ⓒ 2018 UEC Tokyo.
Conditional CycleGAN
† ††
††† †††	 †††
† 1
††	 3
†††
ⓒ 2018 UEC Tokyo.
• A
– ( ( ( ( (
– ( ( )(
2
Input
noise
vector
fake or
real
D
G
100
dim
Training
set
fake
image
real
image
ⓒ 2018 UEC Tokyo.
• A GI GI A
– 4 - 1 - 1- ( (
+ ( )
3
Input
noise
vector
fake or realD
G
100
dim
Training
set
fake
image
real
image
G D
G: N
A D
D: G
N (real)
G (fake)
ⓒ 2018 UEC Tokyo.
• 5 1
– 2 I 0 ( A (
0 5
– A 1 ) 2 2 1 (
1
– 1 5 2 0 81
4
ⓒ 2018 UEC Tokyo.
•
5
…
ⓒ 2018 UEC Tokyo. 6
ⓒ 2018 UEC Tokyo.
• :
– 2
• :
– 2 2 1
7
:
2
0 1
2
2
+++
+++
ⓒ 2018 UEC Tokyo.
• :
– 2
• :
– 2 2 1
8
:
2
0 1
2
2
+++
+++
ⓒ 2018 UEC Tokyo.
• . .
•
:
.
. :
9
Conditional CycleGAN
11
2
Image-to-Image
CycleGAN
:
ⓒ 2018 UEC Tokyo.
• 1 1 -( 2 )
– C I F I
10
D
+ 7
2
G
ⓒ 2018 UEC Tokyo. 11
• 1 ) + ( -
– A 7
ⓒ 2018 UEC Tokyo. 12
Cycle Consistency Loss
• 1 ) + ( -
– A 7
G CI
ⓒ 2018 UEC Tokyo. 13
Cycle Consistency Loss
• 1 ) + ( -
– A 7
G CI
ⓒ 2018 UEC Tokyo.
.
2
2 : .
14
to
1
to
to
1:n
ⓒ 2018 UEC Tokyo.
• StarGAN: Unified Generative Adversarial Networks for
Multi-Domain Image-to-Image Translation [Choi+ CVPR-18]
– :
–
– +1
15
ⓒ 2018 UEC Tokyo.
AC-GAN[Odena+ ICML-17]
• Conditional Image Synthesis With Auxiliary Classifier GANs
– ) (
)
1616
fake or real
one-hot vector
!
C[0, 1, 0…]
one-hot vector
"
#
$%
#
ⓒ 2018 UEC Tokyo.
Real Image
In domain
Real Image
In domain B
Fake Image
In domain
Reconstructed
Image
Domain
SelectC[0, 1]
fake or real class[1, 0]
Domain
Select
C[1, 0]
!
(G) (G)
17
•
– 3
ⓒ 2018 UEC Tokyo. 18
•
– 3
Real Image
In domain
Real Image
In domain B
Fake Image
In domain
Reconstructed
Image
Domain
SelectC[0, 1]
fake or real class[1, 0]
Domain
Select
C[1, 0]
!
(G) (G)
ⓒ 2018 UEC Tokyo.
• 1 6
+ B + 6
- [
S RTCP ]
– 1 L
1
– aL EV J
19
Conv(st=1)
7x7x64
Conv(st=2)
4x4x128
Conv(st=2)
4x4x256
ResBlock
ResBlock
ResBlock
ResBlock
ResBlock
ResBlock
Conv(st=1/2)
4x4x128
Conv(st=1/2)
4x4x64
Conv(st=1)
7x7x3
3x3Conv
InsNorm
LeakyReLU
3x3Conv
InsNorm
D
ⓒ 2018 UEC Tokyo.
• 1 0 1 1 0,
– 1 !"#"$%
20
!"$&''#(#%)
ⓒ 2018 UEC Tokyo.
• :
– 2
• :
– 2 2 1
21
:
2
0 1
2
2
+++
+++
ⓒ 2018 UEC Tokyo.
• 5 1
– 2 I 0 ( A (
0 5
– A 1 ) 2 2 1 (
1
– 1 5 2 0 81
22
( ) (
ⓒ 2018 UEC Tokyo.
-
• 0 2 20 610 P 6 +
– VT N
– 0 20 G
C S
– R
•
–
GP
– V
23
argmin '()(*+ = -'.)/(0/( + 2'3(4+0
'()(*+
'.)/(0/(
'3(4+0
0
0 0 0
20
input
conv3_1
conv1_1
conv2_1
conv4_1
conv5_1
conv4_2
) )(
5+ = 6789+ 6789+ :
U
⃗<
⃗=
⃗>
ⓒ 2018 UEC Tokyo.
•
– -
–
• 0 0 0
• ) ( 1 G1
•
– 1 1 J
• a0
• 1
G ( 1 G
24
!"
ⓒ 2018 UEC Tokyo.
•
– 1
– M
1,0 0 ,) ( )
[Tanno+ MMM2017]
S
3
ⓒ 2018 UEC Tokyo.
• T MN
– MN ) + 6 : + :
– MN ) - : 2 : 3 8
• P
– A 6 1 6 0
• P C
– + 6 : + : ) G O Q
– - : 2 : 3 8 ) -2 + + O(Q S
G : S
26
ⓒ 2018 UEC Tokyo.
• :
–
27
G )(
A N
Real Image
In domain
Real Image
In domain B
Fake Image
In domain
Reconstructed
Image
Domain
SelectC[0, 1]
fake or real class[1, 0]
C
Domain
Select
C[1, 0]
!
(G) (G)
ⓒ 2018 UEC Tokyo.
• N :
28
G ( ( )
A C
ⓒ 2018 UEC Tokyo.
•
– A N
29
)(
G
:
C
ⓒ 2018 UEC Tokyo. 30
)(
• 合計約23万枚を利用
– 学習用:9割
– テスト用:1割
:
74007
34216
27854
24760
21324
18396
13499
7138
5329
3530
230053
ⓒ 2018 UEC Tokyo.
• 1
31
2 ) (
1 …
ⓒ 2018 UEC Tokyo.
• 32 0 032 1 1
– G T
• 1 0 1 2
– a G A 1 f c S
32
dC il
: eN M
ⓒ 2018 UEC Tokyo.
•
33
: )(
33
ⓒ 2018 UEC Tokyo.
•
34
: )(
34
A
ⓒ 2018 UEC Tokyo.
• 1
35
) (
Content
Style
ⓒ 2018 UEC Tokyo.
cCycleGAN
Multi Style
Transfer
36
ⓒ 2018 UEC Tokyo. 37
ⓒ 2018 UEC Tokyo.
•
– lS e n i
• AC if
• ( ) 1 a
• c
– A a M Na
– T
– G S G
38
ⓒ 2018 UEC Tokyo.
•
–
•
–
•
–
39
ⓒ 2018 UEC Tokyo.
• a m A
– e A N A a e m
– gm C A tC r u
– a
• xf a a
– 1 A
- l n A
xf A 0 I pi
40
ⓒ 2018 UEC Tokyo.
• A ( (
– 8 1 2) 8
– 8
41
G
30%
8 G
32%
N
ⓒ 2018 UEC Tokyo.
•
– 0M e 2
– l 0M N T
2
• l A
– 2 0M b I
i 0S 0M N
– C 2 A
42
ⓒ 2018 UEC Tokyo.
•
43
: )(
43
A
ⓒ 2018 UEC Tokyo.
• 1
44
) (
Content
Style
ⓒ 2018 UEC Tokyo.
•
45
: )(
ⓒ 2018 UEC Tokyo. 46
2 ) (
•
–
ⓒ 2018 UEC Tokyo.
•
47
) (
Content
Style
ⓒ 2018 UEC Tokyo.
•
48
) (
Content
Style

Conditional CycleGANによる食事画像変換

  • 1.
    ⓒ 2018 UECTokyo. Conditional CycleGAN † †† ††† ††† ††† † 1 †† 3 †††
  • 2.
    ⓒ 2018 UECTokyo. • A – ( ( ( ( ( – ( ( )( 2 Input noise vector fake or real D G 100 dim Training set fake image real image
  • 3.
    ⓒ 2018 UECTokyo. • A GI GI A – 4 - 1 - 1- ( ( + ( ) 3 Input noise vector fake or realD G 100 dim Training set fake image real image G D G: N A D D: G N (real) G (fake)
  • 4.
    ⓒ 2018 UECTokyo. • 5 1 – 2 I 0 ( A ( 0 5 – A 1 ) 2 2 1 ( 1 – 1 5 2 0 81 4
  • 5.
    ⓒ 2018 UECTokyo. • 5 …
  • 6.
    ⓒ 2018 UECTokyo. 6
  • 7.
    ⓒ 2018 UECTokyo. • : – 2 • : – 2 2 1 7 : 2 0 1 2 2 +++ +++
  • 8.
    ⓒ 2018 UECTokyo. • : – 2 • : – 2 2 1 8 : 2 0 1 2 2 +++ +++
  • 9.
    ⓒ 2018 UECTokyo. • . . • : . . : 9 Conditional CycleGAN 11 2 Image-to-Image CycleGAN :
  • 10.
    ⓒ 2018 UECTokyo. • 1 1 -( 2 ) – C I F I 10 D + 7 2 G
  • 11.
    ⓒ 2018 UECTokyo. 11 • 1 ) + ( - – A 7
  • 12.
    ⓒ 2018 UECTokyo. 12 Cycle Consistency Loss • 1 ) + ( - – A 7 G CI
  • 13.
    ⓒ 2018 UECTokyo. 13 Cycle Consistency Loss • 1 ) + ( - – A 7 G CI
  • 14.
    ⓒ 2018 UECTokyo. . 2 2 : . 14 to 1 to to 1:n
  • 15.
    ⓒ 2018 UECTokyo. • StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation [Choi+ CVPR-18] – : – – +1 15
  • 16.
    ⓒ 2018 UECTokyo. AC-GAN[Odena+ ICML-17] • Conditional Image Synthesis With Auxiliary Classifier GANs – ) ( ) 1616 fake or real one-hot vector ! C[0, 1, 0…] one-hot vector " # $% #
  • 17.
    ⓒ 2018 UECTokyo. Real Image In domain Real Image In domain B Fake Image In domain Reconstructed Image Domain SelectC[0, 1] fake or real class[1, 0] Domain Select C[1, 0] ! (G) (G) 17 • – 3
  • 18.
    ⓒ 2018 UECTokyo. 18 • – 3 Real Image In domain Real Image In domain B Fake Image In domain Reconstructed Image Domain SelectC[0, 1] fake or real class[1, 0] Domain Select C[1, 0] ! (G) (G)
  • 19.
    ⓒ 2018 UECTokyo. • 1 6 + B + 6 - [ S RTCP ] – 1 L 1 – aL EV J 19 Conv(st=1) 7x7x64 Conv(st=2) 4x4x128 Conv(st=2) 4x4x256 ResBlock ResBlock ResBlock ResBlock ResBlock ResBlock Conv(st=1/2) 4x4x128 Conv(st=1/2) 4x4x64 Conv(st=1) 7x7x3 3x3Conv InsNorm LeakyReLU 3x3Conv InsNorm D
  • 20.
    ⓒ 2018 UECTokyo. • 1 0 1 1 0, – 1 !"#"$% 20 !"$&''#(#%)
  • 21.
    ⓒ 2018 UECTokyo. • : – 2 • : – 2 2 1 21 : 2 0 1 2 2 +++ +++
  • 22.
    ⓒ 2018 UECTokyo. • 5 1 – 2 I 0 ( A ( 0 5 – A 1 ) 2 2 1 ( 1 – 1 5 2 0 81 22 ( ) (
  • 23.
    ⓒ 2018 UECTokyo. - • 0 2 20 610 P 6 + – VT N – 0 20 G C S – R • – GP – V 23 argmin '()(*+ = -'.)/(0/( + 2'3(4+0 '()(*+ '.)/(0/( '3(4+0 0 0 0 0 20 input conv3_1 conv1_1 conv2_1 conv4_1 conv5_1 conv4_2 ) )( 5+ = 6789+ 6789+ : U ⃗< ⃗= ⃗>
  • 24.
    ⓒ 2018 UECTokyo. • – - – • 0 0 0 • ) ( 1 G1 • – 1 1 J • a0 • 1 G ( 1 G 24 !"
  • 25.
    ⓒ 2018 UECTokyo. • – 1 – M 1,0 0 ,) ( ) [Tanno+ MMM2017] S 3
  • 26.
    ⓒ 2018 UECTokyo. • T MN – MN ) + 6 : + : – MN ) - : 2 : 3 8 • P – A 6 1 6 0 • P C – + 6 : + : ) G O Q – - : 2 : 3 8 ) -2 + + O(Q S G : S 26
  • 27.
    ⓒ 2018 UECTokyo. • : – 27 G )( A N Real Image In domain Real Image In domain B Fake Image In domain Reconstructed Image Domain SelectC[0, 1] fake or real class[1, 0] C Domain Select C[1, 0] ! (G) (G)
  • 28.
    ⓒ 2018 UECTokyo. • N : 28 G ( ( ) A C
  • 29.
    ⓒ 2018 UECTokyo. • – A N 29 )( G : C
  • 30.
    ⓒ 2018 UECTokyo. 30 )( • 合計約23万枚を利用 – 学習用:9割 – テスト用:1割 : 74007 34216 27854 24760 21324 18396 13499 7138 5329 3530 230053
  • 31.
    ⓒ 2018 UECTokyo. • 1 31 2 ) ( 1 …
  • 32.
    ⓒ 2018 UECTokyo. • 32 0 032 1 1 – G T • 1 0 1 2 – a G A 1 f c S 32 dC il : eN M
  • 33.
    ⓒ 2018 UECTokyo. • 33 : )( 33
  • 34.
    ⓒ 2018 UECTokyo. • 34 : )( 34 A
  • 35.
    ⓒ 2018 UECTokyo. • 1 35 ) ( Content Style
  • 36.
    ⓒ 2018 UECTokyo. cCycleGAN Multi Style Transfer 36
  • 37.
    ⓒ 2018 UECTokyo. 37
  • 38.
    ⓒ 2018 UECTokyo. • – lS e n i • AC if • ( ) 1 a • c – A a M Na – T – G S G 38
  • 39.
    ⓒ 2018 UECTokyo. • – • – • – 39
  • 40.
    ⓒ 2018 UECTokyo. • a m A – e A N A a e m – gm C A tC r u – a • xf a a – 1 A - l n A xf A 0 I pi 40
  • 41.
    ⓒ 2018 UECTokyo. • A ( ( – 8 1 2) 8 – 8 41 G 30% 8 G 32% N
  • 42.
    ⓒ 2018 UECTokyo. • – 0M e 2 – l 0M N T 2 • l A – 2 0M b I i 0S 0M N – C 2 A 42
  • 43.
    ⓒ 2018 UECTokyo. • 43 : )( 43 A
  • 44.
    ⓒ 2018 UECTokyo. • 1 44 ) ( Content Style
  • 45.
    ⓒ 2018 UECTokyo. • 45 : )(
  • 46.
    ⓒ 2018 UECTokyo. 46 2 ) ( • –
  • 47.
    ⓒ 2018 UECTokyo. • 47 ) ( Content Style
  • 48.
    ⓒ 2018 UECTokyo. • 48 ) ( Content Style