SlideShare a Scribd company logo
Convergence Analysis of Asymptotic Preserving Schemes
for strongly magnetized plasmas
Hamed Zakerzadeh¶
Institut de Math´ematiques de Toulouse, Universit´e Toulouse III - Paul Sabatier
joint work with: F. Filbet (Toulouse), M. Rodrigues (Rennes)
SMAI 2019
May 16 th 2019
¶
supported by LabEx CIMI Toulouse and Institut Universitaire de France
Introduction Continuous estimates Discrete estimates Numerical example References
Outline
Introduction
Continuous estimates
Discrete estimates
Numerical example
1/19
Introduction Continuous estimates Discrete estimates Numerical example References
Outline
Introduction
Continuous estimates
Discrete estimates
Numerical example
1/19
Introduction Continuous estimates Discrete estimates Numerical example References
Fusion reactor (TOKAMAK):
Тороидальная Камера с Магнитными Катушками
“toroidal chamber with magnetic coils”
requires a quite large magnetic field!
very challenging to control the plasma in the core!
not economical yet!
2/19
Introduction Continuous estimates Discrete estimates Numerical example References
Fusion reactor (TOKAMAK):
Тороидальная Камера с Магнитными Катушками
“toroidal chamber with magnetic coils”
requires a quite large magnetic field!
very challenging to control the plasma in the core!
not economical yet!
Vlasov equation: evolution of charged particles



∂f
∂t
+ divx (vf ) + divv (Ff ) = 0
f (0, ·, ·) = f0
electro-magnetic force field: F =
q
m
(E + v × B)
2/19
Introduction Continuous estimates Discrete estimates Numerical example References
Vlasov systems:
Vlasov-Maxwell system
∂f
∂t
+ divx (vf ) + divv ((E + v × B) f ) = 0, (x, v) ∈ R4
,
where E and B are solutions of Maxwell equations:



∂t E − c2 × B = − J
0
,
∂t B + × E = 0,
· E =
0
, · B = 0
with
(t, x) := q f (t, x, v)dv, J(t, x) := q vf (t, x, v)dv.
3/19
Introduction Continuous estimates Discrete estimates Numerical example References
Long-time Vlasov–Poisson system
with an external uniform magnetic field B(t, x) = 1
ε
(0, 0, 1)T :
ε
∂f ε
∂t
+ divx (vf ε
) + divv (E −
1
ε
v⊥
)f ε
= 0 ,
where E = − x φ such that −∆x φ = ε0
.
Singular limit ε → 0:
limit system for the weak limit f ε f :
∂f
∂t
− E⊥
· x f −
1
2
∆φ v⊥
· v f = 0 , (x, v) ∈ R4
,
limit of charge density:
∂
∂t
− x · E⊥
= 0 , x ∈ R2
.
4/19
Introduction Continuous estimates Discrete estimates Numerical example References
Particle-In-Cell (PIC) methods:
(i) Solve the characteristic system for N macro-particles:



εxε(t) = vε(t), xε(t0) = x0
ε ,
εvε(t) = E(t, xε(t)) −
1
ε
v⊥
ε (t), vε(t0) = v0
ε .
(ii) approximate f ε:
fN,α(t, x, v) :=
1≤k≤N
ωk ϕα(x − xk (t)) ϕα(x − vk (t)).
Proposition [Cohen and Perthame, 2000]
lim
α→0
lim
N→∞
f (t) − fN,α(t) Lp → 0, 1 ≤ p ≤ ∞,
with N number of particles and ϕα as a smooth approximation of the Dirac mass s.t.:
numerical noise
more efficient compared to direct methods (in phase space)
5/19
Introduction Continuous estimates Discrete estimates Numerical example References
Stiffness!
very stiff system of ODEs where ε 1:



εxε(t) = vε
εvε(t) = E(t, xε) −
1
ε
v⊥
ε
ε→0
−−−→ lim
ε→0
x(t) =?
6/19
Introduction Continuous estimates Discrete estimates Numerical example References
Stiffness!
very stiff system of ODEs where ε 1:



εxε(t) = vε
εvε(t) = E(t, xε) −
1
ε
v⊥
ε
ε→0
−−−→ lim
ε→0
x(t) =?
Guiding center approximation
E-cross-B drift: slow drift normal to E, in a plane perpendicular to B:
x (t) = −E⊥
(t, x(t))
(Wikipedia)
6/19
Introduction Continuous estimates Discrete estimates Numerical example References
Stiffness!
very stiff system of ODEs where ε 1:



εxε(t) = vε
εvε(t) = E(t, xε) −
1
ε
v⊥
ε
ε→0
−−−→ lim
ε→0
x(t) =?
Guiding center approximation
E-cross-B drift: slow drift normal to E, in a plane perpendicular to B:
x (t) = −E⊥
(t, x(t))
(Wikipedia)
[Filbet and Rodrigues, 2017]
highly oscillatory ∼ ε−2 → capture macroscopic behaviour with ∆t = O(1)
6/19
Introduction Continuous estimates Discrete estimates Numerical example References
Asymptotic Preserving (AP) schemes
Introduced by [Jin, 1999]
- [Il’in, 1969]: BVP
- [Larsen et al., 1987] : Neutron transport
asymptotic efficiency: uniform efficiency wrt ε
asymptotic consistency: consistent with the asymptotic system as ε → 0
asymptotic stability: uniformly stable in ε
7/19
Introduction Continuous estimates Discrete estimates Numerical example References
Uniform convergence
Estimate the error Uε
∆ − Uε for an r-th order scheme:
E2 = O(∆r
/ε)
8/19
Introduction Continuous estimates Discrete estimates Numerical example References
Uniform convergence
[Jin, 2010]
Estimate the error Uε
∆ − Uε for an r-th order scheme:
E1 = O(∆r
+ ε)
E2 = O(∆r
/ε)
Uniform estimate:
Uε
∆ − Uε
≤ min(E1, E2).
8/19
Introduction Continuous estimates Discrete estimates Numerical example References
Uniform convergence
[Jin, 2010]
Estimate the error Uε
∆ − Uε for an r-th order scheme:
E1 = O(∆r
+ ε)
E2 = O(∆r
/ε)
Uniform estimate:
Uε
∆ − Uε
≤ min(E1, E2).
Can we improve E1 and E2?
E1 = O(∆r
+ εq
), q > 1,
E2 = O(
∆r
εp
), p < 1.
Uε
∆ − Uε ≈ (∆r )
q
p+q
8/19
Introduction Continuous estimates Discrete estimates Numerical example References
Outline
Introduction
Continuous estimates
Discrete estimates
Numerical example
8/19
Introduction Continuous estimates Discrete estimates Numerical example References
Oscillatory limit of the continuous model
yε(t) := xε(t) − ε v⊥
ε (t) slower than xε: yε(t) = −E⊥
(t, xε(t))
(Xε(t, s, xs
ε, vs
ε), Vε(t, s, xs
ε, vs
ε), Yε(t, s, xs
ε, vs
ε)) := (xε(t), vε(t), yε(t))
K0 := E L∞ , Kt := ∂t E L∞ , Kx := dx E L∞ , Kxx := d2
x E L∞ .
9/19
Introduction Continuous estimates Discrete estimates Numerical example References
Oscillatory limit of the continuous model
yε(t) := xε(t) − ε v⊥
ε (t) slower than xε: yε(t) = −E⊥
(t, xε(t))
(Xε(t, s, xs
ε, vs
ε), Vε(t, s, xs
ε, vs
ε), Yε(t, s, xs
ε, vs
ε)) := (xε(t), vε(t), yε(t))
K0 := E L∞ , Kt := ∂t E L∞ , Kx := dx E L∞ , Kxx := d2
x E L∞ .
Theorem [Filbet et al., 2019]
(i) Assume that E ∈ W 1,∞. Then, for any ε > 0:
Xε(t, 0, x0
ε , v0
ε ) − X(t, 0, x0
ε )
E
ε eKx t
(1 + t2
) ( v0
ε + ε) .
(ii) Assume that E ∈ W 2,∞. Then, for any ε > 0:
Yε(t, 0, x0
ε , v0
ε ) − X(t, 0, x0
ε − ε(v0
ε )⊥
)
E
ε2
(1 + t4
) e2 Kx t
1 + ε2
+ v0
ε
2
.
9/19
Introduction Continuous estimates Discrete estimates Numerical example References
Proof
1. zε(t) := vε + ε E⊥
such that zε(t) = −
1
ε2
z⊥
ε (t) + ε
d
dt
E⊥
(t, xε(t))
10/19
Introduction Continuous estimates Discrete estimates Numerical example References
Proof
1. zε(t) := vε + ε E⊥
such that zε(t) = −
1
ε2
z⊥
ε (t) + ε
d
dt
E⊥
(t, xε(t))
2. zε(t) ≤ eKx t v0
ε + ε K0 + ε t eKx t (Kt + Kx K0)
10/19
Introduction Continuous estimates Discrete estimates Numerical example References
Proof
1. zε(t) := vε + ε E⊥
such that zε(t) = −
1
ε2
z⊥
ε (t) + ε
d
dt
E⊥
(t, xε(t))
2. zε(t) ≤ eKx t v0
ε + ε K0 + ε t eKx t (Kt + Kx K0)
3. vε(t) ≤ zε(t) + K0 ε
10/19
Introduction Continuous estimates Discrete estimates Numerical example References
Proof
1. zε(t) := vε + ε E⊥
such that zε(t) = −
1
ε2
z⊥
ε (t) + ε
d
dt
E⊥
(t, xε(t))
2. zε(t) ≤ eKx t v0
ε + ε K0 + ε t eKx t (Kt + Kx K0)
3. vε(t) ≤ zε(t) + K0 ε
4. Taylor expansion:
yε(t) = −E⊥
(t, yε(t) + εv⊥
ε (t))
= −E⊥
(t, yε) − ε dx E⊥
(t, yε) v⊥
ε + ε2
Θ0(t, yε, vε) ,
with the remainder Θ0 such that Θ0(t, yε, vε) ≤ 1
2
Kxx vε
2 .
10/19
Introduction Continuous estimates Discrete estimates Numerical example References
Proof
1. zε(t) := vε + ε E⊥
such that zε(t) = −
1
ε2
z⊥
ε (t) + ε
d
dt
E⊥
(t, xε(t))
2. zε(t) ≤ eKx t v0
ε + ε K0 + ε t eKx t (Kt + Kx K0)
3. vε(t) ≤ zε(t) + K0 ε
4. Taylor expansion:
yε(t) = −E⊥
(t, yε(t) + εv⊥
ε (t))
= −E⊥
(t, yε) − ε dx E⊥
(t, yε) v⊥
ε + ε2
Θ0(t, yε, vε) ,
with the remainder Θ0 such that Θ0(t, yε, vε) ≤ 1
2
Kxx vε
2 .
5. employ εvε(t) = E(t, xε) −
1
ε
v⊥
ε
yε − ε3
dx E⊥
(t, yε)vε = − E⊥
(t, yε) − ε2
dx E⊥
(t, yε)E(t, xε) + Θ0(t, yε, vε)
− ε3
∂t dx E⊥
(t, yε) − d2
x E⊥
(t, yε)E⊥
(t, xε) vε ,
10/19
Introduction Continuous estimates Discrete estimates Numerical example References
Proof
1. zε(t) := vε + ε E⊥
such that zε(t) = −
1
ε2
z⊥
ε (t) + ε
d
dt
E⊥
(t, xε(t))
2. zε(t) ≤ eKx t v0
ε + ε K0 + ε t eKx t (Kt + Kx K0)
3. vε(t) ≤ zε(t) + K0 ε
4. Taylor expansion:
yε(t) = −E⊥
(t, yε(t) + εv⊥
ε (t))
= −E⊥
(t, yε) − ε dx E⊥
(t, yε) v⊥
ε + ε2
Θ0(t, yε, vε) ,
with the remainder Θ0 such that Θ0(t, yε, vε) ≤ 1
2
Kxx vε
2 .
5. employ εvε(t) = E(t, xε) −
1
ε
v⊥
ε
yε − ε3
dx E⊥
(t, yε)vε = − E⊥
(t, yε) − ε2
dx E⊥
(t, yε)E(t, xε) + Θ0(t, yε, vε)
− ε3
∂t dx E⊥
(t, yε) − d2
x E⊥
(t, yε)E⊥
(t, xε) vε ,
6. find the difference with x (t) = −E⊥(t, x(t)) and integrate.
10/19
Introduction Continuous estimates Discrete estimates Numerical example References
Outline
Introduction
Continuous estimates
Discrete estimates
Numerical example
10/19
Introduction Continuous estimates Discrete estimates Numerical example References
First-order IMEX scheme



ε
xn+1
ε − xn
ε
∆t
= vn+1
ε
ε
vn+1
ε − vn
ε
∆t
= E(tn, xn
ε ) −
1
ε
(vn+1
ε )⊥
ε→0
−−−→
xn+1 − xn
∆t
= −E⊥
(tn
, xn
)
11/19
Introduction Continuous estimates Discrete estimates Numerical example References
First-order IMEX scheme



ε
xn+1
ε − xn
ε
∆t
= vn+1
ε
ε
vn+1
ε − vn
ε
∆t
= E(tn, xn
ε ) −
1
ε
(vn+1
ε )⊥
ε→0
−−−→
xn+1 − xn
∆t
= −E⊥
(tn
, xn
)
Theorem [Filbet et al., 2019]
If E ∈ W 1,∞, then, the first-order scheme possesses a unique solution such that
xn
ε − xε(tn)
E
(1 + t2
n ) e2Kx tn (1 + v0
ε + ε) min
∆t
ε3
(1 + ε2
), ∆t + ε .
If E ∈ W 2,∞:
yn
ε − yε(tn)
E
(1 + t4
n ) e2Kx tn (1 + v0
ε
2
+ ε2
) min
∆t
ε3
(1 + ε) , ∆t + ε2
,
if, for the first step, we have either
∆t = O(ε)
fully-implicit method
11/19
Introduction Continuous estimates Discrete estimates Numerical example References
Corollary
xn
ε − xε(tn)
(t,E, v0
ε )
(1 + ε)



∆t
ε3 (1 + ε2), if ∆t ≤ ε4 ,
ε, if ε4 ≤ ∆t ≤ ε ,
∆t, if ε ≤ ∆t ,
yn
ε − yε(tn)
(t,E, v0
ε )
(1 + ε2
)



∆t
ε3 (1 + ε), if ∆t ≤ ε5 ,
ε2, if ε5 ≤ ∆t ≤ ε2 ,
∆t, if ε2 ≤ ∆t .
12/19
Introduction Continuous estimates Discrete estimates Numerical example References
Corollary
xn
ε − xε(tn)
(t,E, v0
ε )
(1 + ε)



∆t
ε3 (1 + ε2), if ∆t ≤ ε4 ,
ε, if ε4 ≤ ∆t ≤ ε ,
∆t, if ε ≤ ∆t ,
yn
ε − yε(tn)
(t,E, v0
ε )
(1 + ε2
)



∆t
ε3 (1 + ε), if ∆t ≤ ε5 ,
ε2, if ε5 ≤ ∆t ≤ ε2 ,
∆t, if ε2 ≤ ∆t .
Worst-case scenario
xn
ε − xε(tn)
(t,E, v0
ε )
(∆t)1/4
, yn
ε − yε(tn)
(t,E, v0
ε )
(∆t)2/5
,
12/19
Introduction Continuous estimates Discrete estimates Numerical example References
Proof
Similar to continuous case
Taylor expansion:
yn+1
ε − yn
ε
∆t
= − E⊥
(tn, yn
ε ) − ε dx E⊥
(tn, yn
ε )(vn
ε )⊥
+ ε2
Θ0(tn, yn
ε , vn
ε ) , n ≥ 0 ,
13/19
Introduction Continuous estimates Discrete estimates Numerical example References
Proof
Similar to continuous case
Taylor expansion:
yn+1
ε − yn
ε
∆t
= − E⊥
(tn, yn
ε ) − ε dx E⊥
(tn, yn
ε )(vn
ε )⊥
+ ε2
Θ0(tn, yn
ε , vn
ε ) , n ≥ 0 ,
employ the velocity update to get
dx E(tn, yn
ε )(vn
ε )⊥
= −ε2
dx E(tn, yn
ε )
vn
ε − vn−1
ε
∆t
−
1
ε
E(tn−1, xn−1
ε )
13/19
Introduction Continuous estimates Discrete estimates Numerical example References
Proof
Similar to continuous case
Taylor expansion:
yn+1
ε − yn
ε
∆t
= − E⊥
(tn, yn
ε ) − ε dx E⊥
(tn, yn
ε )(vn
ε )⊥
+ ε2
Θ0(tn, yn
ε , vn
ε ) , n ≥ 0 ,
employ the velocity update to get
dx E(tn, yn
ε )(vn
ε )⊥
= −ε2
dx E(tn, yn
ε )
vn
ε − vn−1
ε
∆t
−
1
ε
E(tn−1, xn−1
ε )
classical analysis:
Lemma (consistency)
τn
y
E
∆t
ε
eKx tn+1 v0
ε + ε (1 + tn+1)
τn
v
E
∆t
ε4
eKx tn+1 (1 + ε2
) v0
ε + ε (1 + tn+1)
13/19
Introduction Continuous estimates Discrete estimates Numerical example References
Proof
Similar to continuous case
Taylor expansion:
yn+1
ε − yn
ε
∆t
= − E⊥
(tn, yn
ε ) − ε dx E⊥
(tn, yn
ε )(vn
ε )⊥
+ ε2
Θ0(tn, yn
ε , vn
ε ) , n ≥ 0 ,
employ the velocity update to get
dx E(tn, yn
ε )(vn
ε )⊥
= −ε2
dx E(tn, yn
ε )
vn
ε − vn−1
ε
∆t
−
1
ε
E(tn−1, xn−1
ε )
classical analysis:
Lemma (consistency)
τn
y
E
∆t
ε
eKx tn+1 v0
ε + ε (1 + tn+1)
τn
v
E
∆t
ε4
eKx tn+1 (1 + ε2
) v0
ε + ε (1 + tn+1)
yε(tn) − yn
ε + ε vε(tn) − vn
ε ≤
n−1
k=0
e2 Kx (tn−tk+1)
τk
y + ε τk
v ) ∆t
13/19
Introduction Continuous estimates Discrete estimates Numerical example References
Modified first-order IMEX scheme



yn+1
ε − yn
ε
∆t
= −E⊥(tn, yn
ε + ε(vn+1
ε )⊥)
ε
vn+1
ε − vn
ε
∆t
= E(tn, yn
ε + ε(vn
ε )⊥) −
1
ε
(vn+1
ε )⊥
14/19
Introduction Continuous estimates Discrete estimates Numerical example References
Modified first-order IMEX scheme



yn+1
ε − yn
ε
∆t
= −E⊥(tn, yn
ε + ε(vn+1
ε )⊥)
ε
vn+1
ε − vn
ε
∆t
= E(tn, yn
ε + ε(vn
ε )⊥) −
1
ε
(vn+1
ε )⊥
Theorem [Filbet et al., 2019]
If E ∈ W 1,∞, then, the first-order scheme possesses a unique solution such that
xn
ε − xε(tn)
E
(1 + t3
n ) e(2+Kx ∆t)Kx tn (1 + v0
ε + ε) min
∆t
ε3
(1 + ε2
), ∆t + ε
If E ∈ W 2,∞:
yn
ε − yε(tn)
E
(1 + t4
n ) e(2+Kx ∆t)Kx tn (1 + v0
ε
2
+ ε2
) min
∆t
ε3
(1 + ε) , ∆t + ε2
.
14/19
Introduction Continuous estimates Discrete estimates Numerical example References
Outline
Introduction
Continuous estimates
Discrete estimates
Numerical example
14/19
Introduction Continuous estimates Discrete estimates Numerical example References
Numerical example
electric potential: φ(x) = 1
2
x 2 + 1
10π
cos2(2πx2)
uniform magnetic field: B(t, x) = 1
ε
(0, 0, 1)T
“ill-prepared” initial condition
x0
ε = (1, 1)
v0
ε = (3, 3)
15/19
Introduction Continuous estimates Discrete estimates Numerical example References
Numerical example
electric potential: φ(x) = 1
2
x 2 + 1
10π
cos2(2πx2)
uniform magnetic field: B(t, x) = 1
ε
(0, 0, 1)T
“ill-prepared” initial condition
x0
ε = (1, 1)
v0
ε = (3, 3)
Measure the error:



Ey (∆t, ε) :=
NT
n=1
∆t yn
ε − yε(tn)
Ey, gc(∆t, ε) :=
NT
n=1
∆t yn
ε − X(tn, 0, x0
− ε(v0
ε )⊥
)
15/19
Introduction Continuous estimates Discrete estimates Numerical example References
Modified first-order method
10-4
10-3
10-2
10-1
100
101
10-5 10-4 10-3 10-2 10-1 100
slope of 2
εy
ε in log scale
Δt = 0.0001
Δt = 0.0004
Δt = 0.0016
Δt = 0.0064
Δt = 0.0256
Δt = 0.1024
10-4
10-3
10-2
10-1
100
101
10-5 10-4 10-3 10-2 10-1 100
slope of 2
εy,gc
ε in log scale
Δt = 0.0001
Δt = 0.0004
Δt = 0.0016
Δt = 0.0064
Δt = 0.0256
Δt = 0.1024
16/19
Introduction Continuous estimates Discrete estimates Numerical example References
Second-order method
RK (for the explicit part) and an L-stable second-order SDIRK method (for the
implicit part) [Filbet and Rodrigues, 2016]
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
10-5 10-4 10-3 10-2 10-1 100
slope of 2
εy
ε in log scale
Δt = 0.0001
Δt = 0.0004
Δt = 0.0016
Δt = 0.0064
Δt = 0.0256
Δt = 0.1024
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
10-5 10-4 10-3 10-2 10-1
slope of 2
εy,gc
ε in log scale
Δt = 0.0001
Δt = 0.0004
Δt = 0.0016
Δt = 0.0064
Δt = 0.0256
Δt = 0.1024
17/19
Introduction Continuous estimates Discrete estimates Numerical example References
Conclusion
We have analyzed IMEX-PIC scheme for Vlasov–Poisson equations (with a given E):
ε-uniform stability
uniform convergence estimates (continuous, discrete)
Perspectives
second-order schemes → O(ε3)-estimates
inhomogeneous magnetic field [Filbet and Rodrigues, 2017]
velocity converges weakly to zero
kinetic energy converges strongly to non-zero!
3d [Degond and Filbet, 2016; Filbet et al., 2017]
Thanks For Your Attention!
18/19
Introduction Continuous estimates Discrete estimates Numerical example References
References I
Albert Cohen and Benoit Perthame. Optimal approximations of transport equations by particle and
pseudoparticle methods. SIAM Journal on Mathematical Analysis, 32(3):616–636, 2000.
Pierre Degond and Francis Filbet. On the asymptotic limit of the three dimensional Vlasov–Poisson
system for large magnetic field: formal derivation. arXiv preprint arXiv:1603.03666, 2016.
Francis Filbet and Luis M. Rodrigues. Asymptotically stable particle-in-cell methods for the
Vlasov–Poisson system with a strong external magnetic field. SIAM Journal on Numerical Analysis,
54(2):1120–1146, 2016.
Francis Filbet and Luis Miguel Rodrigues. Asymptotically preserving particle-in-cell methods for
inhomogeneous strongly magnetized plasmas. SIAM Journal on Numerical Analysis, 55(5):
2416–2443, 2017.
Francis Filbet, Tao Xiong, and Eric Sonnendr¨ucker. On the Vlasov–Maxwell system with a strong
external magnetic field. 2017.
Francis Filbet, L. Miguel Rodrigues, and Hamed Zakerzadeh. Convergence analysis of asymptotic
preserving schemes for strongly magnetized plasmas. In preparation, 2019.
Arlen M. Il’in. Differencing scheme for a differential equation with a small parameter affecting the
highest derivative. Mathematical Notes of the Academy of Sciences of the USSR, 6(2):596–602, 1969.
Shi Jin. Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM
Journal on Scientific Computing, 21(2):441–454, 1999.
Shi Jin. Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review.
Lecture Notes for Summer School on “Methods and Models of Kinetic Theory” (M&MKT), Porto
Ercole (Grosseto, Italy), pages 177–216, 2010.
Edward W. Larsen, J. E. Morel, and Warren F. Miller. Asymptotic solutions of numerical transport
problems in optically thick, diffusive regimes. Journal of Computational Physics, 69(2):283–324, 1987.
19/19

More Related Content

What's hot

Multiple estimators for Monte Carlo approximations
Multiple estimators for Monte Carlo approximationsMultiple estimators for Monte Carlo approximations
Multiple estimators for Monte Carlo approximations
Christian Robert
 
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Francesco Tudisco
 
ABC-Gibbs
ABC-GibbsABC-Gibbs
ABC-Gibbs
Christian Robert
 
Harmonic Analysis and Deep Learning
Harmonic Analysis and Deep LearningHarmonic Analysis and Deep Learning
Harmonic Analysis and Deep Learning
Sungbin Lim
 
Laplace's Demon: seminar #1
Laplace's Demon: seminar #1Laplace's Demon: seminar #1
Laplace's Demon: seminar #1
Christian Robert
 
Levitan Centenary Conference Talk, June 27 2014
Levitan Centenary Conference Talk, June 27 2014Levitan Centenary Conference Talk, June 27 2014
Levitan Centenary Conference Talk, June 27 2014
Nikita V. Artamonov
 
Small updates of matrix functions used for network centrality
Small updates of matrix functions used for network centralitySmall updates of matrix functions used for network centrality
Small updates of matrix functions used for network centrality
Francesco Tudisco
 
Matrix calculus
Matrix calculusMatrix calculus
Matrix calculus
Sungbin Lim
 
Inference in generative models using the Wasserstein distance [[INI]
Inference in generative models using the Wasserstein distance [[INI]Inference in generative models using the Wasserstein distance [[INI]
Inference in generative models using the Wasserstein distance [[INI]
Christian Robert
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
Charles Deledalle
 
computational stochastic phase-field
computational stochastic phase-fieldcomputational stochastic phase-field
computational stochastic phase-field
cerniagigante
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
Convergence of ABC methods
Convergence of ABC methodsConvergence of ABC methods
Convergence of ABC methods
Christian Robert
 
Lundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentierLundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentier
Arthur Charpentier
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...
Pierre Jacob
 
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithmsRao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Christian Robert
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
ABC convergence under well- and mis-specified models
ABC convergence under well- and mis-specified modelsABC convergence under well- and mis-specified models
ABC convergence under well- and mis-specified models
Christian Robert
 
Sampling strategies for Sequential Monte Carlo (SMC) methods
Sampling strategies for Sequential Monte Carlo (SMC) methodsSampling strategies for Sequential Monte Carlo (SMC) methods
Sampling strategies for Sequential Monte Carlo (SMC) methods
Stephane Senecal
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 

What's hot (20)

Multiple estimators for Monte Carlo approximations
Multiple estimators for Monte Carlo approximationsMultiple estimators for Monte Carlo approximations
Multiple estimators for Monte Carlo approximations
 
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
 
ABC-Gibbs
ABC-GibbsABC-Gibbs
ABC-Gibbs
 
Harmonic Analysis and Deep Learning
Harmonic Analysis and Deep LearningHarmonic Analysis and Deep Learning
Harmonic Analysis and Deep Learning
 
Laplace's Demon: seminar #1
Laplace's Demon: seminar #1Laplace's Demon: seminar #1
Laplace's Demon: seminar #1
 
Levitan Centenary Conference Talk, June 27 2014
Levitan Centenary Conference Talk, June 27 2014Levitan Centenary Conference Talk, June 27 2014
Levitan Centenary Conference Talk, June 27 2014
 
Small updates of matrix functions used for network centrality
Small updates of matrix functions used for network centralitySmall updates of matrix functions used for network centrality
Small updates of matrix functions used for network centrality
 
Matrix calculus
Matrix calculusMatrix calculus
Matrix calculus
 
Inference in generative models using the Wasserstein distance [[INI]
Inference in generative models using the Wasserstein distance [[INI]Inference in generative models using the Wasserstein distance [[INI]
Inference in generative models using the Wasserstein distance [[INI]
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
 
computational stochastic phase-field
computational stochastic phase-fieldcomputational stochastic phase-field
computational stochastic phase-field
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Convergence of ABC methods
Convergence of ABC methodsConvergence of ABC methods
Convergence of ABC methods
 
Lundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentierLundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentier
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...
 
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithmsRao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
ABC convergence under well- and mis-specified models
ABC convergence under well- and mis-specified modelsABC convergence under well- and mis-specified models
ABC convergence under well- and mis-specified models
 
Sampling strategies for Sequential Monte Carlo (SMC) methods
Sampling strategies for Sequential Monte Carlo (SMC) methodsSampling strategies for Sequential Monte Carlo (SMC) methods
Sampling strategies for Sequential Monte Carlo (SMC) methods
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 

Similar to Congrès SMAI 2019

On estimating the integrated co volatility using
On estimating the integrated co volatility usingOn estimating the integrated co volatility using
On estimating the integrated co volatility using
kkislas
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT
Claudio Attaccalite
 
Iterative procedure for uniform continuous mapping.
Iterative procedure for uniform continuous mapping.Iterative procedure for uniform continuous mapping.
Iterative procedure for uniform continuous mapping.
Alexander Decker
 
Lecture5 Signal and Systems
Lecture5 Signal and SystemsLecture5 Signal and Systems
Lecture5 Signal and Systems
babak danyal
 
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESNONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
Tahia ZERIZER
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
VjekoslavKovac1
 
160511 hasegawa lab_seminar
160511 hasegawa lab_seminar160511 hasegawa lab_seminar
160511 hasegawa lab_seminar
Tomohiro Koana
 
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
Chiheb Ben Hammouda
 
NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...
NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...
NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...
Kai-Wen Zhao
 
Complete l fuzzy metric spaces and common fixed point theorems
Complete l fuzzy metric spaces and  common fixed point theoremsComplete l fuzzy metric spaces and  common fixed point theorems
Complete l fuzzy metric spaces and common fixed point theorems
Alexander Decker
 
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systemsAdaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
International Journal of Power Electronics and Drive Systems
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...
Pierre Jacob
 
The existence of common fixed point theorems of generalized contractive mappi...
The existence of common fixed point theorems of generalized contractive mappi...The existence of common fixed point theorems of generalized contractive mappi...
The existence of common fixed point theorems of generalized contractive mappi...
Alexander Decker
 
Linear response theory
Linear response theoryLinear response theory
Linear response theory
Claudio Attaccalite
 
Can we estimate a constant?
Can we estimate a constant?Can we estimate a constant?
Can we estimate a constant?
Christian Robert
 
-contraction and some fixed point results via modified !-distance mappings in t...
-contraction and some fixed point results via modified !-distance mappings in t...-contraction and some fixed point results via modified !-distance mappings in t...
-contraction and some fixed point results via modified !-distance mappings in t...
IJECEIAES
 
Eece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformEece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transform
Sandilya Sridhara
 
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
SYRTO Project
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Chiheb Ben Hammouda
 
lecture3_2.pdf
lecture3_2.pdflecture3_2.pdf
lecture3_2.pdf
PatrickMumba7
 

Similar to Congrès SMAI 2019 (20)

On estimating the integrated co volatility using
On estimating the integrated co volatility usingOn estimating the integrated co volatility using
On estimating the integrated co volatility using
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT
 
Iterative procedure for uniform continuous mapping.
Iterative procedure for uniform continuous mapping.Iterative procedure for uniform continuous mapping.
Iterative procedure for uniform continuous mapping.
 
Lecture5 Signal and Systems
Lecture5 Signal and SystemsLecture5 Signal and Systems
Lecture5 Signal and Systems
 
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESNONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
160511 hasegawa lab_seminar
160511 hasegawa lab_seminar160511 hasegawa lab_seminar
160511 hasegawa lab_seminar
 
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
 
NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...
NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...
NIPS paper review 2014: A Differential Equation for Modeling Nesterov’s Accel...
 
Complete l fuzzy metric spaces and common fixed point theorems
Complete l fuzzy metric spaces and  common fixed point theoremsComplete l fuzzy metric spaces and  common fixed point theorems
Complete l fuzzy metric spaces and common fixed point theorems
 
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systemsAdaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...
 
The existence of common fixed point theorems of generalized contractive mappi...
The existence of common fixed point theorems of generalized contractive mappi...The existence of common fixed point theorems of generalized contractive mappi...
The existence of common fixed point theorems of generalized contractive mappi...
 
Linear response theory
Linear response theoryLinear response theory
Linear response theory
 
Can we estimate a constant?
Can we estimate a constant?Can we estimate a constant?
Can we estimate a constant?
 
-contraction and some fixed point results via modified !-distance mappings in t...
-contraction and some fixed point results via modified !-distance mappings in t...-contraction and some fixed point results via modified !-distance mappings in t...
-contraction and some fixed point results via modified !-distance mappings in t...
 
Eece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformEece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transform
 
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
 
lecture3_2.pdf
lecture3_2.pdflecture3_2.pdf
lecture3_2.pdf
 

More from Hamed Zakerzadeh

Can you count on your computer?
Can you count on your computer?Can you count on your computer?
Can you count on your computer?
Hamed Zakerzadeh
 
Asymptotic Preserving Schemes
Asymptotic Preserving SchemesAsymptotic Preserving Schemes
Asymptotic Preserving Schemes
Hamed Zakerzadeh
 
Is “Principal Component Analysis” different from SVD?
Is “Principal Component Analysis” different from SVD?Is “Principal Component Analysis” different from SVD?
Is “Principal Component Analysis” different from SVD?
Hamed Zakerzadeh
 
Normal equations for linear regression?
Normal equations for linear regression?Normal equations for linear regression?
Normal equations for linear regression?
Hamed Zakerzadeh
 
Can you count on your computer for the Gaussian elimination?
Can you count on your computer for the Gaussian elimination?Can you count on your computer for the Gaussian elimination?
Can you count on your computer for the Gaussian elimination?
Hamed Zakerzadeh
 
Higham
HighamHigham
ENTROPY STABLE ENO SCHEMES
ENTROPY STABLE ENO SCHEMESENTROPY STABLE ENO SCHEMES
ENTROPY STABLE ENO SCHEMES
Hamed Zakerzadeh
 

More from Hamed Zakerzadeh (7)

Can you count on your computer?
Can you count on your computer?Can you count on your computer?
Can you count on your computer?
 
Asymptotic Preserving Schemes
Asymptotic Preserving SchemesAsymptotic Preserving Schemes
Asymptotic Preserving Schemes
 
Is “Principal Component Analysis” different from SVD?
Is “Principal Component Analysis” different from SVD?Is “Principal Component Analysis” different from SVD?
Is “Principal Component Analysis” different from SVD?
 
Normal equations for linear regression?
Normal equations for linear regression?Normal equations for linear regression?
Normal equations for linear regression?
 
Can you count on your computer for the Gaussian elimination?
Can you count on your computer for the Gaussian elimination?Can you count on your computer for the Gaussian elimination?
Can you count on your computer for the Gaussian elimination?
 
Higham
HighamHigham
Higham
 
ENTROPY STABLE ENO SCHEMES
ENTROPY STABLE ENO SCHEMESENTROPY STABLE ENO SCHEMES
ENTROPY STABLE ENO SCHEMES
 

Recently uploaded

Temple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation resultsTemple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation results
Krassimira Luka
 
SWOT analysis in the project Keeping the Memory @live.pptx
SWOT analysis in the project Keeping the Memory @live.pptxSWOT analysis in the project Keeping the Memory @live.pptx
SWOT analysis in the project Keeping the Memory @live.pptx
zuzanka
 
Oliver Asks for More by Charles Dickens (9)
Oliver Asks for More by Charles Dickens (9)Oliver Asks for More by Charles Dickens (9)
Oliver Asks for More by Charles Dickens (9)
nitinpv4ai
 
Pharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brubPharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brub
danielkiash986
 
CIS 4200-02 Group 1 Final Project Report (1).pdf
CIS 4200-02 Group 1 Final Project Report (1).pdfCIS 4200-02 Group 1 Final Project Report (1).pdf
CIS 4200-02 Group 1 Final Project Report (1).pdf
blueshagoo1
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
iammrhaywood
 
Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"
National Information Standards Organization (NISO)
 
Data Structure using C by Dr. K Adisesha .ppsx
Data Structure using C by Dr. K Adisesha .ppsxData Structure using C by Dr. K Adisesha .ppsx
Data Structure using C by Dr. K Adisesha .ppsx
Prof. Dr. K. Adisesha
 
Stack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 MicroprocessorStack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 Microprocessor
JomonJoseph58
 
Electric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger HuntElectric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger Hunt
RamseyBerglund
 
REASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdf
REASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdfREASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdf
REASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdf
giancarloi8888
 
Juneteenth Freedom Day 2024 David Douglas School District
Juneteenth Freedom Day 2024 David Douglas School DistrictJuneteenth Freedom Day 2024 David Douglas School District
Juneteenth Freedom Day 2024 David Douglas School District
David Douglas School District
 
THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...
THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...
THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...
indexPub
 
Standardized tool for Intelligence test.
Standardized tool for Intelligence test.Standardized tool for Intelligence test.
Standardized tool for Intelligence test.
deepaannamalai16
 
Skimbleshanks-The-Railway-Cat by T S Eliot
Skimbleshanks-The-Railway-Cat by T S EliotSkimbleshanks-The-Railway-Cat by T S Eliot
Skimbleshanks-The-Railway-Cat by T S Eliot
nitinpv4ai
 
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
Nguyen Thanh Tu Collection
 
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptxPrésentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
siemaillard
 
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skillsspot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
haiqairshad
 
مصحف القراءات العشر أعد أحرف الخلاف سمير بسيوني.pdf
مصحف القراءات العشر   أعد أحرف الخلاف سمير بسيوني.pdfمصحف القراءات العشر   أعد أحرف الخلاف سمير بسيوني.pdf
مصحف القراءات العشر أعد أحرف الخلاف سمير بسيوني.pdf
سمير بسيوني
 
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
Nguyen Thanh Tu Collection
 

Recently uploaded (20)

Temple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation resultsTemple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation results
 
SWOT analysis in the project Keeping the Memory @live.pptx
SWOT analysis in the project Keeping the Memory @live.pptxSWOT analysis in the project Keeping the Memory @live.pptx
SWOT analysis in the project Keeping the Memory @live.pptx
 
Oliver Asks for More by Charles Dickens (9)
Oliver Asks for More by Charles Dickens (9)Oliver Asks for More by Charles Dickens (9)
Oliver Asks for More by Charles Dickens (9)
 
Pharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brubPharmaceutics Pharmaceuticals best of brub
Pharmaceutics Pharmaceuticals best of brub
 
CIS 4200-02 Group 1 Final Project Report (1).pdf
CIS 4200-02 Group 1 Final Project Report (1).pdfCIS 4200-02 Group 1 Final Project Report (1).pdf
CIS 4200-02 Group 1 Final Project Report (1).pdf
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
 
Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"Benner "Expanding Pathways to Publishing Careers"
Benner "Expanding Pathways to Publishing Careers"
 
Data Structure using C by Dr. K Adisesha .ppsx
Data Structure using C by Dr. K Adisesha .ppsxData Structure using C by Dr. K Adisesha .ppsx
Data Structure using C by Dr. K Adisesha .ppsx
 
Stack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 MicroprocessorStack Memory Organization of 8086 Microprocessor
Stack Memory Organization of 8086 Microprocessor
 
Electric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger HuntElectric Fetus - Record Store Scavenger Hunt
Electric Fetus - Record Store Scavenger Hunt
 
REASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdf
REASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdfREASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdf
REASIGNACION 2024 UGEL CHUPACA 2024 UGEL CHUPACA.pdf
 
Juneteenth Freedom Day 2024 David Douglas School District
Juneteenth Freedom Day 2024 David Douglas School DistrictJuneteenth Freedom Day 2024 David Douglas School District
Juneteenth Freedom Day 2024 David Douglas School District
 
THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...
THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...
THE SACRIFICE HOW PRO-PALESTINE PROTESTS STUDENTS ARE SACRIFICING TO CHANGE T...
 
Standardized tool for Intelligence test.
Standardized tool for Intelligence test.Standardized tool for Intelligence test.
Standardized tool for Intelligence test.
 
Skimbleshanks-The-Railway-Cat by T S Eliot
Skimbleshanks-The-Railway-Cat by T S EliotSkimbleshanks-The-Railway-Cat by T S Eliot
Skimbleshanks-The-Railway-Cat by T S Eliot
 
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
BÀI TẬP DẠY THÊM TIẾNG ANH LỚP 7 CẢ NĂM FRIENDS PLUS SÁCH CHÂN TRỜI SÁNG TẠO ...
 
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptxPrésentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
 
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skillsspot a liar (Haiqa 146).pptx Technical writhing and presentation skills
spot a liar (Haiqa 146).pptx Technical writhing and presentation skills
 
مصحف القراءات العشر أعد أحرف الخلاف سمير بسيوني.pdf
مصحف القراءات العشر   أعد أحرف الخلاف سمير بسيوني.pdfمصحف القراءات العشر   أعد أحرف الخلاف سمير بسيوني.pdf
مصحف القراءات العشر أعد أحرف الخلاف سمير بسيوني.pdf
 
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
BÀI TẬP BỔ TRỢ TIẾNG ANH LỚP 9 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2024-2025 - ...
 

Congrès SMAI 2019

  • 1. Convergence Analysis of Asymptotic Preserving Schemes for strongly magnetized plasmas Hamed Zakerzadeh¶ Institut de Math´ematiques de Toulouse, Universit´e Toulouse III - Paul Sabatier joint work with: F. Filbet (Toulouse), M. Rodrigues (Rennes) SMAI 2019 May 16 th 2019 ¶ supported by LabEx CIMI Toulouse and Institut Universitaire de France
  • 2. Introduction Continuous estimates Discrete estimates Numerical example References Outline Introduction Continuous estimates Discrete estimates Numerical example 1/19
  • 3. Introduction Continuous estimates Discrete estimates Numerical example References Outline Introduction Continuous estimates Discrete estimates Numerical example 1/19
  • 4. Introduction Continuous estimates Discrete estimates Numerical example References Fusion reactor (TOKAMAK): Тороидальная Камера с Магнитными Катушками “toroidal chamber with magnetic coils” requires a quite large magnetic field! very challenging to control the plasma in the core! not economical yet! 2/19
  • 5. Introduction Continuous estimates Discrete estimates Numerical example References Fusion reactor (TOKAMAK): Тороидальная Камера с Магнитными Катушками “toroidal chamber with magnetic coils” requires a quite large magnetic field! very challenging to control the plasma in the core! not economical yet! Vlasov equation: evolution of charged particles    ∂f ∂t + divx (vf ) + divv (Ff ) = 0 f (0, ·, ·) = f0 electro-magnetic force field: F = q m (E + v × B) 2/19
  • 6. Introduction Continuous estimates Discrete estimates Numerical example References Vlasov systems: Vlasov-Maxwell system ∂f ∂t + divx (vf ) + divv ((E + v × B) f ) = 0, (x, v) ∈ R4 , where E and B are solutions of Maxwell equations:    ∂t E − c2 × B = − J 0 , ∂t B + × E = 0, · E = 0 , · B = 0 with (t, x) := q f (t, x, v)dv, J(t, x) := q vf (t, x, v)dv. 3/19
  • 7. Introduction Continuous estimates Discrete estimates Numerical example References Long-time Vlasov–Poisson system with an external uniform magnetic field B(t, x) = 1 ε (0, 0, 1)T : ε ∂f ε ∂t + divx (vf ε ) + divv (E − 1 ε v⊥ )f ε = 0 , where E = − x φ such that −∆x φ = ε0 . Singular limit ε → 0: limit system for the weak limit f ε f : ∂f ∂t − E⊥ · x f − 1 2 ∆φ v⊥ · v f = 0 , (x, v) ∈ R4 , limit of charge density: ∂ ∂t − x · E⊥ = 0 , x ∈ R2 . 4/19
  • 8. Introduction Continuous estimates Discrete estimates Numerical example References Particle-In-Cell (PIC) methods: (i) Solve the characteristic system for N macro-particles:    εxε(t) = vε(t), xε(t0) = x0 ε , εvε(t) = E(t, xε(t)) − 1 ε v⊥ ε (t), vε(t0) = v0 ε . (ii) approximate f ε: fN,α(t, x, v) := 1≤k≤N ωk ϕα(x − xk (t)) ϕα(x − vk (t)). Proposition [Cohen and Perthame, 2000] lim α→0 lim N→∞ f (t) − fN,α(t) Lp → 0, 1 ≤ p ≤ ∞, with N number of particles and ϕα as a smooth approximation of the Dirac mass s.t.: numerical noise more efficient compared to direct methods (in phase space) 5/19
  • 9. Introduction Continuous estimates Discrete estimates Numerical example References Stiffness! very stiff system of ODEs where ε 1:    εxε(t) = vε εvε(t) = E(t, xε) − 1 ε v⊥ ε ε→0 −−−→ lim ε→0 x(t) =? 6/19
  • 10. Introduction Continuous estimates Discrete estimates Numerical example References Stiffness! very stiff system of ODEs where ε 1:    εxε(t) = vε εvε(t) = E(t, xε) − 1 ε v⊥ ε ε→0 −−−→ lim ε→0 x(t) =? Guiding center approximation E-cross-B drift: slow drift normal to E, in a plane perpendicular to B: x (t) = −E⊥ (t, x(t)) (Wikipedia) 6/19
  • 11. Introduction Continuous estimates Discrete estimates Numerical example References Stiffness! very stiff system of ODEs where ε 1:    εxε(t) = vε εvε(t) = E(t, xε) − 1 ε v⊥ ε ε→0 −−−→ lim ε→0 x(t) =? Guiding center approximation E-cross-B drift: slow drift normal to E, in a plane perpendicular to B: x (t) = −E⊥ (t, x(t)) (Wikipedia) [Filbet and Rodrigues, 2017] highly oscillatory ∼ ε−2 → capture macroscopic behaviour with ∆t = O(1) 6/19
  • 12. Introduction Continuous estimates Discrete estimates Numerical example References Asymptotic Preserving (AP) schemes Introduced by [Jin, 1999] - [Il’in, 1969]: BVP - [Larsen et al., 1987] : Neutron transport asymptotic efficiency: uniform efficiency wrt ε asymptotic consistency: consistent with the asymptotic system as ε → 0 asymptotic stability: uniformly stable in ε 7/19
  • 13. Introduction Continuous estimates Discrete estimates Numerical example References Uniform convergence Estimate the error Uε ∆ − Uε for an r-th order scheme: E2 = O(∆r /ε) 8/19
  • 14. Introduction Continuous estimates Discrete estimates Numerical example References Uniform convergence [Jin, 2010] Estimate the error Uε ∆ − Uε for an r-th order scheme: E1 = O(∆r + ε) E2 = O(∆r /ε) Uniform estimate: Uε ∆ − Uε ≤ min(E1, E2). 8/19
  • 15. Introduction Continuous estimates Discrete estimates Numerical example References Uniform convergence [Jin, 2010] Estimate the error Uε ∆ − Uε for an r-th order scheme: E1 = O(∆r + ε) E2 = O(∆r /ε) Uniform estimate: Uε ∆ − Uε ≤ min(E1, E2). Can we improve E1 and E2? E1 = O(∆r + εq ), q > 1, E2 = O( ∆r εp ), p < 1. Uε ∆ − Uε ≈ (∆r ) q p+q 8/19
  • 16. Introduction Continuous estimates Discrete estimates Numerical example References Outline Introduction Continuous estimates Discrete estimates Numerical example 8/19
  • 17. Introduction Continuous estimates Discrete estimates Numerical example References Oscillatory limit of the continuous model yε(t) := xε(t) − ε v⊥ ε (t) slower than xε: yε(t) = −E⊥ (t, xε(t)) (Xε(t, s, xs ε, vs ε), Vε(t, s, xs ε, vs ε), Yε(t, s, xs ε, vs ε)) := (xε(t), vε(t), yε(t)) K0 := E L∞ , Kt := ∂t E L∞ , Kx := dx E L∞ , Kxx := d2 x E L∞ . 9/19
  • 18. Introduction Continuous estimates Discrete estimates Numerical example References Oscillatory limit of the continuous model yε(t) := xε(t) − ε v⊥ ε (t) slower than xε: yε(t) = −E⊥ (t, xε(t)) (Xε(t, s, xs ε, vs ε), Vε(t, s, xs ε, vs ε), Yε(t, s, xs ε, vs ε)) := (xε(t), vε(t), yε(t)) K0 := E L∞ , Kt := ∂t E L∞ , Kx := dx E L∞ , Kxx := d2 x E L∞ . Theorem [Filbet et al., 2019] (i) Assume that E ∈ W 1,∞. Then, for any ε > 0: Xε(t, 0, x0 ε , v0 ε ) − X(t, 0, x0 ε ) E ε eKx t (1 + t2 ) ( v0 ε + ε) . (ii) Assume that E ∈ W 2,∞. Then, for any ε > 0: Yε(t, 0, x0 ε , v0 ε ) − X(t, 0, x0 ε − ε(v0 ε )⊥ ) E ε2 (1 + t4 ) e2 Kx t 1 + ε2 + v0 ε 2 . 9/19
  • 19. Introduction Continuous estimates Discrete estimates Numerical example References Proof 1. zε(t) := vε + ε E⊥ such that zε(t) = − 1 ε2 z⊥ ε (t) + ε d dt E⊥ (t, xε(t)) 10/19
  • 20. Introduction Continuous estimates Discrete estimates Numerical example References Proof 1. zε(t) := vε + ε E⊥ such that zε(t) = − 1 ε2 z⊥ ε (t) + ε d dt E⊥ (t, xε(t)) 2. zε(t) ≤ eKx t v0 ε + ε K0 + ε t eKx t (Kt + Kx K0) 10/19
  • 21. Introduction Continuous estimates Discrete estimates Numerical example References Proof 1. zε(t) := vε + ε E⊥ such that zε(t) = − 1 ε2 z⊥ ε (t) + ε d dt E⊥ (t, xε(t)) 2. zε(t) ≤ eKx t v0 ε + ε K0 + ε t eKx t (Kt + Kx K0) 3. vε(t) ≤ zε(t) + K0 ε 10/19
  • 22. Introduction Continuous estimates Discrete estimates Numerical example References Proof 1. zε(t) := vε + ε E⊥ such that zε(t) = − 1 ε2 z⊥ ε (t) + ε d dt E⊥ (t, xε(t)) 2. zε(t) ≤ eKx t v0 ε + ε K0 + ε t eKx t (Kt + Kx K0) 3. vε(t) ≤ zε(t) + K0 ε 4. Taylor expansion: yε(t) = −E⊥ (t, yε(t) + εv⊥ ε (t)) = −E⊥ (t, yε) − ε dx E⊥ (t, yε) v⊥ ε + ε2 Θ0(t, yε, vε) , with the remainder Θ0 such that Θ0(t, yε, vε) ≤ 1 2 Kxx vε 2 . 10/19
  • 23. Introduction Continuous estimates Discrete estimates Numerical example References Proof 1. zε(t) := vε + ε E⊥ such that zε(t) = − 1 ε2 z⊥ ε (t) + ε d dt E⊥ (t, xε(t)) 2. zε(t) ≤ eKx t v0 ε + ε K0 + ε t eKx t (Kt + Kx K0) 3. vε(t) ≤ zε(t) + K0 ε 4. Taylor expansion: yε(t) = −E⊥ (t, yε(t) + εv⊥ ε (t)) = −E⊥ (t, yε) − ε dx E⊥ (t, yε) v⊥ ε + ε2 Θ0(t, yε, vε) , with the remainder Θ0 such that Θ0(t, yε, vε) ≤ 1 2 Kxx vε 2 . 5. employ εvε(t) = E(t, xε) − 1 ε v⊥ ε yε − ε3 dx E⊥ (t, yε)vε = − E⊥ (t, yε) − ε2 dx E⊥ (t, yε)E(t, xε) + Θ0(t, yε, vε) − ε3 ∂t dx E⊥ (t, yε) − d2 x E⊥ (t, yε)E⊥ (t, xε) vε , 10/19
  • 24. Introduction Continuous estimates Discrete estimates Numerical example References Proof 1. zε(t) := vε + ε E⊥ such that zε(t) = − 1 ε2 z⊥ ε (t) + ε d dt E⊥ (t, xε(t)) 2. zε(t) ≤ eKx t v0 ε + ε K0 + ε t eKx t (Kt + Kx K0) 3. vε(t) ≤ zε(t) + K0 ε 4. Taylor expansion: yε(t) = −E⊥ (t, yε(t) + εv⊥ ε (t)) = −E⊥ (t, yε) − ε dx E⊥ (t, yε) v⊥ ε + ε2 Θ0(t, yε, vε) , with the remainder Θ0 such that Θ0(t, yε, vε) ≤ 1 2 Kxx vε 2 . 5. employ εvε(t) = E(t, xε) − 1 ε v⊥ ε yε − ε3 dx E⊥ (t, yε)vε = − E⊥ (t, yε) − ε2 dx E⊥ (t, yε)E(t, xε) + Θ0(t, yε, vε) − ε3 ∂t dx E⊥ (t, yε) − d2 x E⊥ (t, yε)E⊥ (t, xε) vε , 6. find the difference with x (t) = −E⊥(t, x(t)) and integrate. 10/19
  • 25. Introduction Continuous estimates Discrete estimates Numerical example References Outline Introduction Continuous estimates Discrete estimates Numerical example 10/19
  • 26. Introduction Continuous estimates Discrete estimates Numerical example References First-order IMEX scheme    ε xn+1 ε − xn ε ∆t = vn+1 ε ε vn+1 ε − vn ε ∆t = E(tn, xn ε ) − 1 ε (vn+1 ε )⊥ ε→0 −−−→ xn+1 − xn ∆t = −E⊥ (tn , xn ) 11/19
  • 27. Introduction Continuous estimates Discrete estimates Numerical example References First-order IMEX scheme    ε xn+1 ε − xn ε ∆t = vn+1 ε ε vn+1 ε − vn ε ∆t = E(tn, xn ε ) − 1 ε (vn+1 ε )⊥ ε→0 −−−→ xn+1 − xn ∆t = −E⊥ (tn , xn ) Theorem [Filbet et al., 2019] If E ∈ W 1,∞, then, the first-order scheme possesses a unique solution such that xn ε − xε(tn) E (1 + t2 n ) e2Kx tn (1 + v0 ε + ε) min ∆t ε3 (1 + ε2 ), ∆t + ε . If E ∈ W 2,∞: yn ε − yε(tn) E (1 + t4 n ) e2Kx tn (1 + v0 ε 2 + ε2 ) min ∆t ε3 (1 + ε) , ∆t + ε2 , if, for the first step, we have either ∆t = O(ε) fully-implicit method 11/19
  • 28. Introduction Continuous estimates Discrete estimates Numerical example References Corollary xn ε − xε(tn) (t,E, v0 ε ) (1 + ε)    ∆t ε3 (1 + ε2), if ∆t ≤ ε4 , ε, if ε4 ≤ ∆t ≤ ε , ∆t, if ε ≤ ∆t , yn ε − yε(tn) (t,E, v0 ε ) (1 + ε2 )    ∆t ε3 (1 + ε), if ∆t ≤ ε5 , ε2, if ε5 ≤ ∆t ≤ ε2 , ∆t, if ε2 ≤ ∆t . 12/19
  • 29. Introduction Continuous estimates Discrete estimates Numerical example References Corollary xn ε − xε(tn) (t,E, v0 ε ) (1 + ε)    ∆t ε3 (1 + ε2), if ∆t ≤ ε4 , ε, if ε4 ≤ ∆t ≤ ε , ∆t, if ε ≤ ∆t , yn ε − yε(tn) (t,E, v0 ε ) (1 + ε2 )    ∆t ε3 (1 + ε), if ∆t ≤ ε5 , ε2, if ε5 ≤ ∆t ≤ ε2 , ∆t, if ε2 ≤ ∆t . Worst-case scenario xn ε − xε(tn) (t,E, v0 ε ) (∆t)1/4 , yn ε − yε(tn) (t,E, v0 ε ) (∆t)2/5 , 12/19
  • 30. Introduction Continuous estimates Discrete estimates Numerical example References Proof Similar to continuous case Taylor expansion: yn+1 ε − yn ε ∆t = − E⊥ (tn, yn ε ) − ε dx E⊥ (tn, yn ε )(vn ε )⊥ + ε2 Θ0(tn, yn ε , vn ε ) , n ≥ 0 , 13/19
  • 31. Introduction Continuous estimates Discrete estimates Numerical example References Proof Similar to continuous case Taylor expansion: yn+1 ε − yn ε ∆t = − E⊥ (tn, yn ε ) − ε dx E⊥ (tn, yn ε )(vn ε )⊥ + ε2 Θ0(tn, yn ε , vn ε ) , n ≥ 0 , employ the velocity update to get dx E(tn, yn ε )(vn ε )⊥ = −ε2 dx E(tn, yn ε ) vn ε − vn−1 ε ∆t − 1 ε E(tn−1, xn−1 ε ) 13/19
  • 32. Introduction Continuous estimates Discrete estimates Numerical example References Proof Similar to continuous case Taylor expansion: yn+1 ε − yn ε ∆t = − E⊥ (tn, yn ε ) − ε dx E⊥ (tn, yn ε )(vn ε )⊥ + ε2 Θ0(tn, yn ε , vn ε ) , n ≥ 0 , employ the velocity update to get dx E(tn, yn ε )(vn ε )⊥ = −ε2 dx E(tn, yn ε ) vn ε − vn−1 ε ∆t − 1 ε E(tn−1, xn−1 ε ) classical analysis: Lemma (consistency) τn y E ∆t ε eKx tn+1 v0 ε + ε (1 + tn+1) τn v E ∆t ε4 eKx tn+1 (1 + ε2 ) v0 ε + ε (1 + tn+1) 13/19
  • 33. Introduction Continuous estimates Discrete estimates Numerical example References Proof Similar to continuous case Taylor expansion: yn+1 ε − yn ε ∆t = − E⊥ (tn, yn ε ) − ε dx E⊥ (tn, yn ε )(vn ε )⊥ + ε2 Θ0(tn, yn ε , vn ε ) , n ≥ 0 , employ the velocity update to get dx E(tn, yn ε )(vn ε )⊥ = −ε2 dx E(tn, yn ε ) vn ε − vn−1 ε ∆t − 1 ε E(tn−1, xn−1 ε ) classical analysis: Lemma (consistency) τn y E ∆t ε eKx tn+1 v0 ε + ε (1 + tn+1) τn v E ∆t ε4 eKx tn+1 (1 + ε2 ) v0 ε + ε (1 + tn+1) yε(tn) − yn ε + ε vε(tn) − vn ε ≤ n−1 k=0 e2 Kx (tn−tk+1) τk y + ε τk v ) ∆t 13/19
  • 34. Introduction Continuous estimates Discrete estimates Numerical example References Modified first-order IMEX scheme    yn+1 ε − yn ε ∆t = −E⊥(tn, yn ε + ε(vn+1 ε )⊥) ε vn+1 ε − vn ε ∆t = E(tn, yn ε + ε(vn ε )⊥) − 1 ε (vn+1 ε )⊥ 14/19
  • 35. Introduction Continuous estimates Discrete estimates Numerical example References Modified first-order IMEX scheme    yn+1 ε − yn ε ∆t = −E⊥(tn, yn ε + ε(vn+1 ε )⊥) ε vn+1 ε − vn ε ∆t = E(tn, yn ε + ε(vn ε )⊥) − 1 ε (vn+1 ε )⊥ Theorem [Filbet et al., 2019] If E ∈ W 1,∞, then, the first-order scheme possesses a unique solution such that xn ε − xε(tn) E (1 + t3 n ) e(2+Kx ∆t)Kx tn (1 + v0 ε + ε) min ∆t ε3 (1 + ε2 ), ∆t + ε If E ∈ W 2,∞: yn ε − yε(tn) E (1 + t4 n ) e(2+Kx ∆t)Kx tn (1 + v0 ε 2 + ε2 ) min ∆t ε3 (1 + ε) , ∆t + ε2 . 14/19
  • 36. Introduction Continuous estimates Discrete estimates Numerical example References Outline Introduction Continuous estimates Discrete estimates Numerical example 14/19
  • 37. Introduction Continuous estimates Discrete estimates Numerical example References Numerical example electric potential: φ(x) = 1 2 x 2 + 1 10π cos2(2πx2) uniform magnetic field: B(t, x) = 1 ε (0, 0, 1)T “ill-prepared” initial condition x0 ε = (1, 1) v0 ε = (3, 3) 15/19
  • 38. Introduction Continuous estimates Discrete estimates Numerical example References Numerical example electric potential: φ(x) = 1 2 x 2 + 1 10π cos2(2πx2) uniform magnetic field: B(t, x) = 1 ε (0, 0, 1)T “ill-prepared” initial condition x0 ε = (1, 1) v0 ε = (3, 3) Measure the error:    Ey (∆t, ε) := NT n=1 ∆t yn ε − yε(tn) Ey, gc(∆t, ε) := NT n=1 ∆t yn ε − X(tn, 0, x0 − ε(v0 ε )⊥ ) 15/19
  • 39. Introduction Continuous estimates Discrete estimates Numerical example References Modified first-order method 10-4 10-3 10-2 10-1 100 101 10-5 10-4 10-3 10-2 10-1 100 slope of 2 εy ε in log scale Δt = 0.0001 Δt = 0.0004 Δt = 0.0016 Δt = 0.0064 Δt = 0.0256 Δt = 0.1024 10-4 10-3 10-2 10-1 100 101 10-5 10-4 10-3 10-2 10-1 100 slope of 2 εy,gc ε in log scale Δt = 0.0001 Δt = 0.0004 Δt = 0.0016 Δt = 0.0064 Δt = 0.0256 Δt = 0.1024 16/19
  • 40. Introduction Continuous estimates Discrete estimates Numerical example References Second-order method RK (for the explicit part) and an L-stable second-order SDIRK method (for the implicit part) [Filbet and Rodrigues, 2016] 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 10-5 10-4 10-3 10-2 10-1 100 slope of 2 εy ε in log scale Δt = 0.0001 Δt = 0.0004 Δt = 0.0016 Δt = 0.0064 Δt = 0.0256 Δt = 0.1024 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 10-5 10-4 10-3 10-2 10-1 slope of 2 εy,gc ε in log scale Δt = 0.0001 Δt = 0.0004 Δt = 0.0016 Δt = 0.0064 Δt = 0.0256 Δt = 0.1024 17/19
  • 41. Introduction Continuous estimates Discrete estimates Numerical example References Conclusion We have analyzed IMEX-PIC scheme for Vlasov–Poisson equations (with a given E): ε-uniform stability uniform convergence estimates (continuous, discrete) Perspectives second-order schemes → O(ε3)-estimates inhomogeneous magnetic field [Filbet and Rodrigues, 2017] velocity converges weakly to zero kinetic energy converges strongly to non-zero! 3d [Degond and Filbet, 2016; Filbet et al., 2017] Thanks For Your Attention! 18/19
  • 42. Introduction Continuous estimates Discrete estimates Numerical example References References I Albert Cohen and Benoit Perthame. Optimal approximations of transport equations by particle and pseudoparticle methods. SIAM Journal on Mathematical Analysis, 32(3):616–636, 2000. Pierre Degond and Francis Filbet. On the asymptotic limit of the three dimensional Vlasov–Poisson system for large magnetic field: formal derivation. arXiv preprint arXiv:1603.03666, 2016. Francis Filbet and Luis M. Rodrigues. Asymptotically stable particle-in-cell methods for the Vlasov–Poisson system with a strong external magnetic field. SIAM Journal on Numerical Analysis, 54(2):1120–1146, 2016. Francis Filbet and Luis Miguel Rodrigues. Asymptotically preserving particle-in-cell methods for inhomogeneous strongly magnetized plasmas. SIAM Journal on Numerical Analysis, 55(5): 2416–2443, 2017. Francis Filbet, Tao Xiong, and Eric Sonnendr¨ucker. On the Vlasov–Maxwell system with a strong external magnetic field. 2017. Francis Filbet, L. Miguel Rodrigues, and Hamed Zakerzadeh. Convergence analysis of asymptotic preserving schemes for strongly magnetized plasmas. In preparation, 2019. Arlen M. Il’in. Differencing scheme for a differential equation with a small parameter affecting the highest derivative. Mathematical Notes of the Academy of Sciences of the USSR, 6(2):596–602, 1969. Shi Jin. Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM Journal on Scientific Computing, 21(2):441–454, 1999. Shi Jin. Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review. Lecture Notes for Summer School on “Methods and Models of Kinetic Theory” (M&MKT), Porto Ercole (Grosseto, Italy), pages 177–216, 2010. Edward W. Larsen, J. E. Morel, and Warren F. Miller. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. Journal of Computational Physics, 69(2):283–324, 1987. 19/19