∆x). ∆x and ∆t = space and time steps satisfying a CFL condition G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 55 / 86
  • 58. HJ equations on a junction Numerical scheme CFL condition The natural CFL condition is given by: ∆x ∆t ≥ sup α=1,...,N i≥0, 0≤n≤nT |H′ α(pα,n i )| (26) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 56 / 86
  • 59. HJ equations on a junction Mathematical results Gradient estimates Theorem (Time and Space Gradient estimates) Assume (A0)-(A1). If the CFL condition (26) is satisfied, then we have that: (i) Considering Mn = sup α,i (DtU)α,n i and mn = inf α,i (DtU)α,n i , we have the following time derivative estimate: m0 ≤ mn ≤ mn+1 ≤ Mn+1 ≤ Mn ≤ M0 (ii) Considering pα = (H− α )−1(−m0) and pα = (H+ α )−1(−m0), we have the following gradient estimate: pα ≤ pα,n i ≤ pα, for all i ≥ 0, n ≥ 0 and α = 1, ..., N Proof G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 57 / 86
  • 60. HJ equations on a junction Mathematical results Stronger CFL condition −m0 pα p Hα(p) pα As for any α = 1, . . . , N, we have that: pα ≤ pα,n i ≤ pα for all i, n ≥ 0 Then the CFL condition becomes: ∆x ∆t ≥ sup α=1,...,N pα∈[pα ,pα] |H′ α(pα)| (27) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 58 / 86
  • 61. HJ equations on a junction Mathematical results Existence and uniqueness (A2) Technical assumption (Legendre-Fenchel transform) Hα(p) = sup q∈R (pq − Lα(q)) with L′′ α ≥ δ > 0, for all index α G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 59 / 86
  • 62. HJ equations on a junction Mathematical results Existence and uniqueness (A2) Technical assumption (Legendre-Fenchel transform) Hα(p) = sup q∈R (pq − Lα(q)) with L′′ α ≥ δ > 0, for all index α Theorem (Existence and uniqueness [IMZ, ’13]) Under (A0)-(A1)-(A2), there exists a unique viscosity solution u of (24) on the junction, satisfying for some constant CT > 0 |u(t, y) − u0(y)| ≤ CT for all (t, y) ∈ JT . Moreover the function u is Lipschitz continuous with respect to (t, y). G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 59 / 86
  • 63. HJ equations on a junction Mathematical results Convergence Theorem (Convergence from discrete to continuous [CML, ’13]) Assume that (A0)-(A1)-(A2) and the CFL condition (27) are satisfied. Then the numerical solution converges uniformly to u the unique viscosity solution of (24) when ε → 0, locally uniformly on any compact set K: lim sup ε→0 sup (n∆t,i∆x)∈K |uα (n∆t, i∆x) − Uα,n i | = 0 Proof G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 60 / 86
  • 64. HJ equations on a junction Traffic interpretation Setting J1 JNI JNI +1 JNI +NO x < 0 x = 0 x > 0 Jβ γβ Jλ γλ NI incoming and NO outgoing roads G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 61 / 86
  • 65. HJ equations on a junction Traffic interpretation Vehicle densities The car density ρα solves the LWR equation on branch α: ρα t + (Qα (ρα ))x = 0 By definition ρα = γα ∂x Uα on branch α And uα(t, x) = −Uα(−x, t), x > 0, for incoming roads uα(t, x) = −Uα(t, x), x > 0, for outgoing roads where the vehicle index uα solves the HJ equation on branch α: uα t + Hα (uα x ) = 0, for x > 0 Setting G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 62 / 86
  • 66. HJ equations on a junction Traffic interpretation Flow Hα(p) :=    − 1 γα Qα(γαp) for α = 1, ..., NI − 1 γα Qα(−γαp) for α = NI + 1, ..., NI + NO Incoming roads Outgoing roads ρcrit γα ρmax γα p − Qmax γα p − Qmax γα HαHα H− α H− α H+ αH+ α − ρmax γα − ρcrit γα G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 63 / 86
  • 67. HJ equations on a junction Traffic interpretation Links with “classical” approach Definition (Discrete car density) The discrete vehicle density ρα,n i with n ≥ 0 and i ∈ Z is given by: ρα,n i :=    γαpα,n |i|−1 for α = 1, ..., NI , i ≤ −1 −γαpα,n i for α = NI + 1, ..., NI + NO, i ≥ 0 (28) J1 JNI JNI +1 JNI +NO x < 0 x > 0 −2 −1 2 1 0 −2 −2 −1 −1 1 1 2 2 Jβ Jλ ρλ,n 1 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 64 / 86
  • 68. HJ equations on a junction Traffic interpretation Traffic interpretation Proposition (Scheme for vehicles densities) The scheme deduced from (25) for the discrete densities is given by: ∆x ∆t {ρα,n+1 i − ρα,n i } =    Fα(ρα,n i−1, ρα,n i ) − Fα(ρα,n i , ρα,n i+1) for i = 0, −1 Fα 0 (ρ·,n 0 ) − Fα(ρα,n i , ρα,n i+1) for i = 0 Fα(ρα,n i−1, ρα,n i ) − Fα 0 (ρ·,n 0 ) for i = −1 With    Fα(ρα,n i−1, ρα,n i ) := min Qα D(ρα,n i−1), Qα S (ρα,n i ) Fα 0 (ρ·,n 0 ) := γα min min β≤NI 1 γβ Qβ D(ρβ,n 0 ), min λ>NI 1 γλ Qλ S (ρλ,n 0 ) incoming outgoing ρλ,n 0ρβ,n −1ρβ,n −2 ρλ,n 1 x x = 0 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 65 / 86
  • 69. HJ equations on a junction Traffic interpretation Supply and demand functions Remark It recovers the seminal Godunov scheme with passing flow = minimum between upstream demand QD and downstream supply QS. Density ρ ρcrit ρmax Supply QS Qmax Density ρ ρcrit ρmax Flow Q Qmax Density ρ ρcrit Demand QD Qmax From [Lebacque ’93, ’96] G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 66 / 86
  • 70. HJ equations on a junction Numerical simulation Example of a Diverge An off-ramp: J1 ρ1 J2 ρ2 ρ3 J3 with    γe = 1, γl = 0.75, γr = 0.25 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 67 / 86
  • 71. HJ equations on a junction Numerical simulation Fundamental Diagrams 0 50 100 150 200 250 300 350 0 500 1000 1500 2000 2500 3000 3500 4000 (ρ c ,f max ) (ρ c ,f max ) Density (veh/km) Flow(veh/h) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 68 / 86
  • 72. HJ equations on a junction Numerical simulation Initial conditions (t=0s) −200 −150 −100 −50 0 0 10 20 30 40 50 60 70 Road n° 1 (t= 0s) Position (m) Density(veh/km) 0 50 100 150 200 0 10 20 30 40 50 60 70 Road n° 2 (t= 0s) Position (m) Density(veh/km) 0 50 100 150 200 0 10 20 30 40 50 60 70 Road n° 3 (t= 0s) Position (m) Density(veh/km) G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 69 / 86
  • 73. HJ equations on a junction Numerical simulation Numerical solution: densities G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 70 / 86
  • 74. HJ equations on a junction Numerical simulation Numerical solution: Hamilton-Jacobi G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 71 / 86
  • 75. HJ equations on a junction Numerical simulation Trajectories 1 2 3 4 56 7 78 8 9 9 10 10 11 11 12 12 13 13 Trajectories on road n° 1 Position (m) Time(s) −200 −150 −100 −50 0 0 5 10 15 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12 Trajectories on road n° 2 Position (m) Time(s) 0 50 100 150 200 0 5 10 15 0 0 1 1 2 2 3 3 4 4 5 56 6 7 7 8 8 9 10 11 12 Trajectories on road n° 3 Position (m) Time(s) 0 50 100 150 200 0 5 10 15 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 72 / 86
  • 76. HJ equations on a junction Recent developments New junction model Proposition (Junction model [IM, ’14]) From [4], we have    uα t + Hα(uα x ) = 0, x > 0, α = 1, . . . , N uα = uβ =: u, x = 0, ut + H(u1 x , . . . , uN x ) = 0, x = 0 (29) with initial condition uα(0, x) = uα 0 (x) and H(u1 x , . . . , uN x ) = max flux limiter L , max α=1,...,N H− α (uα x ) minimum between demand and supply . G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 73 / 86
  • 77. HJ equations on a junction Recent developments Weaker assumptions on the Hamiltonians For all α = 1, . . . , N, (A0) The initial condition uα 0 is Lipschitz continuous. (A1) The Hamiltonians Hα are continuous and quasi-convex i.e. there exists points pα 0 such that    Hα is non-increasing on (−∞, pα 0 ], Hα is non-decreasing on [pα 0 , +∞). G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 74 / 86
  • 78. HJ equations on a junction Recent developments Homogenization on a network Proposition (Homogenization on a periodic network [IM’14]) Assume (A0)-(A1). Consider a periodic network. If uε satisfies (oscillating) HJ equation on network, then uε converges uniformly towards u0 when ε → 0, with u0 solution of u0 t + H ∇x u0 = 0, t > 0, x ∈ Rd (30) See [4] G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 75 / 86
  • 79. HJ equations on a junction Recent developments Numerical homogenization on a network Numerical scheme adapted to the cell problem Traffic Traffic eH γH eV γH γV γV i = 0 i = N 2 i = − N 2 G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 76 / 86
  • 80. HJ equations on a junction Recent developments First example Proposition (Effective Hamiltonian for fixed coefficients [IM’14]) If (γH , γV ) are fixed, then the (Hamiltonian) effective Hamiltonian H is given by H(uH,x , uV ,x ) = max L, max i={H,V } H(ui,x ) , (traffic flow) effective flow Q is given by Q(ρH , ρV ) = min −L, Q(ρH) γH , Q(ρV ) γV . G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 77 / 86
  • 81. HJ equations on a junction Recent developments First example Numerics: assume Q(ρ) = 4ρ(1 − ρ) and L = −1.5, G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 78 / 86
  • 82. HJ equations on a junction Recent developments Second example Two consecutive traffic signals on a 1D road flow l LL x1 x2xE E xS S Homogenization theory by [G. Galise, C. Imbert, R. Monneau, ’14] G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 79 / 86
  • 83. HJ equations on a junction Recent developments Second example Effective flux limiter −L (numerics only) 0 5 10 15 20 25 30 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Offset (s) Fluxlimiter l=0 m l=5 m l=10 m l=20 m G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 80 / 86
  • 84. Conclusions and perspectives Outline 1 Introduction to traffic 2 Micro to macro in traffic models 3 Variational principle applied to GSOM models 4 HJ equations on a junction 5 Conclusions and perspectives G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 81 / 86
  • 85. Conclusions and perspectives Personal conclusions Advantages Drawbacks Micro-macro link Limited time delay Homogeneous Explicit solutions Concavity of the FD link Data assimilation Exactness Multilane Uniqueness of the solution Fixed proportions Junction Homogenization result Multilane G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 82 / 86
  • 86. Conclusions and perspectives Perspectives Open questions: Micro-macro: higher time delay? Relaxing comparison principle? Extend the Lax-Hopf algorithm for non-zero dynamics ϕ(I) = 0 Confront the results with real data (NGSIM/MOCoPo datasets) Data assimilation on junctions? “Simple” formula for time/space dependent Hamiltonians? G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 83 / 86
  • 87. References Some references I A. Bressan, S. Canic, M. Garavello, M. Herty, and B. Piccoli, Flows on networks: recent results and perspectives, EMS Surveys in Mathematical Sciences, (2014). G. Costeseque and J.-P. Lebacque, A variational formulation for higher order macroscopic traffic flow models: numerical investigation, Transp. Res. Part B: Methodological, (2014). M. Garavello and B. Piccoli, Traffic flow on networks, American institute of mathematical sciences Springfield, MO, USA, 2006. C. Imbert and R. Monneau, Level-set convex Hamilton–Jacobi equations on networks, (2014). C. Imbert, R. Monneau, and H. Zidani, A Hamilton–Jacobi approach to junction problems and application to traffic flows, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), pp. 129–166. G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 84 / 86
  • 88. References Some references II J.-P. Lebacque and M. M. Khoshyaran, First-order macroscopic traffic flow models: Intersection modeling, network modeling, in Transportation and Traffic Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on Transportation and Traffic Theory, 2005. G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 85 / 86
  • 89. References Thanks for your attention guillaume.costeseque@cermics.enpc.fr guillaume.costeseque@ifsttar.fr G. Costeseque (UPE - ENPC & IFSTTAR) HJ on networks Champs, Sept. 12, 2014 86 / 86