A Compositional Encoding of the Asynchronous
       π-Calculus into the Join-Calculus

Stephan Mennicke†          Tobias Prehn‡         Tsvetelina Yonova-Karbe‡

        Institute for Programming and Reactive Systems, TU Braunschweig†
 Institute for Software Engineering and Theoretical Computer Science, TU Berlin‡


                            September 3, 2012
                            YR-CONCUR 2012
WraP – Writing and Publishing a Scientific Paper




                                             Supervision by Uwe Nestmann and
                                             Kirstin Peters




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join     YR-CONCUR 2012   2 / 15
Scope of Interest


   Asynchronous π (πa )                                    Join-Calculus




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join      YR-CONCUR 2012   3 / 15
Scope of Interest


   Asynchronous π (πa )                                           Join-Calculus

               P |Q                 Parallelism                          P |Q
                xv                      Send                             xv

             x(w).P                   Receive              def x w | o     P in . . . | o
            x(w)∗ .P                 Recursion                 def x w     P in . . .
         x(w).P | x v            Communication                def x w      P in x v




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join             YR-CONCUR 2012     3 / 15
Scope of Interest


   Asynchronous π (πa )                                           Join-Calculus

               P |Q                 Parallelism                          P |Q
                xv                      Send                             xv

             x(w).P                   Receive              def x w | o     P in . . . | o
            x(w)∗ .P                 Recursion                 def x w     P in . . .
         x(w).P | x v            Communication                def x w      P in x v

                                    Restriction




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join             YR-CONCUR 2012     3 / 15
Scope of Interest


   Asynchronous π (πa )                                           Join-Calculus

               P |Q                 Parallelism                          P |Q
                xv                      Send                             xv

             x(w).P                   Receive              def x w | o     P in . . . | o
            x(w)∗ .P                 Recursion                 def x w     P in . . .
         x(w).P | x v            Communication                def x w      P in x v
    (νx)(x(w).P | x v )             Restriction




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join             YR-CONCUR 2012     3 / 15
Scope of Interest


   Asynchronous π (πa )                                           Join-Calculus

               P |Q                 Parallelism                          P |Q
                xv                      Send                             xv

             x(w).P                   Receive              def x w | o     P in . . . | o
            x(w)∗ .P                 Recursion                 def x w     P in . . .
         x(w).P | x v            Communication                def x w      P in x v
    (νx)(x(w).P | x v )             Restriction               def x w      P in x v




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join             YR-CONCUR 2012     3 / 15
Scope of Interest


   Asynchronous π (πa )                                           Join-Calculus

               P |Q                 Parallelism                          P |Q
                xv                      Send                             xv

             x(w).P                   Receive              def x w | o     P in . . . | o
            x(w)∗ .P                 Recursion                 def x w     P in . . .
         x(w).P | x v            Communication                def x w      P in x v
    (νx)(x(w).P | x v )             Restriction               def x w      P in x v




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join             YR-CONCUR 2012     3 / 15
Scope of Interest


                                             π
   Asynchronous π (πa )                      j                    Join-Calculus

               P |Q                 Parallelism                          P |Q
                xv                      Send                             xv

             x(w).P                   Receive              def x w | o     P in . . . | o
            x(w)∗ .P                 Recursion                 def x w     P in . . .
         x(w).P | x v            Communication                def x w      P in x v
    (νx)(x(w).P | x v )             Restriction               def x w      P in x v




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join             YR-CONCUR 2012     3 / 15
An Encoding is Non-Trivial




                                 |
          no (νx)
                                     xv
          x(w)




 S. Mennicke (TU Braunschweig)        Compositional πa ⇒ Join   YR-CONCUR 2012   4 / 15
An Encoding is Non-Trivial




                                 |
          no (νx)
                                     xv
          x(w)




 S. Mennicke (TU Braunschweig)        Compositional πa ⇒ Join   YR-CONCUR 2012   4 / 15
An Encoding is Non-Trivial




                                 |                               |
          no (νx)
                                     xv                                xv
          x(w)                                           def x




 S. Mennicke (TU Braunschweig)        Compositional πa ⇒ Join    YR-CONCUR 2012   4 / 15
An Encoding is Non-Trivial




                                 |                               |
          no (νx)
                                     xv                                xv
          x(w)                                           def x




 S. Mennicke (TU Braunschweig)        Compositional πa ⇒ Join    YR-CONCUR 2012   4 / 15
The Encoding of Fournet and Gonthier
[Fournet and Gonthier(1996)]


First Layer




Second Layer




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   5 / 15
The Encoding of Fournet and Gonthier
[Fournet and Gonthier(1996)]


First Layer
      x v → xo v
      P |Q → P |Q




Second Layer




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   5 / 15
The Encoding of Fournet and Gonthier
[Fournet and Gonthier(1996)]


First Layer
      x v → xo v
      P |Q → P |Q
      x(w).P → def κ             P in xi



Second Layer




 S. Mennicke (TU Braunschweig)       Compositional πa ⇒ Join   YR-CONCUR 2012   5 / 15
The Encoding of Fournet and Gonthier
[Fournet and Gonthier(1996)]


First Layer
      x v → xo v
      P |Q → P |Q
      x(w).P → def κ             P in xi
      (νx)P → def xi | xo κ in P

Second Layer




 S. Mennicke (TU Braunschweig)       Compositional πa ⇒ Join   YR-CONCUR 2012   5 / 15
The Encoding of Fournet and Gonthier
[Fournet and Gonthier(1996)]


First Layer
      x v → xo v
      P |Q → P |Q
      x(w).P → def κ             P in xi
      (νx)P → def xi | xo κ in P

Second Layer
      Restrict all free names




 S. Mennicke (TU Braunschweig)       Compositional πa ⇒ Join   YR-CONCUR 2012   5 / 15
The Encoding of Fournet and Gonthier
[Fournet and Gonthier(1996)]


First Layer
      x v → xo v
      P |Q → P |Q
      x(w).P → def κ              P in xi
      (νx)P → def xi | xo κ in P

Second Layer
      Restrict all free names



                                 Is this good?
 S. Mennicke (TU Braunschweig)        Compositional πa ⇒ Join   YR-CONCUR 2012   5 / 15
Gorla’s Criteria for Good Encodings                        [Gorla(2010)]




                                            .




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join               YR-CONCUR 2012   6 / 15
Gorla’s Criteria for Good Encodings                        [Gorla(2010)]




                                                 I. Compositionality




                                            .




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join               YR-CONCUR 2012   6 / 15
Gorla’s Criteria for Good Encodings                        [Gorla(2010)]




                                                 I. Compositionality




                                            .

                                                           II. Name Invariance




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join                YR-CONCUR 2012   6 / 15
Gorla’s Criteria for Good Encodings                        [Gorla(2010)]




                                                 I. Compositionality




                                                           Syntactic Criteria

                                            .

                                                            II. Name Invariance




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join                 YR-CONCUR 2012   6 / 15
Gorla’s Criteria for Good Encodings                             [Gorla(2010)]




                                                      I. Compositionality




                                                                Syntactic Criteria

                                                 .

                                                                 II. Name Invariance




                                 III. Operational Correspondence



 S. Mennicke (TU Braunschweig)        Compositional πa ⇒ Join                 YR-CONCUR 2012   6 / 15
Gorla’s Criteria for Good Encodings                             [Gorla(2010)]




                                                      I. Compositionality




                                                                Syntactic Criteria

                                                 .

              IV. Divergence Reflection                           II. Name Invariance




                                 III. Operational Correspondence



 S. Mennicke (TU Braunschweig)        Compositional πa ⇒ Join                 YR-CONCUR 2012   6 / 15
Gorla’s Criteria for Good Encodings                               [Gorla(2010)]




                         V. Success Sensitiveness       I. Compositionality




                                                                  Syntactic Criteria

                                                    .

              IV. Divergence Reflection                             II. Name Invariance




                                  III. Operational Correspondence



 S. Mennicke (TU Braunschweig)          Compositional πa ⇒ Join                 YR-CONCUR 2012   6 / 15
Gorla’s Criteria for Good Encodings                               [Gorla(2010)]




                         V. Success Sensitiveness       I. Compositionality




                                                                  Syntactic Criteria
               Semantic Criteria
                                                    .

              IV. Divergence Reflection                             II. Name Invariance




                                  III. Operational Correspondence



 S. Mennicke (TU Braunschweig)          Compositional πa ⇒ Join                 YR-CONCUR 2012   6 / 15
Fournet and Gonthier’s Encoding Revisited

      First level encoding is compositional and operationally correspondent
      for closed terms




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   7 / 15
Fournet and Gonthier’s Encoding Revisited

      First level encoding is compositional and operationally correspondent
      for closed terms
      First level encoding is not operationally correspondent for open
      terms




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   7 / 15
Fournet and Gonthier’s Encoding Revisited

      First level encoding is compositional and operationally correspondent
      for closed terms
      First level encoding is not operationally correspondent for open
      terms
      First+Second level encoding is not compositional




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   7 / 15
Fournet and Gonthier’s Encoding Revisited

      First level encoding is compositional and operationally correspondent
      for closed terms
      First level encoding is not operationally correspondent for open
      terms
      First+Second level encoding is not compositional

Our Approach




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   7 / 15
Fournet and Gonthier’s Encoding Revisited

      First level encoding is compositional and operationally correspondent
      for closed terms
      First level encoding is not operationally correspondent for open
      terms
      First+Second level encoding is not compositional

Our Approach
      We introduce send/receive requests carrying the channel names




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   7 / 15
Fournet and Gonthier’s Encoding Revisited

      First level encoding is compositional and operationally correspondent
      for closed terms
      First level encoding is not operationally correspondent for open
      terms
      First+Second level encoding is not compositional

Our Approach
      We introduce send/receive requests carrying the channel names
      We keep the main idea of restriction




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   7 / 15
Fournet and Gonthier’s Encoding Revisited

      First level encoding is compositional and operationally correspondent
      for closed terms
      First level encoding is not operationally correspondent for open
      terms
      First+Second level encoding is not compositional

Our Approach
      We introduce send/receive requests carrying the channel names
      We keep the main idea of restriction
      We implement a protocol to handle communication
      [Peters and Nestmann(2011)]




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   7 / 15
Fournet and Gonthier’s Encoding Revisited

      First level encoding is compositional and operationally correspondent
      for closed terms
      First level encoding is not operationally correspondent for open
      terms
      First+Second level encoding is not compositional

Our Approach
      We introduce send/receive requests carrying the channel names
      We keep the main idea of restriction
      We implement a protocol to handle communication
      [Peters and Nestmann(2011)]
      We need matching to decide which requests may cooperate


 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   7 / 15
The Big Picture

                                 π
         (1)            x v      j   =   def lf t, f | f alse      f | f alse in
         (2)                             def lt t, f | true       t | f alse in
         (3)                             def l t, f    lt t, f | lf t, f in sr x, v, l | true
                                 π
         (4)           P |Q      j   =   def rrτ c, k | trans0 m m c, k | trans0 m in
         (5)                             def chain trans0 | srτ c, v, l
         (6)                                def mup c, k | trans m m c, k | trans m in
         (7)                                def m c , k
         (8)                                   [c = c ]k v, l | mup c , k
         (9)                                 in trans0 m | chain trans
        (10)                              in chain trans0 |
        (11)                             def sr c, v, l srup c, v, l | srτ c, v, l in
        (12)                             def srup c, v, l sr c, v, l in
        (13)                             def rr c, k rrup c, k | rrτ c, k in
        (14)                             def rrup c, k rr c, k in
        (15)                               P π | Q π
                                               j         j
                                 π
        (16)         x(v).P      j   =   def k v, l | once
        (17)                                def t       P π in
                                                            j
        (18)                                def f      once in l t, f
        (19)                              in rr x, k | once
                                 π
        (20)          (νx)P      j   =   def x      0 in P π   j



 S. Mennicke (TU Braunschweig)            Compositional πa ⇒ Join              YR-CONCUR 2012   8 / 15
What our Encoding does

                         P = (νx)(y a | x(u).Q) | x b | y(z).R




 S. Mennicke (TU Braunschweig)      Compositional πa ⇒ Join      YR-CONCUR 2012   9 / 15
What our Encoding does

                         P = (νx)(y a | x(u).Q) | x b | y(z).R


                                                |


                          νx                                       |



                           |                                   x          y



                  y              x

 S. Mennicke (TU Braunschweig)       Compositional πa ⇒ Join           YR-CONCUR 2012   9 / 15
What our Encoding does

                         P = (νx)(y a | x(u).Q) | x b | y(z).R


                                                |


                          νx                                       |



                           |                             x     x          y      y




          y       y              x   x


 S. Mennicke (TU Braunschweig)       Compositional πa ⇒ Join           YR-CONCUR 2012   9 / 15
What our Encoding does

                         P = (νx)(y a | x(u).Q) | x b | y(z).R


                                                |


                          νx                                       |



                           |     y                       x     x          y      y




                  y              x   x


 S. Mennicke (TU Braunschweig)       Compositional πa ⇒ Join           YR-CONCUR 2012   9 / 15
What our Encoding does

                         P = (νx)(y a | x(u).Q) | x b | y(z).R


                                                |       y




                          νx                                        |



                           |     y                          x   x          y      y




                  y              x   x


 S. Mennicke (TU Braunschweig)       Compositional πa ⇒ Join            YR-CONCUR 2012   9 / 15
What our Encoding does

                         P = (νx)(y a | x(u).Q) | x b | y(z).R


                                                |       y




                          νx                                        |



                           |     y   x                      x   x          y      y




                  y              x

 S. Mennicke (TU Braunschweig)       Compositional πa ⇒ Join            YR-CONCUR 2012   9 / 15
What our Encoding does

                         P = (νx)(y a | x(u).Q) | x b | y(z).R


                                                |       y       x




                          νx                                            |



                           |     y   x                      x       x          y      y




                  y              x

 S. Mennicke (TU Braunschweig)       Compositional πa ⇒ Join                YR-CONCUR 2012   9 / 15
What our Encoding does

                         P = (νx)(y a | x(u).Q) | x b | y(z).R


                                                |       y




                          νx                                       |      x




                           |     y   x                         x          y      y




                  y              x

 S. Mennicke (TU Braunschweig)       Compositional πa ⇒ Join           YR-CONCUR 2012   9 / 15
What our Encoding does

                         P = (νx)(y a | x(u).Q) | x b | y(z).R


                                                |       y




                          νx                                       |      x     y




                           |     y   x                         x          y



                  y              x

 S. Mennicke (TU Braunschweig)       Compositional πa ⇒ Join           YR-CONCUR 2012   9 / 15
What our Encoding does

                         P = (νx)(y a | x(u).Q) | x b | y(z).R


                                                |       y      y




                          νx                                           |      x     y




                           |     y   x                             x          y



                  y              x

 S. Mennicke (TU Braunschweig)       Compositional πa ⇒ Join               YR-CONCUR 2012   9 / 15
What our Encoding does

                         P = (νx)(y a | x(u).Q) | x b | y(z).R


                                                |       y      y

                                                        x

                          νx                                           |      x     y




                           |     y   x                             x          y



                  y              x

 S. Mennicke (TU Braunschweig)       Compositional πa ⇒ Join               YR-CONCUR 2012   9 / 15
What our Encoding does

                         P = (νx)(y a | x(u).Q) | x b | y(z).R


                                                |       y      y

                                                        x

                          νx                                           |      x     y




                           |     y   x                             x          y



                  y              x

 S. Mennicke (TU Braunschweig)       Compositional πa ⇒ Join               YR-CONCUR 2012   9 / 15
What our Encoding does

                         P = (νx)(y a | x(u).Q) | x b | y(z).R


                                                |       y      y

                                                        x

                          νx                                           |      x     y




                           |     y   x                             x          y



                  y              x

 S. Mennicke (TU Braunschweig)       Compositional πa ⇒ Join               YR-CONCUR 2012   9 / 15
What our Encoding does

                         P = (νx)(y a | x(u).Q) | x b | y(z).R


                                                |       y      y

                                                        x

                          νx                                           |      x     y




                           |     y   x                             x          y



                  y              x

 S. Mennicke (TU Braunschweig)       Compositional πa ⇒ Join               YR-CONCUR 2012   9 / 15
A Receive Requests (x(v).P )




                                           x




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   10 / 15
A Receive Requests (x(v).P )




                                      def k
                                      rr x, k




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   10 / 15
A Receive Requests (x(v).P )



                                 rr x, k

                                                  def k




 S. Mennicke (TU Braunschweig)             Compositional πa ⇒ Join   YR-CONCUR 2012   10 / 15
A Receive Requests (x(v).P )




                                        def k




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   10 / 15
A Receive Requests (x(v).P )



                                             k v, l


                                        def k




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   10 / 15
A Receive Requests (x(v).P )




                                       k v, l




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   10 / 15
A Receive Requests (x(v).P )




                                   if l then P




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   10 / 15
B Send Requests (x v )




                                         x




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   11 / 15
B Send Requests (x v )




                                   def l
                                   sr x, v, l
                                   true




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   11 / 15
B Send Requests (x v )


                                       sr x, v, l


                                     def l
                                     true




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   11 / 15
B Send Requests (x v )




                                     def l
                                     true




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   11 / 15
B Send Requests (x v )



                                           l t, f


                                     def l
                                     true




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   11 / 15
B Send Requests (x v )



                                                t


                                       def l




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   11 / 15
B Send Requests (x v )



                                           l t, f


                                       def l




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   11 / 15
B Send Requests (x v )



                                               f


                                       def l




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   11 / 15
C Restriction (νx)




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   12 / 15
C Restriction (νx)




                                        ¬x




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   12 / 15
D Parallel Composition ( | )
Remember this?
                 π
       P |Q      j    = def rrτ c, k | trans0 m m c, k | trans0 m in
                        def chain trans0 | srτ c, v, l
                           def mup c, k | trans m m c, k | trans m in
                           def m c , k
                              [c = c ]k v, l | mup c , k
                            in trans0 m | chain trans
                         in chain trans0 |
                        def sr c, v, l srup c, v, l | srτ c, v, l in
                        def srup c, v, l sr c, v, l in
                        def rr c, k rrup c, k | rrτ c, k in
                        def rrup c, k rr c, k in
                          P π | Q π
                               j        j



 S. Mennicke (TU Braunschweig)    Compositional πa ⇒ Join   YR-CONCUR 2012   13 / 15
D Parallel Composition ( | )




                                            |




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   13 / 15
D Parallel Composition ( | )




                                                   |


                                 sr x1 , v1 , l1




 S. Mennicke (TU Braunschweig)          Compositional πa ⇒ Join   YR-CONCUR 2012   13 / 15
D Parallel Composition ( | )




                                               |


                                 rr y1 , k1




 S. Mennicke (TU Braunschweig)      Compositional πa ⇒ Join   YR-CONCUR 2012   13 / 15
D Parallel Composition ( | )



                                 sr x1 , v1 , l1 , . . . , sr xn , vn , ln
                                 rr y1 , k1 , . . . , rr yn , kn




 S. Mennicke (TU Braunschweig)             Compositional πa ⇒ Join           YR-CONCUR 2012   13 / 15
D Parallel Composition ( | )


                                 sr/rr

                                 sr x1 , v1 , l1 , . . . , sr xn , vn , ln
                                 rr y1 , k1 , . . . , rr yn , kn




 S. Mennicke (TU Braunschweig)             Compositional πa ⇒ Join           YR-CONCUR 2012   13 / 15
D Parallel Composition ( | )



                                 sr x1 , v1 , l1 , . . . , sr xn , vn , ln
                                 rr y1 , k1 , . . . , rr yn , kn




 S. Mennicke (TU Braunschweig)             Compositional πa ⇒ Join           YR-CONCUR 2012   13 / 15
D Parallel Composition ( | )



                                 sr x1 , v1 , l1 , . . . , sr xn , vn , ln
                                 rr y1 , k1 , . . . , rr yn , kn

                     sr x1 , v1 , l1




 S. Mennicke (TU Braunschweig)             Compositional πa ⇒ Join           YR-CONCUR 2012   13 / 15
D Parallel Composition ( | )



                                 sr x1 , v1 , l1 , . . . , sr xn , vn , ln
                                 rr y1 , k1 , . . . , rr yn , kn

                     sr x1 , v1 , l1


                     sr x2 , v2 , l2




 S. Mennicke (TU Braunschweig)             Compositional πa ⇒ Join           YR-CONCUR 2012   13 / 15
D Parallel Composition ( | )




                                    rr y1 , k1 , . . . , rr yn , kn
                           sr x1 , v1 , l1


                           sr x2 , v2 , l2

                                 ...

                           sr xn , vn , ln




 S. Mennicke (TU Braunschweig)               Compositional πa ⇒ Join   YR-CONCUR 2012   13 / 15
D Parallel Composition ( | )




                                    rr y1 , k1 , . . . , rr yn , kn
                           sr x1 , v1 , l1            rr yi , ki       if x1 = yi then ki v1 , l1

                           sr x2 , v2 , l2

                                 ...

                           sr xn , vn , ln




 S. Mennicke (TU Braunschweig)               Compositional πa ⇒ Join            YR-CONCUR 2012   13 / 15
D Parallel Composition ( | )




                                    rr y1 , k1 , . . . , rr yn , kn
                           sr x1 , v1 , l1


                           sr x2 , v2 , l2            rr yi , ki       if x2 = yi then ki v2 , l2
                                 ...

                           sr xn , vn , ln




 S. Mennicke (TU Braunschweig)               Compositional πa ⇒ Join            YR-CONCUR 2012   13 / 15
D Parallel Composition ( | )




                                       k2 v1 , l1 , k9 v42 , l42
                           sr x1 , v1 , l1


                           sr x2 , v2 , l2

                                 ...

                           sr xn , vn , ln




 S. Mennicke (TU Braunschweig)               Compositional πa ⇒ Join   YR-CONCUR 2012   13 / 15
D Parallel Composition ( | )




                                                   k9 v42 , l42
                                 sr x1 , v1 , l1                         k2 v1 , l1

                                 sr x2 , v2 , l2

                                       ...

                                 sr xn , vn , ln




 S. Mennicke (TU Braunschweig)                 Compositional πa ⇒ Join                YR-CONCUR 2012   13 / 15
Take-Home-Points




  1   There is a good encoding from πa to Join: ours!




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   14 / 15
Take-Home-Points




  1   There is a good encoding from πa to Join: ours!
  2   It is compositional




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   14 / 15
Take-Home-Points




  1   There is a good encoding from πa to Join: ours!
  2   It is compositional
  3   Strong Conjecture: It is operationally correspondent




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   14 / 15
Take-Home-Points




  1   There is a good encoding from πa to Join: ours!
  2   It is compositional
  3   Strong Conjecture: It is operationally correspondent

                                 Thank you!



 S. Mennicke (TU Braunschweig)     Compositional πa ⇒ Join   YR-CONCUR 2012   14 / 15
Bibliography



     Cédric Fournet and Georges Gonthier.
     The reflexive chemical abstract machine and the join-calculus.
     pages 372–385, 1996.
     D. Gorla.
     Towards a Unified Approach to Encodability and Separation Results
     for Process Calculi.
     Information and Computation, 208(9) 1031–1053, 2010.
     K. Peters and U. Nestmann.
     Breaking Symmetries.
     Submitted to Mathematical Structures in Computer Science, 2011.




 S. Mennicke (TU Braunschweig)   Compositional πa ⇒ Join   YR-CONCUR 2012   15 / 15

A Compositional Encoding for the Asynchronous Pi-Calculus into the Join-Calculus

  • 1.
    A Compositional Encodingof the Asynchronous π-Calculus into the Join-Calculus Stephan Mennicke† Tobias Prehn‡ Tsvetelina Yonova-Karbe‡ Institute for Programming and Reactive Systems, TU Braunschweig† Institute for Software Engineering and Theoretical Computer Science, TU Berlin‡ September 3, 2012 YR-CONCUR 2012
  • 2.
    WraP – Writingand Publishing a Scientific Paper Supervision by Uwe Nestmann and Kirstin Peters S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 2 / 15
  • 3.
    Scope of Interest Asynchronous π (πa ) Join-Calculus S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 3 / 15
  • 4.
    Scope of Interest Asynchronous π (πa ) Join-Calculus P |Q Parallelism P |Q xv Send xv x(w).P Receive def x w | o P in . . . | o x(w)∗ .P Recursion def x w P in . . . x(w).P | x v Communication def x w P in x v S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 3 / 15
  • 5.
    Scope of Interest Asynchronous π (πa ) Join-Calculus P |Q Parallelism P |Q xv Send xv x(w).P Receive def x w | o P in . . . | o x(w)∗ .P Recursion def x w P in . . . x(w).P | x v Communication def x w P in x v Restriction S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 3 / 15
  • 6.
    Scope of Interest Asynchronous π (πa ) Join-Calculus P |Q Parallelism P |Q xv Send xv x(w).P Receive def x w | o P in . . . | o x(w)∗ .P Recursion def x w P in . . . x(w).P | x v Communication def x w P in x v (νx)(x(w).P | x v ) Restriction S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 3 / 15
  • 7.
    Scope of Interest Asynchronous π (πa ) Join-Calculus P |Q Parallelism P |Q xv Send xv x(w).P Receive def x w | o P in . . . | o x(w)∗ .P Recursion def x w P in . . . x(w).P | x v Communication def x w P in x v (νx)(x(w).P | x v ) Restriction def x w P in x v S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 3 / 15
  • 8.
    Scope of Interest Asynchronous π (πa ) Join-Calculus P |Q Parallelism P |Q xv Send xv x(w).P Receive def x w | o P in . . . | o x(w)∗ .P Recursion def x w P in . . . x(w).P | x v Communication def x w P in x v (νx)(x(w).P | x v ) Restriction def x w P in x v S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 3 / 15
  • 9.
    Scope of Interest π Asynchronous π (πa ) j Join-Calculus P |Q Parallelism P |Q xv Send xv x(w).P Receive def x w | o P in . . . | o x(w)∗ .P Recursion def x w P in . . . x(w).P | x v Communication def x w P in x v (νx)(x(w).P | x v ) Restriction def x w P in x v S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 3 / 15
  • 10.
    An Encoding isNon-Trivial | no (νx) xv x(w) S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 4 / 15
  • 11.
    An Encoding isNon-Trivial | no (νx) xv x(w) S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 4 / 15
  • 12.
    An Encoding isNon-Trivial | | no (νx) xv xv x(w) def x S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 4 / 15
  • 13.
    An Encoding isNon-Trivial | | no (νx) xv xv x(w) def x S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 4 / 15
  • 14.
    The Encoding ofFournet and Gonthier [Fournet and Gonthier(1996)] First Layer Second Layer S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 5 / 15
  • 15.
    The Encoding ofFournet and Gonthier [Fournet and Gonthier(1996)] First Layer x v → xo v P |Q → P |Q Second Layer S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 5 / 15
  • 16.
    The Encoding ofFournet and Gonthier [Fournet and Gonthier(1996)] First Layer x v → xo v P |Q → P |Q x(w).P → def κ P in xi Second Layer S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 5 / 15
  • 17.
    The Encoding ofFournet and Gonthier [Fournet and Gonthier(1996)] First Layer x v → xo v P |Q → P |Q x(w).P → def κ P in xi (νx)P → def xi | xo κ in P Second Layer S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 5 / 15
  • 18.
    The Encoding ofFournet and Gonthier [Fournet and Gonthier(1996)] First Layer x v → xo v P |Q → P |Q x(w).P → def κ P in xi (νx)P → def xi | xo κ in P Second Layer Restrict all free names S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 5 / 15
  • 19.
    The Encoding ofFournet and Gonthier [Fournet and Gonthier(1996)] First Layer x v → xo v P |Q → P |Q x(w).P → def κ P in xi (νx)P → def xi | xo κ in P Second Layer Restrict all free names Is this good? S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 5 / 15
  • 20.
    Gorla’s Criteria forGood Encodings [Gorla(2010)] . S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 6 / 15
  • 21.
    Gorla’s Criteria forGood Encodings [Gorla(2010)] I. Compositionality . S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 6 / 15
  • 22.
    Gorla’s Criteria forGood Encodings [Gorla(2010)] I. Compositionality . II. Name Invariance S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 6 / 15
  • 23.
    Gorla’s Criteria forGood Encodings [Gorla(2010)] I. Compositionality Syntactic Criteria . II. Name Invariance S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 6 / 15
  • 24.
    Gorla’s Criteria forGood Encodings [Gorla(2010)] I. Compositionality Syntactic Criteria . II. Name Invariance III. Operational Correspondence S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 6 / 15
  • 25.
    Gorla’s Criteria forGood Encodings [Gorla(2010)] I. Compositionality Syntactic Criteria . IV. Divergence Reflection II. Name Invariance III. Operational Correspondence S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 6 / 15
  • 26.
    Gorla’s Criteria forGood Encodings [Gorla(2010)] V. Success Sensitiveness I. Compositionality Syntactic Criteria . IV. Divergence Reflection II. Name Invariance III. Operational Correspondence S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 6 / 15
  • 27.
    Gorla’s Criteria forGood Encodings [Gorla(2010)] V. Success Sensitiveness I. Compositionality Syntactic Criteria Semantic Criteria . IV. Divergence Reflection II. Name Invariance III. Operational Correspondence S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 6 / 15
  • 28.
    Fournet and Gonthier’sEncoding Revisited First level encoding is compositional and operationally correspondent for closed terms S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 7 / 15
  • 29.
    Fournet and Gonthier’sEncoding Revisited First level encoding is compositional and operationally correspondent for closed terms First level encoding is not operationally correspondent for open terms S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 7 / 15
  • 30.
    Fournet and Gonthier’sEncoding Revisited First level encoding is compositional and operationally correspondent for closed terms First level encoding is not operationally correspondent for open terms First+Second level encoding is not compositional S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 7 / 15
  • 31.
    Fournet and Gonthier’sEncoding Revisited First level encoding is compositional and operationally correspondent for closed terms First level encoding is not operationally correspondent for open terms First+Second level encoding is not compositional Our Approach S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 7 / 15
  • 32.
    Fournet and Gonthier’sEncoding Revisited First level encoding is compositional and operationally correspondent for closed terms First level encoding is not operationally correspondent for open terms First+Second level encoding is not compositional Our Approach We introduce send/receive requests carrying the channel names S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 7 / 15
  • 33.
    Fournet and Gonthier’sEncoding Revisited First level encoding is compositional and operationally correspondent for closed terms First level encoding is not operationally correspondent for open terms First+Second level encoding is not compositional Our Approach We introduce send/receive requests carrying the channel names We keep the main idea of restriction S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 7 / 15
  • 34.
    Fournet and Gonthier’sEncoding Revisited First level encoding is compositional and operationally correspondent for closed terms First level encoding is not operationally correspondent for open terms First+Second level encoding is not compositional Our Approach We introduce send/receive requests carrying the channel names We keep the main idea of restriction We implement a protocol to handle communication [Peters and Nestmann(2011)] S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 7 / 15
  • 35.
    Fournet and Gonthier’sEncoding Revisited First level encoding is compositional and operationally correspondent for closed terms First level encoding is not operationally correspondent for open terms First+Second level encoding is not compositional Our Approach We introduce send/receive requests carrying the channel names We keep the main idea of restriction We implement a protocol to handle communication [Peters and Nestmann(2011)] We need matching to decide which requests may cooperate S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 7 / 15
  • 36.
    The Big Picture π (1) x v j = def lf t, f | f alse f | f alse in (2) def lt t, f | true t | f alse in (3) def l t, f lt t, f | lf t, f in sr x, v, l | true π (4) P |Q j = def rrτ c, k | trans0 m m c, k | trans0 m in (5) def chain trans0 | srτ c, v, l (6) def mup c, k | trans m m c, k | trans m in (7) def m c , k (8) [c = c ]k v, l | mup c , k (9) in trans0 m | chain trans (10) in chain trans0 | (11) def sr c, v, l srup c, v, l | srτ c, v, l in (12) def srup c, v, l sr c, v, l in (13) def rr c, k rrup c, k | rrτ c, k in (14) def rrup c, k rr c, k in (15) P π | Q π j j π (16) x(v).P j = def k v, l | once (17) def t P π in j (18) def f once in l t, f (19) in rr x, k | once π (20) (νx)P j = def x 0 in P π j S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 8 / 15
  • 37.
    What our Encodingdoes P = (νx)(y a | x(u).Q) | x b | y(z).R S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 9 / 15
  • 38.
    What our Encodingdoes P = (νx)(y a | x(u).Q) | x b | y(z).R | νx | | x y y x S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 9 / 15
  • 39.
    What our Encodingdoes P = (νx)(y a | x(u).Q) | x b | y(z).R | νx | | x x y y y y x x S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 9 / 15
  • 40.
    What our Encodingdoes P = (νx)(y a | x(u).Q) | x b | y(z).R | νx | | y x x y y y x x S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 9 / 15
  • 41.
    What our Encodingdoes P = (νx)(y a | x(u).Q) | x b | y(z).R | y νx | | y x x y y y x x S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 9 / 15
  • 42.
    What our Encodingdoes P = (νx)(y a | x(u).Q) | x b | y(z).R | y νx | | y x x x y y y x S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 9 / 15
  • 43.
    What our Encodingdoes P = (νx)(y a | x(u).Q) | x b | y(z).R | y x νx | | y x x x y y y x S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 9 / 15
  • 44.
    What our Encodingdoes P = (νx)(y a | x(u).Q) | x b | y(z).R | y νx | x | y x x y y y x S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 9 / 15
  • 45.
    What our Encodingdoes P = (νx)(y a | x(u).Q) | x b | y(z).R | y νx | x y | y x x y y x S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 9 / 15
  • 46.
    What our Encodingdoes P = (νx)(y a | x(u).Q) | x b | y(z).R | y y νx | x y | y x x y y x S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 9 / 15
  • 47.
    What our Encodingdoes P = (νx)(y a | x(u).Q) | x b | y(z).R | y y x νx | x y | y x x y y x S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 9 / 15
  • 48.
    What our Encodingdoes P = (νx)(y a | x(u).Q) | x b | y(z).R | y y x νx | x y | y x x y y x S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 9 / 15
  • 49.
    What our Encodingdoes P = (νx)(y a | x(u).Q) | x b | y(z).R | y y x νx | x y | y x x y y x S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 9 / 15
  • 50.
    What our Encodingdoes P = (νx)(y a | x(u).Q) | x b | y(z).R | y y x νx | x y | y x x y y x S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 9 / 15
  • 51.
    A Receive Requests(x(v).P ) x S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 10 / 15
  • 52.
    A Receive Requests(x(v).P ) def k rr x, k S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 10 / 15
  • 53.
    A Receive Requests(x(v).P ) rr x, k def k S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 10 / 15
  • 54.
    A Receive Requests(x(v).P ) def k S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 10 / 15
  • 55.
    A Receive Requests(x(v).P ) k v, l def k S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 10 / 15
  • 56.
    A Receive Requests(x(v).P ) k v, l S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 10 / 15
  • 57.
    A Receive Requests(x(v).P ) if l then P S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 10 / 15
  • 58.
    B Send Requests(x v ) x S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 11 / 15
  • 59.
    B Send Requests(x v ) def l sr x, v, l true S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 11 / 15
  • 60.
    B Send Requests(x v ) sr x, v, l def l true S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 11 / 15
  • 61.
    B Send Requests(x v ) def l true S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 11 / 15
  • 62.
    B Send Requests(x v ) l t, f def l true S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 11 / 15
  • 63.
    B Send Requests(x v ) t def l S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 11 / 15
  • 64.
    B Send Requests(x v ) l t, f def l S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 11 / 15
  • 65.
    B Send Requests(x v ) f def l S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 11 / 15
  • 66.
    C Restriction (νx) S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 12 / 15
  • 67.
    C Restriction (νx) ¬x S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 12 / 15
  • 68.
    D Parallel Composition( | ) Remember this? π P |Q j = def rrτ c, k | trans0 m m c, k | trans0 m in def chain trans0 | srτ c, v, l def mup c, k | trans m m c, k | trans m in def m c , k [c = c ]k v, l | mup c , k in trans0 m | chain trans in chain trans0 | def sr c, v, l srup c, v, l | srτ c, v, l in def srup c, v, l sr c, v, l in def rr c, k rrup c, k | rrτ c, k in def rrup c, k rr c, k in P π | Q π j j S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 13 / 15
  • 69.
    D Parallel Composition( | ) | S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 13 / 15
  • 70.
    D Parallel Composition( | ) | sr x1 , v1 , l1 S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 13 / 15
  • 71.
    D Parallel Composition( | ) | rr y1 , k1 S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 13 / 15
  • 72.
    D Parallel Composition( | ) sr x1 , v1 , l1 , . . . , sr xn , vn , ln rr y1 , k1 , . . . , rr yn , kn S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 13 / 15
  • 73.
    D Parallel Composition( | ) sr/rr sr x1 , v1 , l1 , . . . , sr xn , vn , ln rr y1 , k1 , . . . , rr yn , kn S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 13 / 15
  • 74.
    D Parallel Composition( | ) sr x1 , v1 , l1 , . . . , sr xn , vn , ln rr y1 , k1 , . . . , rr yn , kn S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 13 / 15
  • 75.
    D Parallel Composition( | ) sr x1 , v1 , l1 , . . . , sr xn , vn , ln rr y1 , k1 , . . . , rr yn , kn sr x1 , v1 , l1 S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 13 / 15
  • 76.
    D Parallel Composition( | ) sr x1 , v1 , l1 , . . . , sr xn , vn , ln rr y1 , k1 , . . . , rr yn , kn sr x1 , v1 , l1 sr x2 , v2 , l2 S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 13 / 15
  • 77.
    D Parallel Composition( | ) rr y1 , k1 , . . . , rr yn , kn sr x1 , v1 , l1 sr x2 , v2 , l2 ... sr xn , vn , ln S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 13 / 15
  • 78.
    D Parallel Composition( | ) rr y1 , k1 , . . . , rr yn , kn sr x1 , v1 , l1 rr yi , ki if x1 = yi then ki v1 , l1 sr x2 , v2 , l2 ... sr xn , vn , ln S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 13 / 15
  • 79.
    D Parallel Composition( | ) rr y1 , k1 , . . . , rr yn , kn sr x1 , v1 , l1 sr x2 , v2 , l2 rr yi , ki if x2 = yi then ki v2 , l2 ... sr xn , vn , ln S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 13 / 15
  • 80.
    D Parallel Composition( | ) k2 v1 , l1 , k9 v42 , l42 sr x1 , v1 , l1 sr x2 , v2 , l2 ... sr xn , vn , ln S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 13 / 15
  • 81.
    D Parallel Composition( | ) k9 v42 , l42 sr x1 , v1 , l1 k2 v1 , l1 sr x2 , v2 , l2 ... sr xn , vn , ln S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 13 / 15
  • 82.
    Take-Home-Points 1 There is a good encoding from πa to Join: ours! S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 14 / 15
  • 83.
    Take-Home-Points 1 There is a good encoding from πa to Join: ours! 2 It is compositional S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 14 / 15
  • 84.
    Take-Home-Points 1 There is a good encoding from πa to Join: ours! 2 It is compositional 3 Strong Conjecture: It is operationally correspondent S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 14 / 15
  • 85.
    Take-Home-Points 1 There is a good encoding from πa to Join: ours! 2 It is compositional 3 Strong Conjecture: It is operationally correspondent Thank you! S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 14 / 15
  • 86.
    Bibliography Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine and the join-calculus. pages 372–385, 1996. D. Gorla. Towards a Unified Approach to Encodability and Separation Results for Process Calculi. Information and Computation, 208(9) 1031–1053, 2010. K. Peters and U. Nestmann. Breaking Symmetries. Submitted to Mathematical Structures in Computer Science, 2011. S. Mennicke (TU Braunschweig) Compositional πa ⇒ Join YR-CONCUR 2012 15 / 15