SlideShare a Scribd company logo
1 of 9
Name: Muhammad Irsyadi Firdaus
Student ID: P66067055
Course: Digital Photogrammetry
Collinearity Equations
1. The collinearity equations are equations that express the condition in which the exposure
station of a photograph, any object point, and it is photo image all lie along a straight line
in three-dimensional space. The equations expressing this condition are called the
Collinearity Condition Equations. They are perhaps the most useful of all equations to the
photogrammetry. The collinearity condition is illustrated in Figure 1, where 𝐿, π‘Ž, and 𝐴 lie
along a straight line. Two equationsexpressthe collinearityconditionforanypointona photo:
one equation for the π‘₯ photo coordinate and another for the 𝑦 photo coordinate.
Figure 1. Collinearity condition
The collinearity equations are:
π‘₯ π‘Ž = π‘₯0 βˆ’ 𝑓 [
π‘š11( 𝑋𝐴 βˆ’ 𝑋 𝐿) + π‘š12( π‘Œπ΄ βˆ’ π‘ŒπΏ) + π‘š13( 𝑍𝐴 βˆ’ 𝑍 𝐿)
π‘š31 ( 𝑋𝐴 βˆ’ 𝑋 𝐿) + π‘š32( π‘Œπ΄ βˆ’ π‘ŒπΏ) + π‘š33( 𝑍𝐴 βˆ’ 𝑍 𝐿 )
]
𝑦 π‘Ž = 𝑦0 βˆ’ 𝑓 [
π‘š21( 𝑋𝐴 βˆ’ 𝑋 𝐿) + π‘š22( π‘Œπ΄ βˆ’ π‘ŒπΏ) + π‘š23 ( 𝑍𝐴 βˆ’ 𝑍 𝐿 )
π‘š31 ( 𝑋𝐴 βˆ’ 𝑋 𝐿) + π‘š32( π‘Œπ΄ βˆ’ π‘ŒπΏ) + π‘š33( 𝑍𝐴 βˆ’ 𝑍 𝐿)
]
where [ π‘₯ π‘Ž , 𝑦 π‘Ž] = image coordinates of point a, [ π‘₯0 , 𝑦0 ] = coordinates of the principal point,
𝑓 = camera focal length, [ 𝑋𝐴 , π‘Œπ΄ , 𝑍𝐴]= object coordinates of point A, and π‘š 𝑖𝑗 = elements of
the rotation matrix M which is 3x3.
In a simplified development of the equations for the two-dimensional projective
transformation, an 𝑋′
π‘Œβ€²
𝑍′
coordinate systemis adopted which is parallel to the π‘‹π‘Œπ‘ system
and has it is origin at 𝐿. The π‘₯β€²
𝑦′
𝑧′
coordinatesof anypoint,suchas 𝑝 of Fig.2, can be expressed
in terms of 𝑋′
π‘Œβ€²
𝑍′
coordinates as follows:
π‘₯ 𝑝
β€²
= π‘š11 𝑋 𝑝
β€²
+ π‘š12 π‘Œπ‘
β€²
+ π‘š13 𝑍 𝑝
β€²
𝑦 𝑝
β€²
= π‘š21 𝑋 𝑝
β€²
+ π‘š22 π‘Œπ‘
β€²
+ π‘š23 𝑍 𝑝
β€²
Eq. 1
Name: Muhammad Irsyadi Firdaus
Student ID: P66067055
Course: Digital Photogrammetry
𝑧 𝑝
β€²
= π‘š31 𝑋 𝑝
β€²
+ π‘š32 π‘Œπ‘
β€²
+ π‘š33 𝑍 𝑝
β€²
Figure 2. Geometry of two-dimensional projective transformation
Figure 3. Parallel relationships between 𝑋′
π‘Œβ€²
𝑍′
and π‘‹π‘Œπ‘ planes in two-dimensional
projective transformation
Consider figure 3, which shows the parallel relationships between the 𝑋′
π‘Œβ€²
𝑍′
and π‘‹π‘Œπ‘
planes after rotation. From similar triangles of figure 2,
𝑋 𝑝
β€²
𝑋 𝑝 βˆ’ 𝑋 𝐿
=
βˆ’π‘ 𝑝
β€²
𝑍 𝐿
From which
𝑋 𝑝
β€²
=
βˆ’π‘ 𝑝
β€²
𝑍 𝐿
(𝑋 𝑝 βˆ’ 𝑋 𝐿) (a)
Again from similar triangles of figure 2.
Name: Muhammad Irsyadi Firdaus
Student ID: P66067055
Course: Digital Photogrammetry
π‘Œπ‘
β€²
π‘Œπ‘ βˆ’ π‘ŒπΏ
=
βˆ’π‘ 𝑝
β€²
𝑍 𝐿
From which
π‘Œπ‘
β€²
=
βˆ’π‘ 𝑝
β€²
𝑍 𝐿
(π‘Œπ‘ βˆ’ π‘ŒπΏ) (b)
Also, intuitively the following equation may be written:
𝑍 𝑝
β€²
=
βˆ’π‘ 𝑝
β€²
𝑍 𝐿
(𝑍 𝐿) (c)
Substituting Eqs. (a), (b), and (c) into Eq. 1 gives
π‘₯ 𝑝
β€²
= π‘š11
βˆ’π‘ 𝑝
β€²
𝑍 𝐿
(𝑋 𝑝 βˆ’ 𝑋 𝐿) + π‘š12
βˆ’π‘ 𝑝
β€²
𝑍 𝐿
(π‘Œπ‘ βˆ’ π‘ŒπΏ ) + π‘š13
βˆ’π‘ 𝑝
β€²
𝑍 𝐿
(𝑍 𝐿)
𝑦 𝑝
β€²
= π‘š21
βˆ’π‘ 𝑝
β€²
𝑍 𝐿
(𝑋 𝑝 βˆ’ 𝑋 𝐿) + π‘š22
βˆ’π‘ 𝑝
β€²
𝑍 𝐿
(π‘Œπ‘ βˆ’ π‘ŒπΏ) + π‘š23
βˆ’π‘ 𝑝
β€²
𝑍 𝐿
(𝑍 𝐿) Eq. 2
𝑧 𝑝
β€²
= π‘š31
βˆ’π‘ 𝑝
β€²
𝑍 𝐿
(𝑋 𝑝 βˆ’ 𝑋 𝐿) + π‘š32
βˆ’π‘ 𝑝
β€²
𝑍 𝐿
(π‘Œπ‘ βˆ’ π‘ŒπΏ) + π‘š33
βˆ’π‘ 𝑝
β€²
𝑍 𝐿
(𝑍 𝐿)
Factoring Eq. 2 gives
π‘₯ 𝑝
β€²
=
βˆ’π‘ 𝑝
β€²
𝑍 𝐿
[ π‘š11( 𝑋 𝑃 βˆ’ 𝑋 𝐿) + π‘š12( π‘Œπ‘ƒ βˆ’ π‘ŒπΏ) + π‘š13(βˆ’ 𝑍 𝐿)] (d)
𝑦 𝑝
β€²
=
βˆ’π‘ 𝑝
β€²
𝑍 𝐿
[ π‘š21( 𝑋 𝑃 βˆ’ 𝑋 𝐿) + π‘š22 ( π‘Œπ‘ƒ βˆ’ π‘ŒπΏ) + π‘š23(βˆ’ 𝑍 𝐿)] (e)
𝑧 𝑝
β€²
=
βˆ’π‘ 𝑝
β€²
𝑍 𝐿
[ π‘š31 ( 𝑋 𝑃 βˆ’ 𝑋 𝐿) + π‘š32( π‘Œπ‘ƒ βˆ’ π‘ŒπΏ ) + π‘š33(βˆ’ 𝑍 𝐿)] (f)
Dividing Eqs. (d) and (e) by Eqs. (f) yields
π‘₯ 𝑝
β€²
𝑧 𝑝
β€² =
π‘š11( 𝑋 π‘ƒβˆ’ 𝑋 𝐿)+ π‘š12( π‘Œ π‘ƒβˆ’ π‘Œ 𝐿 )+ π‘š13(βˆ’ 𝑍 𝐿)
π‘š31 ( 𝑋 π‘ƒβˆ’ 𝑋 𝐿)+ π‘š32( π‘Œ π‘ƒβˆ’ π‘Œ 𝐿)+ π‘š33(βˆ’ 𝑍 𝐿)
(g)
𝑦 𝑝
β€²
𝑧 𝑝
β€² =
π‘š21( 𝑋 π‘ƒβˆ’ 𝑋 𝐿)+ π‘š22( π‘Œ π‘ƒβˆ’ π‘Œ 𝐿)+ π‘š23(βˆ’ 𝑍 𝐿)
π‘š31 ( 𝑋 π‘ƒβˆ’ 𝑋 𝐿)+ π‘š32( π‘Œ π‘ƒβˆ’ π‘Œ 𝐿)+ π‘š33(βˆ’ 𝑍 𝐿 )
(h)
Referring to Fig. 2, it can be seen that the x'y' coordinates are offset from the fiducial
coordinates xy by x, and 𝑦0. Furthermore, for a photograph, the z coordinates are equal to
-f. The following equations provide for these relationships:
π‘₯ 𝑝 = π‘₯ 𝑝
β€²
+ π‘₯0 (i)
𝑦 𝑝 = 𝑦 𝑝
β€²
+ 𝑦0 (j)
𝑧 𝑝 = βˆ’π‘“ (k)
Substituting Eqs. (i), (j), and (k) into Eqs. ( g ) and (h) and rearranging gives
π‘₯ 𝑝 = π‘₯0 βˆ’ 𝑓[
π‘š11( 𝑋 𝑃 βˆ’ 𝑋 𝐿) + π‘š12( π‘Œπ‘ƒ βˆ’ π‘ŒπΏ) + π‘š13(βˆ’ 𝑍 𝐿)
π‘š31 ( 𝑋 𝑃 βˆ’ 𝑋 𝐿) + π‘š32 ( π‘Œπ‘ƒ βˆ’ π‘ŒπΏ) + π‘š33(βˆ’ 𝑍 𝐿)
]
Name: Muhammad Irsyadi Firdaus
Student ID: P66067055
Course: Digital Photogrammetry
𝑦 𝑝 = 𝑦0 βˆ’ 𝑓 [
π‘š21( 𝑋 𝑃 βˆ’ 𝑋 𝐿) + π‘š22 ( π‘Œπ‘ƒ βˆ’ π‘ŒπΏ) + π‘š23(βˆ’ 𝑍 𝐿)
π‘š31 ( 𝑋 𝑃 βˆ’ 𝑋 𝐿) + π‘š32( π‘Œπ‘ƒ βˆ’ π‘ŒπΏ) + π‘š33(βˆ’ 𝑍 𝐿)
]
2. Kinds of product that can be derived by the collinearity equation
- Space Resection By Collinearity
- Space Intersection By Collinearity
- Interior Orientation
- Relative Orientation
- Absolute Orientation
- Self-Calibration
3. Detail explanation about the equations (unknowns & knows) and their production
workflow
- Space Resection By Collinearity
Space resection in photogrammetry is the process of determining the six exterior
orientation parameters of a single tilted photo based on photographic measurements
of object (control) points whose XYZ ground coordinates are known. Than the
linearized forms of the space resection collinearity equations for a point A are
𝑏11 π‘‘πœ” + 𝑏12 π‘‘πœƒ + 𝑏13 𝑑𝑍𝐴 βˆ’ 𝑏14 𝑑𝑋 𝐿 βˆ’ 𝑏15 π‘‘π‘ŒπΏ βˆ’ 𝑏16 𝑑𝑍 𝐿 = 𝐽 + 𝑉π‘₯π‘Ž
𝑏21 π‘‘πœ” + 𝑏22 π‘‘πœƒ + 𝑏23 𝑑𝑍𝐴 βˆ’ 𝑏24 𝑑𝑋 𝐿 βˆ’ 𝑏25 π‘‘π‘ŒπΏ βˆ’ 𝑏26 𝑑𝑍 𝐿 = 𝐾 + π‘‰π‘¦π‘Ž
Figure 2. Geometry of space resection using collinearity condition
Name: Muhammad Irsyadi Firdaus
Student ID: P66067055
Course: Digital Photogrammetry
Production workflow
The Rotation
Matrix
Initial Approximations
Ground Control
Coordinates
Photo
Coordinates
The Linearized
Observation Equations
Add corrections
Six Elements of Exterior
Orientation
Iteration
Measurements
A near-vertical aerial photograph taken with focal- length camera contains images of
four ground control points 𝐴 through 𝐷. Refined photo coordinates and ground
control coordinates (in a local vertical system). Calculate the exterior orientation
parameters 𝑀, βˆ…, π‘˜, 𝑋 𝐿, π‘ŒπΏ and 𝑍 𝐿 for this photograph.
Solution:
a. Determine initial approximations
a) Set πœ” = 00 and βˆ… = 00.
b) Use the method Pythagorean theorem, based on points A and B, to compute
H.
𝐴𝐡 = √( 𝑋 𝐡 βˆ’ 𝑋𝐴)2 + ( π‘Œπ΅ βˆ’ π‘Œπ΄ )2
c) Compute ground coordinates from an assumed vertical photo for every point.
𝑋𝐴 = π‘₯ π‘Ž (
𝐻 βˆ’ β„Ž 𝐴
𝑓
)
π‘Œπ΄ = 𝑦 π‘Ž (
𝐻 βˆ’ β„Ž 𝐴
𝑓
)
d) Compute two-dimensional conformal coordinate transformation parameters
by a least squares solution using all control points, and use the results for
assigning initial approximations.
π‘Ž, 𝑏, 𝑇𝑋, π‘‡π‘Œ, π‘˜
Where
𝑋𝐴 = π‘Žπ‘₯ π‘Ž βˆ’ 𝑏𝑦 π‘Ž + 𝑇𝑋
π‘Œπ΄ = π‘Žπ‘₯ π‘Ž βˆ’ 𝑏𝑦 π‘Ž + π‘‡π‘Œ
π‘˜ = πœƒ = π‘‘π‘Žπ‘›βˆ’1
(
π‘Ž
𝑏
)
Name: Muhammad Irsyadi Firdaus
Student ID: P66067055
Course: Digital Photogrammetry
b. Form the rotation matrix
𝑀 = [
π‘š11 π‘š12 π‘š13
π‘š21 π‘š22 π‘š23
π‘š31 π‘š32 π‘š33
]
Where:
π‘š11 = cosβˆ…cos π‘˜
π‘š12 = sin Ο‰ sin βˆ… cosπ‘˜ + cos Ο‰ sin π‘˜
π‘š13 = βˆ’cos Ο‰ sinβˆ… cos π‘˜ + sin πœ” sin π‘˜
π‘š21 = βˆ’ cosβˆ…sin π‘˜
π‘š22 = βˆ’sin Ο‰ sin βˆ… sin k + cosπœ” cos π‘˜
π‘š23 = cos πœ” sin βˆ…sin π‘˜ + sin πœ” cos π‘˜
π‘š31 = sin βˆ…
π‘š32 = βˆ’sin Ο‰ cosβˆ…
π‘š33 = cos πœ” cosβˆ…
c. Form the linearized observation equations. Note that a pair of these equations is
formed for each control point, and thus a total of eight equations results. These
can be represented in matrix form as
π΅βˆ†= πœ€ + 𝑉
Where
𝐡 =
[
𝑏11 π‘Ž
𝑏12 π‘Ž
𝑏13 π‘Ž
𝑏21 π‘Ž
𝑏22 π‘Ž
𝑏23 π‘Ž
𝑏11 𝑏
𝑏12 𝑏
𝑏13 𝑏
𝑏21 𝑏
𝑏22 𝑏
𝑏23 𝑏
𝑏11 𝑐
𝑏12 𝑐
𝑏13 𝑐
𝑏21 𝑐
𝑏22 𝑐
𝑏23 𝑐
𝑏11 𝑑
𝑏12 𝑑
𝑏13 𝑑
𝑏21 𝑑
𝑏22 𝑑
𝑏23 𝑑
βˆ’π‘14 π‘Ž
βˆ’π‘15 π‘Ž
βˆ’π‘16 π‘Ž
βˆ’π‘24 π‘Ž
βˆ’π‘25 π‘Ž
βˆ’π‘26 π‘Ž
βˆ’π‘14 𝑏
βˆ’π‘15 𝑏
βˆ’π‘16 𝑏
βˆ’π‘24 𝑏
βˆ’π‘25 𝑏
βˆ’π‘26 𝑏
βˆ’π‘14 𝑐
βˆ’π‘15 𝑐
βˆ’π‘16 𝑐
βˆ’π‘24 𝑐
βˆ’π‘25 𝑐
βˆ’π‘26 𝑐
βˆ’π‘14 𝑑
βˆ’π‘15 𝑑
βˆ’π‘16 𝑑
βˆ’π‘24 𝑑
βˆ’π‘25 𝑑
βˆ’π‘26 𝑑
]
βˆ†=
[
π‘‘πœ”
π‘‘βˆ…
π‘‘π‘˜
𝑑𝑋 𝐿
π‘‘π‘ŒπΏ
𝑑𝑍 𝐿]
πœ€ =
[
π½π‘Ž
πΎπ‘Ž
𝐽𝑏
𝐾𝑏
𝐽𝑐
𝐾𝑐
𝐽 𝑑
𝐾𝑑]
𝑉 =
[
𝑉π‘₯ π‘Ž
𝑉𝑦 π‘Ž
𝑉π‘₯ 𝑏
𝑉𝑦 𝑏
𝑉π‘₯ 𝑐
𝑉𝑦𝑐
𝑉π‘₯ 𝑑
𝑉𝑦 𝑑
]
Calculation of the coefficients corresponding to point A is shown as an example.
Compute r, s, and q terms for point A.
π‘Ÿ = π‘š11( 𝑋𝐴 βˆ’ 𝑋 𝐿) + π‘š12( π‘Œπ΄ βˆ’ π‘ŒπΏ ) + π‘š13( 𝑍𝐴 βˆ’ 𝑍 𝐿 )
𝑠 = π‘š21( 𝑋𝐴 βˆ’ 𝑋 𝐿) + π‘š22( π‘Œπ΄ βˆ’ π‘ŒπΏ ) + π‘š23( 𝑍𝐴 βˆ’ 𝑍 𝐿)
π‘ž = π‘š31 ( 𝑋𝐴 βˆ’ 𝑋 𝐿) + π‘š32( π‘Œπ΄ βˆ’ π‘ŒπΏ) + π‘š33 ( 𝑍𝐴 βˆ’ 𝑍 𝐿)
Compute linearized collinearity equation for point A
𝑏11 =
𝑓
π‘ž2
[ π‘Ÿ (βˆ’π‘š33βˆ†π‘Œ + π‘š32βˆ†π‘) βˆ’ π‘ž(βˆ’π‘š13βˆ†π‘Œ + π‘š12βˆ†π‘)]
𝑏12 =
𝑓
π‘ž2
[ π‘Ÿ (cosβˆ… βˆ†π‘‹ + sin πœ” sin βˆ… βˆ†Y βˆ’ cos πœ” sin βˆ… βˆ†π‘) βˆ’ π‘ž(βˆ’sin βˆ… cos π‘˜ βˆ†π‘‹ +
sin πœ” cosβˆ…cos π‘˜ βˆ†π‘Œβˆ’ cos πœ” cosβˆ…cos π‘˜ βˆ†π‘)]
𝑏13 =
βˆ’π‘“
π‘ž
( π‘š21βˆ†π‘‹ + π‘š22βˆ†π‘Œ + π‘š23βˆ†π‘)
𝑏14 =
𝑓
π‘ž2
( π‘Ÿπ‘š31 βˆ’ π‘žπ‘š11)
Name: Muhammad Irsyadi Firdaus
Student ID: P66067055
Course: Digital Photogrammetry
𝑏15 =
𝑓
π‘ž2
( π‘Ÿπ‘š32 βˆ’ π‘žπ‘š12)
𝑏16 =
𝑓
π‘ž2
( π‘Ÿπ‘š33 βˆ’ π‘žπ‘š13)
𝑏21 =
𝑓
π‘ž2
[ 𝑠 (βˆ’π‘š33βˆ†π‘Œ+ π‘š32βˆ†π‘) βˆ’ π‘ž(βˆ’π‘š23βˆ†π‘Œ + π‘š22βˆ†π‘)]
𝑏22 =
𝑓
π‘ž2
[ 𝑠 (cosβˆ… βˆ†π‘‹ + sin πœ” sinβˆ… βˆ†Y βˆ’ cos πœ” sin βˆ… βˆ†π‘) βˆ’ π‘ž(βˆ’sin βˆ… cos π‘˜ βˆ†π‘‹ +
sin πœ” cosβˆ…cos π‘˜ βˆ†π‘Œβˆ’ cos πœ” cosβˆ…cos π‘˜ βˆ†π‘)]
𝑏23 =
𝑓
π‘ž
( π‘š11βˆ†π‘‹ + π‘š12βˆ†π‘Œ + π‘š13βˆ†π‘)
𝑏24 =
𝑓
π‘ž2
( π‘ π‘š31 βˆ’ π‘žπ‘š21)
𝑏25 =
𝑓
π‘ž2
( π‘ π‘š32 βˆ’ π‘žπ‘š22)
𝑏16 =
𝑓
π‘ž2
( π‘ π‘š33 βˆ’ π‘žπ‘š23)
𝐽 = π‘₯ π‘Ž βˆ’ π‘₯0 + 𝑓
π‘Ÿ
π‘ž
𝐾 = 𝑦 π‘Ž βˆ’ 𝑦0 + 𝑓
𝑠
π‘ž
Remaining coefficients, corresponding to points B, C, and D, are calculated in a similar
manner.
d. Form and solve normal equations, where βˆ†, 𝐡, and πœ€ have been substituted for 𝑋,
π‘Œ, and 𝐿, respectively. The solution is
βˆ†= ( 𝐡 𝑇
𝐡)βˆ’1( 𝐡 𝑇
πœ€)
e. Add corrections. (Note: Angle corrections are in radians.)
πœ” = 00
+ 𝑑𝑀 (
1800
πœ‹
)
βˆ… = 00
+ π‘‘βˆ… (
1800
πœ‹
)
π‘˜ = πœƒ + π‘‘π‘˜
𝑋 𝐿 = 𝑇𝑋 + 𝑑𝑋 𝐿
π‘ŒπΏ = π‘‡π‘Œ + π‘‘π‘ŒπΏ
𝑍 𝐿 = 𝑇𝑍 + 𝑑𝑍 𝐿
f. Second iteration: Repeat step b, using updated approximations
- Space Intersection By Collinearity
In space intersection, two photos (in a stereo pair) with known exterior orientation
parameters are used to determine the spatial position of any object point in the
overlap area since the two rays to the same object point from the two photos must
intersect at the point.
The procedure is known as space intersection, so called because corresponding rays
to the same object point from the two photo must intersect at the point. To calculate
Name: Muhammad Irsyadi Firdaus
Student ID: P66067055
Course: Digital Photogrammetry
the coordinates of points A by space intersection, collinearity equations of the
linearized. Note, however, that since the six elements of exterior orientation are
known, the only remaining unknown in these equations are 𝑑𝑋𝐴, π‘‘π‘Œπ΄, 𝑑𝑍𝐴. These are
corrections to be applied to initial approximations for object space coordinates
𝑋𝐴, π‘Œπ΄ , 𝑍𝐴 respectively, for ground point A. The linearized forms of the space
intersection equations for point A are
𝑏14 𝑑𝑋𝐴 + 𝑏15 π‘‘π‘Œπ΄ + 𝑏16 𝑑𝑍𝐴 = 𝐽 + 𝑉π‘₯π‘Ž
𝑏24 𝑑𝑋𝐴 + 𝑏25 π‘‘π‘Œπ΄ + 𝑏26 𝑑𝑍𝐴 = 𝐽 + π‘‰π‘¦π‘Ž
Figure 3. Space intersection with a stereopair of aerial photos
- Self-Calibration
Self-calibration is a computational process wherein calibration parameters are
included in the photogrammetric solution, generally in a combined interior-relative-
absolute orientation. The process uses collinearity equations that have been
augmented with additional terms to account for adjustment of the calibrated focal
length, principal-point offsets, and symmetric radial and decentering lens distortion.
The common form of the augmented collinearity equations is given as
π‘₯ π‘Ž = π‘₯0 βˆ’ π‘₯Μ… π‘Ž( π‘˜1 π‘Ÿπ‘Ž
2
+ π‘˜2 π‘Ÿπ‘Ž
4
+ π‘˜3 π‘Ÿπ‘Ž
6) βˆ’ (1 + 𝑝3
2
π‘Ÿπ‘Ž
2)[ 𝑝1(3π‘₯Μ… π‘Ž
2
+ 𝑦̅ π‘Ž
2) + 2𝑝2 π‘₯Μ… π‘Ž 𝑦̅ π‘Ž] βˆ’ 𝑓
π‘Ÿ
π‘ž
𝑦 π‘Ž = 𝑦0 βˆ’ 𝑦̅ π‘Ž( π‘˜1 π‘Ÿπ‘Ž
2
+ π‘˜2 π‘Ÿπ‘Ž
4
+ π‘˜3 π‘Ÿπ‘Ž
6) βˆ’ (1 + 𝑝3
2
π‘Ÿπ‘Ž
2)[2𝑝1 π‘₯Μ… π‘Ž 𝑦̅ π‘Ž + 𝑝2( π‘₯Μ… π‘Ž
2
+ 3𝑦̅̅̅̅ π‘Ž
2)] βˆ’ 𝑓
𝑠
π‘ž
Where
π‘₯ π‘Ž, 𝑦 π‘Ž = measured photo coordinates related to fiducials
π‘₯0, 𝑦0 = coordinates of the principal point
π‘₯Μ… π‘Ž = π‘₯ π‘Ž βˆ’ π‘₯0
Name: Muhammad Irsyadi Firdaus
Student ID: P66067055
Course: Digital Photogrammetry
𝑦̅ π‘Ž = 𝑦 π‘Ž βˆ’ 𝑦0
π‘Ÿπ‘Ž
6
= π‘₯Μ… π‘Ž
2
+ 𝑦̅ π‘Ž
2
π‘˜1, π‘˜2, π‘˜3 = symmetric radial lens distortioncoefficients
𝑝1, 𝑝2, 𝑝3 = decentering distortion coefficients
𝑓 = calibrated focal length
π‘Ÿ, 𝑠, π‘ž = collinearity equation terms

More Related Content

What's hot

Height systems and vertical datums
Height systems and vertical datumsHeight systems and vertical datums
Height systems and vertical datumsAhmad Hasan
Β 
Lecture 08 tilted photograph
Lecture 08  tilted photographLecture 08  tilted photograph
Lecture 08 tilted photographSarhat Adam
Β 
Digital image processing
Digital image processingDigital image processing
Digital image processingkaushal gadariya
Β 
Digital photogrammetry
Digital photogrammetryDigital photogrammetry
Digital photogrammetryMr Amol Ghogare
Β 
Digitalcartography
DigitalcartographyDigitalcartography
DigitalcartographyNimraArshad25
Β 
Introduction of photogrammetry
Introduction of photogrammetryIntroduction of photogrammetry
Introduction of photogrammetryJayantha Samarasinghe
Β 
Lecture 6 vertical photographs
Lecture 6  vertical photographsLecture 6  vertical photographs
Lecture 6 vertical photographsSarhat Adam
Β 
DEM generation, Image Matching in Aerial Photogrammetry.pptx
DEM generation, Image Matching in  Aerial Photogrammetry.pptxDEM generation, Image Matching in  Aerial Photogrammetry.pptx
DEM generation, Image Matching in Aerial Photogrammetry.pptxIndraSubedi7
Β 
Understanding Coordinate Systems and Projections for ArcGIS
Understanding Coordinate Systems and Projections for ArcGISUnderstanding Coordinate Systems and Projections for ArcGIS
Understanding Coordinate Systems and Projections for ArcGISJohn Schaeffer
Β 
Digital image processing
Digital image processingDigital image processing
Digital image processinglakhveer singh
Β 
03 cameras & their geometry
03 cameras & their geometry03 cameras & their geometry
03 cameras & their geometrySarhat Adam
Β 
Photogrammetry - areaotriangulation
Photogrammetry - areaotriangulationPhotogrammetry - areaotriangulation
Photogrammetry - areaotriangulationjayan_sri
Β 
Lecture01: Introduction to Photogrammetry
Lecture01: Introduction to PhotogrammetryLecture01: Introduction to Photogrammetry
Lecture01: Introduction to PhotogrammetrySarhat Adam
Β 
Stereoscopic parallax
Stereoscopic parallaxStereoscopic parallax
Stereoscopic parallaxMr Amol Ghogare
Β 

What's hot (20)

Height systems and vertical datums
Height systems and vertical datumsHeight systems and vertical datums
Height systems and vertical datums
Β 
photogrammetry
photogrammetryphotogrammetry
photogrammetry
Β 
Lecture 08 tilted photograph
Lecture 08  tilted photographLecture 08  tilted photograph
Lecture 08 tilted photograph
Β 
Photogrammetry
PhotogrammetryPhotogrammetry
Photogrammetry
Β 
Digital image processing
Digital image processingDigital image processing
Digital image processing
Β 
Historical Development of Photogrammetry
Historical Development of PhotogrammetryHistorical Development of Photogrammetry
Historical Development of Photogrammetry
Β 
Digital photogrammetry
Digital photogrammetryDigital photogrammetry
Digital photogrammetry
Β 
Stereoscopic Parallax
Stereoscopic ParallaxStereoscopic Parallax
Stereoscopic Parallax
Β 
Photogrammetry-part 1
Photogrammetry-part 1Photogrammetry-part 1
Photogrammetry-part 1
Β 
Digitalcartography
DigitalcartographyDigitalcartography
Digitalcartography
Β 
Introduction of photogrammetry
Introduction of photogrammetryIntroduction of photogrammetry
Introduction of photogrammetry
Β 
Historical Development of Photogrammetry
Historical Development of PhotogrammetryHistorical Development of Photogrammetry
Historical Development of Photogrammetry
Β 
Lecture 6 vertical photographs
Lecture 6  vertical photographsLecture 6  vertical photographs
Lecture 6 vertical photographs
Β 
DEM generation, Image Matching in Aerial Photogrammetry.pptx
DEM generation, Image Matching in  Aerial Photogrammetry.pptxDEM generation, Image Matching in  Aerial Photogrammetry.pptx
DEM generation, Image Matching in Aerial Photogrammetry.pptx
Β 
Understanding Coordinate Systems and Projections for ArcGIS
Understanding Coordinate Systems and Projections for ArcGISUnderstanding Coordinate Systems and Projections for ArcGIS
Understanding Coordinate Systems and Projections for ArcGIS
Β 
Digital image processing
Digital image processingDigital image processing
Digital image processing
Β 
03 cameras & their geometry
03 cameras & their geometry03 cameras & their geometry
03 cameras & their geometry
Β 
Photogrammetry - areaotriangulation
Photogrammetry - areaotriangulationPhotogrammetry - areaotriangulation
Photogrammetry - areaotriangulation
Β 
Lecture01: Introduction to Photogrammetry
Lecture01: Introduction to PhotogrammetryLecture01: Introduction to Photogrammetry
Lecture01: Introduction to Photogrammetry
Β 
Stereoscopic parallax
Stereoscopic parallaxStereoscopic parallax
Stereoscopic parallax
Β 

Similar to Collinearity Equations

Theories and Engineering Technics of 2D-to-3D Back-Projection Problem
Theories and Engineering Technics of 2D-to-3D Back-Projection ProblemTheories and Engineering Technics of 2D-to-3D Back-Projection Problem
Theories and Engineering Technics of 2D-to-3D Back-Projection ProblemSeongcheol Baek
Β 
GATE Engineering Maths : Vector Calculus
GATE Engineering Maths : Vector CalculusGATE Engineering Maths : Vector Calculus
GATE Engineering Maths : Vector CalculusParthDave57
Β 
SIFT/SURF can achieve scale, rotation and illumination invariant during image...
SIFT/SURF can achieve scale, rotation and illumination invariant during image...SIFT/SURF can achieve scale, rotation and illumination invariant during image...
SIFT/SURF can achieve scale, rotation and illumination invariant during image...National Cheng Kung University
Β 
GCSE-StraightLines.pptx
GCSE-StraightLines.pptxGCSE-StraightLines.pptx
GCSE-StraightLines.pptxNourLahham2
Β 
Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...Sonendra Kumar Gupta
Β 
Concepts and Applications of the Fundamental Theorem of Line Integrals.pdf
Concepts and Applications of the Fundamental Theorem of Line Integrals.pdfConcepts and Applications of the Fundamental Theorem of Line Integrals.pdf
Concepts and Applications of the Fundamental Theorem of Line Integrals.pdfJacobBraginsky
Β 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxjyotidighole2
Β 
Linear Equations in Two Variables.pptx
Linear Equations in Two Variables.pptxLinear Equations in Two Variables.pptx
Linear Equations in Two Variables.pptxCamiling Catholic School
Β 
B.Tech-II_Unit-V
B.Tech-II_Unit-VB.Tech-II_Unit-V
B.Tech-II_Unit-VKundan Kumar
Β 
De la grafica a la funcion
De la grafica a la funcionDe la grafica a la funcion
De la grafica a la funcionAna Faraco
Β 
3D Graphics : Computer Graphics Fundamentals
3D Graphics : Computer Graphics Fundamentals3D Graphics : Computer Graphics Fundamentals
3D Graphics : Computer Graphics FundamentalsMuhammed Afsal Villan
Β 
Movimiento en dos y tres dimensiones
Movimiento en dos y tres dimensionesMovimiento en dos y tres dimensiones
Movimiento en dos y tres dimensionesjolopezpla
Β 
CLASS X MATHS Coordinate geometry
CLASS X MATHS Coordinate geometryCLASS X MATHS Coordinate geometry
CLASS X MATHS Coordinate geometryRc Os
Β 
PART I.3 - Physical Mathematics
PART I.3 - Physical MathematicsPART I.3 - Physical Mathematics
PART I.3 - Physical MathematicsMaurice R. TREMBLAY
Β 
Derivation and Application of Six-Point Linear Multistep Numerical Method for...
Derivation and Application of Six-Point Linear Multistep Numerical Method for...Derivation and Application of Six-Point Linear Multistep Numerical Method for...
Derivation and Application of Six-Point Linear Multistep Numerical Method for...IOSR Journals
Β 
Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Kevin Johnson
Β 

Similar to Collinearity Equations (20)

Theories and Engineering Technics of 2D-to-3D Back-Projection Problem
Theories and Engineering Technics of 2D-to-3D Back-Projection ProblemTheories and Engineering Technics of 2D-to-3D Back-Projection Problem
Theories and Engineering Technics of 2D-to-3D Back-Projection Problem
Β 
lec41.ppt
lec41.pptlec41.ppt
lec41.ppt
Β 
Unidad 2 paso 3
Unidad 2   paso 3Unidad 2   paso 3
Unidad 2 paso 3
Β 
GATE Engineering Maths : Vector Calculus
GATE Engineering Maths : Vector CalculusGATE Engineering Maths : Vector Calculus
GATE Engineering Maths : Vector Calculus
Β 
SIFT/SURF can achieve scale, rotation and illumination invariant during image...
SIFT/SURF can achieve scale, rotation and illumination invariant during image...SIFT/SURF can achieve scale, rotation and illumination invariant during image...
SIFT/SURF can achieve scale, rotation and illumination invariant during image...
Β 
GCSE-StraightLines.pptx
GCSE-StraightLines.pptxGCSE-StraightLines.pptx
GCSE-StraightLines.pptx
Β 
Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...
Β 
Concepts and Applications of the Fundamental Theorem of Line Integrals.pdf
Concepts and Applications of the Fundamental Theorem of Line Integrals.pdfConcepts and Applications of the Fundamental Theorem of Line Integrals.pdf
Concepts and Applications of the Fundamental Theorem of Line Integrals.pdf
Β 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptx
Β 
lec33.ppt
lec33.pptlec33.ppt
lec33.ppt
Β 
Linear Equations in Two Variables.pptx
Linear Equations in Two Variables.pptxLinear Equations in Two Variables.pptx
Linear Equations in Two Variables.pptx
Β 
B.Tech-II_Unit-V
B.Tech-II_Unit-VB.Tech-II_Unit-V
B.Tech-II_Unit-V
Β 
De la grafica a la funcion
De la grafica a la funcionDe la grafica a la funcion
De la grafica a la funcion
Β 
3D Graphics : Computer Graphics Fundamentals
3D Graphics : Computer Graphics Fundamentals3D Graphics : Computer Graphics Fundamentals
3D Graphics : Computer Graphics Fundamentals
Β 
Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...
Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...
Four Point Gauss Quadrature Runge – Kuta Method Of Order 8 For Ordinary Diffe...
Β 
Movimiento en dos y tres dimensiones
Movimiento en dos y tres dimensionesMovimiento en dos y tres dimensiones
Movimiento en dos y tres dimensiones
Β 
CLASS X MATHS Coordinate geometry
CLASS X MATHS Coordinate geometryCLASS X MATHS Coordinate geometry
CLASS X MATHS Coordinate geometry
Β 
PART I.3 - Physical Mathematics
PART I.3 - Physical MathematicsPART I.3 - Physical Mathematics
PART I.3 - Physical Mathematics
Β 
Derivation and Application of Six-Point Linear Multistep Numerical Method for...
Derivation and Application of Six-Point Linear Multistep Numerical Method for...Derivation and Application of Six-Point Linear Multistep Numerical Method for...
Derivation and Application of Six-Point Linear Multistep Numerical Method for...
Β 
Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4
Β 

More from National Cheng Kung University

Accuracy assessment and 3D Mapping by Consumer Grade Spherical Camera
Accuracy assessment and 3D Mapping by Consumer Grade Spherical CameraAccuracy assessment and 3D Mapping by Consumer Grade Spherical Camera
Accuracy assessment and 3D Mapping by Consumer Grade Spherical CameraNational Cheng Kung University
Β 
3D Rekonstruksi Bangunan Menggunakan Gambar Panorama Sebagai Upaya Untuk Miti...
3D Rekonstruksi Bangunan Menggunakan Gambar Panorama Sebagai Upaya Untuk Miti...3D Rekonstruksi Bangunan Menggunakan Gambar Panorama Sebagai Upaya Untuk Miti...
3D Rekonstruksi Bangunan Menggunakan Gambar Panorama Sebagai Upaya Untuk Miti...National Cheng Kung University
Β 
3D Rekonstruksi Bangunan Menggunakan Gambar Panorama Sebagai Upaya Untuk Miti...
3D Rekonstruksi Bangunan Menggunakan Gambar Panorama Sebagai Upaya Untuk Miti...3D Rekonstruksi Bangunan Menggunakan Gambar Panorama Sebagai Upaya Untuk Miti...
3D Rekonstruksi Bangunan Menggunakan Gambar Panorama Sebagai Upaya Untuk Miti...National Cheng Kung University
Β 
3D Indoor and Outdoor Mapping from Point Cloud Generated by Spherical Camera
3D Indoor and Outdoor Mapping from Point Cloud Generated by Spherical Camera3D Indoor and Outdoor Mapping from Point Cloud Generated by Spherical Camera
3D Indoor and Outdoor Mapping from Point Cloud Generated by Spherical CameraNational Cheng Kung University
Β 
3D Indoor and Outdoor Mapping from Point Cloud Generated by Spherical Camera
3D Indoor and Outdoor Mapping from Point Cloud Generated by Spherical Camera3D Indoor and Outdoor Mapping from Point Cloud Generated by Spherical Camera
3D Indoor and Outdoor Mapping from Point Cloud Generated by Spherical CameraNational Cheng Kung University
Β 
Satellite Image Classification using Decision Tree, SVM and k-Nearest Neighbor
Satellite Image Classification using Decision Tree, SVM and k-Nearest NeighborSatellite Image Classification using Decision Tree, SVM and k-Nearest Neighbor
Satellite Image Classification using Decision Tree, SVM and k-Nearest NeighborNational Cheng Kung University
Β 
Optimal Filtering with Kalman Filters and Smoothers Using AndroSensor IMU Data
Optimal Filtering with Kalman Filters and Smoothers Using AndroSensor IMU DataOptimal Filtering with Kalman Filters and Smoothers Using AndroSensor IMU Data
Optimal Filtering with Kalman Filters and Smoothers Using AndroSensor IMU DataNational Cheng Kung University
Β 
Satellite Image Classification using Decision Tree, SVM and k-Nearest Neighbor
Satellite Image Classification using Decision Tree, SVM and k-Nearest NeighborSatellite Image Classification using Decision Tree, SVM and k-Nearest Neighbor
Satellite Image Classification using Decision Tree, SVM and k-Nearest NeighborNational Cheng Kung University
Β 
A Method of Mining Association Rules for Geographical Points of Interest
A Method of Mining Association Rules for Geographical Points of InterestA Method of Mining Association Rules for Geographical Points of Interest
A Method of Mining Association Rules for Geographical Points of InterestNational Cheng Kung University
Β 
Calibration of Inertial Sensor within Smartphone
Calibration of Inertial Sensor within SmartphoneCalibration of Inertial Sensor within Smartphone
Calibration of Inertial Sensor within SmartphoneNational Cheng Kung University
Β 
Pengukuran GPS Menggunakan Trimble Secara Manual
Pengukuran GPS Menggunakan Trimble Secara ManualPengukuran GPS Menggunakan Trimble Secara Manual
Pengukuran GPS Menggunakan Trimble Secara ManualNational Cheng Kung University
Β 
Building classification model, tree model, confusion matrix and prediction ac...
Building classification model, tree model, confusion matrix and prediction ac...Building classification model, tree model, confusion matrix and prediction ac...
Building classification model, tree model, confusion matrix and prediction ac...National Cheng Kung University
Β 
Accuracy Analysis of Three-Dimensional Model Reconstructed by Spherical Video...
Accuracy Analysis of Three-Dimensional Model Reconstructed by Spherical Video...Accuracy Analysis of Three-Dimensional Model Reconstructed by Spherical Video...
Accuracy Analysis of Three-Dimensional Model Reconstructed by Spherical Video...National Cheng Kung University
Β 
Association Rule (Data Mining) - Frequent Itemset Generation, Closed Frequent...
Association Rule (Data Mining) - Frequent Itemset Generation, Closed Frequent...Association Rule (Data Mining) - Frequent Itemset Generation, Closed Frequent...
Association Rule (Data Mining) - Frequent Itemset Generation, Closed Frequent...National Cheng Kung University
Β 
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...National Cheng Kung University
Β 
3D reconstruction by photogrammetry and 4D deformation measurement
3D reconstruction by photogrammetry and 4D deformation measurement3D reconstruction by photogrammetry and 4D deformation measurement
3D reconstruction by photogrammetry and 4D deformation measurementNational Cheng Kung University
Β 

More from National Cheng Kung University (20)

Accuracy assessment and 3D Mapping by Consumer Grade Spherical Camera
Accuracy assessment and 3D Mapping by Consumer Grade Spherical CameraAccuracy assessment and 3D Mapping by Consumer Grade Spherical Camera
Accuracy assessment and 3D Mapping by Consumer Grade Spherical Camera
Β 
3D Rekonstruksi Bangunan Menggunakan Gambar Panorama Sebagai Upaya Untuk Miti...
3D Rekonstruksi Bangunan Menggunakan Gambar Panorama Sebagai Upaya Untuk Miti...3D Rekonstruksi Bangunan Menggunakan Gambar Panorama Sebagai Upaya Untuk Miti...
3D Rekonstruksi Bangunan Menggunakan Gambar Panorama Sebagai Upaya Untuk Miti...
Β 
3D Rekonstruksi Bangunan Menggunakan Gambar Panorama Sebagai Upaya Untuk Miti...
3D Rekonstruksi Bangunan Menggunakan Gambar Panorama Sebagai Upaya Untuk Miti...3D Rekonstruksi Bangunan Menggunakan Gambar Panorama Sebagai Upaya Untuk Miti...
3D Rekonstruksi Bangunan Menggunakan Gambar Panorama Sebagai Upaya Untuk Miti...
Β 
3D Indoor and Outdoor Mapping from Point Cloud Generated by Spherical Camera
3D Indoor and Outdoor Mapping from Point Cloud Generated by Spherical Camera3D Indoor and Outdoor Mapping from Point Cloud Generated by Spherical Camera
3D Indoor and Outdoor Mapping from Point Cloud Generated by Spherical Camera
Β 
3D Indoor and Outdoor Mapping from Point Cloud Generated by Spherical Camera
3D Indoor and Outdoor Mapping from Point Cloud Generated by Spherical Camera3D Indoor and Outdoor Mapping from Point Cloud Generated by Spherical Camera
3D Indoor and Outdoor Mapping from Point Cloud Generated by Spherical Camera
Β 
Handbook PPI Tainan Taiwan 2018
Handbook PPI Tainan Taiwan 2018Handbook PPI Tainan Taiwan 2018
Handbook PPI Tainan Taiwan 2018
Β 
Satellite Image Classification using Decision Tree, SVM and k-Nearest Neighbor
Satellite Image Classification using Decision Tree, SVM and k-Nearest NeighborSatellite Image Classification using Decision Tree, SVM and k-Nearest Neighbor
Satellite Image Classification using Decision Tree, SVM and k-Nearest Neighbor
Β 
Optimal Filtering with Kalman Filters and Smoothers Using AndroSensor IMU Data
Optimal Filtering with Kalman Filters and Smoothers Using AndroSensor IMU DataOptimal Filtering with Kalman Filters and Smoothers Using AndroSensor IMU Data
Optimal Filtering with Kalman Filters and Smoothers Using AndroSensor IMU Data
Β 
Satellite Image Classification using Decision Tree, SVM and k-Nearest Neighbor
Satellite Image Classification using Decision Tree, SVM and k-Nearest NeighborSatellite Image Classification using Decision Tree, SVM and k-Nearest Neighbor
Satellite Image Classification using Decision Tree, SVM and k-Nearest Neighbor
Β 
EKF and RTS smoother toolbox
EKF and RTS smoother toolboxEKF and RTS smoother toolbox
EKF and RTS smoother toolbox
Β 
Kalman Filter Basic
Kalman Filter BasicKalman Filter Basic
Kalman Filter Basic
Β 
A Method of Mining Association Rules for Geographical Points of Interest
A Method of Mining Association Rules for Geographical Points of InterestA Method of Mining Association Rules for Geographical Points of Interest
A Method of Mining Association Rules for Geographical Points of Interest
Β 
DSM Extraction from Pleiades Images Using RSP
DSM Extraction from Pleiades Images Using RSPDSM Extraction from Pleiades Images Using RSP
DSM Extraction from Pleiades Images Using RSP
Β 
Calibration of Inertial Sensor within Smartphone
Calibration of Inertial Sensor within SmartphoneCalibration of Inertial Sensor within Smartphone
Calibration of Inertial Sensor within Smartphone
Β 
Pengukuran GPS Menggunakan Trimble Secara Manual
Pengukuran GPS Menggunakan Trimble Secara ManualPengukuran GPS Menggunakan Trimble Secara Manual
Pengukuran GPS Menggunakan Trimble Secara Manual
Β 
Building classification model, tree model, confusion matrix and prediction ac...
Building classification model, tree model, confusion matrix and prediction ac...Building classification model, tree model, confusion matrix and prediction ac...
Building classification model, tree model, confusion matrix and prediction ac...
Β 
Accuracy Analysis of Three-Dimensional Model Reconstructed by Spherical Video...
Accuracy Analysis of Three-Dimensional Model Reconstructed by Spherical Video...Accuracy Analysis of Three-Dimensional Model Reconstructed by Spherical Video...
Accuracy Analysis of Three-Dimensional Model Reconstructed by Spherical Video...
Β 
Association Rule (Data Mining) - Frequent Itemset Generation, Closed Frequent...
Association Rule (Data Mining) - Frequent Itemset Generation, Closed Frequent...Association Rule (Data Mining) - Frequent Itemset Generation, Closed Frequent...
Association Rule (Data Mining) - Frequent Itemset Generation, Closed Frequent...
Β 
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...
The rotation matrix (DCM) and quaternion in Inertial Survey and Navigation Sy...
Β 
3D reconstruction by photogrammetry and 4D deformation measurement
3D reconstruction by photogrammetry and 4D deformation measurement3D reconstruction by photogrammetry and 4D deformation measurement
3D reconstruction by photogrammetry and 4D deformation measurement
Β 

Recently uploaded

Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
Β 
πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...9953056974 Low Rate Call Girls In Saket, Delhi NCR
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
Β 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
Β 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
Β 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage examplePragyanshuParadkar1
Β 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIkoyaldeepu123
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
Β 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
Β 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
Β 
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
Β 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
Β 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
Β 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
Β 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
Β 

Recently uploaded (20)

Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
Β 
πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
Β 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
Β 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
Β 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
Β 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage example
Β 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AI
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
Β 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
Β 
young call girls in Green ParkπŸ” 9953056974 πŸ” escort Service
young call girls in Green ParkπŸ” 9953056974 πŸ” escort Serviceyoung call girls in Green ParkπŸ” 9953056974 πŸ” escort Service
young call girls in Green ParkπŸ” 9953056974 πŸ” escort Service
Β 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
Β 
young call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Service
young call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Serviceyoung call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Service
young call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Service
Β 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
Β 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Β 
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Β 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
Β 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
Β 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
Β 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
Β 

Collinearity Equations

  • 1. Name: Muhammad Irsyadi Firdaus Student ID: P66067055 Course: Digital Photogrammetry Collinearity Equations 1. The collinearity equations are equations that express the condition in which the exposure station of a photograph, any object point, and it is photo image all lie along a straight line in three-dimensional space. The equations expressing this condition are called the Collinearity Condition Equations. They are perhaps the most useful of all equations to the photogrammetry. The collinearity condition is illustrated in Figure 1, where 𝐿, π‘Ž, and 𝐴 lie along a straight line. Two equationsexpressthe collinearityconditionforanypointona photo: one equation for the π‘₯ photo coordinate and another for the 𝑦 photo coordinate. Figure 1. Collinearity condition The collinearity equations are: π‘₯ π‘Ž = π‘₯0 βˆ’ 𝑓 [ π‘š11( 𝑋𝐴 βˆ’ 𝑋 𝐿) + π‘š12( π‘Œπ΄ βˆ’ π‘ŒπΏ) + π‘š13( 𝑍𝐴 βˆ’ 𝑍 𝐿) π‘š31 ( 𝑋𝐴 βˆ’ 𝑋 𝐿) + π‘š32( π‘Œπ΄ βˆ’ π‘ŒπΏ) + π‘š33( 𝑍𝐴 βˆ’ 𝑍 𝐿 ) ] 𝑦 π‘Ž = 𝑦0 βˆ’ 𝑓 [ π‘š21( 𝑋𝐴 βˆ’ 𝑋 𝐿) + π‘š22( π‘Œπ΄ βˆ’ π‘ŒπΏ) + π‘š23 ( 𝑍𝐴 βˆ’ 𝑍 𝐿 ) π‘š31 ( 𝑋𝐴 βˆ’ 𝑋 𝐿) + π‘š32( π‘Œπ΄ βˆ’ π‘ŒπΏ) + π‘š33( 𝑍𝐴 βˆ’ 𝑍 𝐿) ] where [ π‘₯ π‘Ž , 𝑦 π‘Ž] = image coordinates of point a, [ π‘₯0 , 𝑦0 ] = coordinates of the principal point, 𝑓 = camera focal length, [ 𝑋𝐴 , π‘Œπ΄ , 𝑍𝐴]= object coordinates of point A, and π‘š 𝑖𝑗 = elements of the rotation matrix M which is 3x3. In a simplified development of the equations for the two-dimensional projective transformation, an 𝑋′ π‘Œβ€² 𝑍′ coordinate systemis adopted which is parallel to the π‘‹π‘Œπ‘ system and has it is origin at 𝐿. The π‘₯β€² 𝑦′ 𝑧′ coordinatesof anypoint,suchas 𝑝 of Fig.2, can be expressed in terms of 𝑋′ π‘Œβ€² 𝑍′ coordinates as follows: π‘₯ 𝑝 β€² = π‘š11 𝑋 𝑝 β€² + π‘š12 π‘Œπ‘ β€² + π‘š13 𝑍 𝑝 β€² 𝑦 𝑝 β€² = π‘š21 𝑋 𝑝 β€² + π‘š22 π‘Œπ‘ β€² + π‘š23 𝑍 𝑝 β€² Eq. 1
  • 2. Name: Muhammad Irsyadi Firdaus Student ID: P66067055 Course: Digital Photogrammetry 𝑧 𝑝 β€² = π‘š31 𝑋 𝑝 β€² + π‘š32 π‘Œπ‘ β€² + π‘š33 𝑍 𝑝 β€² Figure 2. Geometry of two-dimensional projective transformation Figure 3. Parallel relationships between 𝑋′ π‘Œβ€² 𝑍′ and π‘‹π‘Œπ‘ planes in two-dimensional projective transformation Consider figure 3, which shows the parallel relationships between the 𝑋′ π‘Œβ€² 𝑍′ and π‘‹π‘Œπ‘ planes after rotation. From similar triangles of figure 2, 𝑋 𝑝 β€² 𝑋 𝑝 βˆ’ 𝑋 𝐿 = βˆ’π‘ 𝑝 β€² 𝑍 𝐿 From which 𝑋 𝑝 β€² = βˆ’π‘ 𝑝 β€² 𝑍 𝐿 (𝑋 𝑝 βˆ’ 𝑋 𝐿) (a) Again from similar triangles of figure 2.
  • 3. Name: Muhammad Irsyadi Firdaus Student ID: P66067055 Course: Digital Photogrammetry π‘Œπ‘ β€² π‘Œπ‘ βˆ’ π‘ŒπΏ = βˆ’π‘ 𝑝 β€² 𝑍 𝐿 From which π‘Œπ‘ β€² = βˆ’π‘ 𝑝 β€² 𝑍 𝐿 (π‘Œπ‘ βˆ’ π‘ŒπΏ) (b) Also, intuitively the following equation may be written: 𝑍 𝑝 β€² = βˆ’π‘ 𝑝 β€² 𝑍 𝐿 (𝑍 𝐿) (c) Substituting Eqs. (a), (b), and (c) into Eq. 1 gives π‘₯ 𝑝 β€² = π‘š11 βˆ’π‘ 𝑝 β€² 𝑍 𝐿 (𝑋 𝑝 βˆ’ 𝑋 𝐿) + π‘š12 βˆ’π‘ 𝑝 β€² 𝑍 𝐿 (π‘Œπ‘ βˆ’ π‘ŒπΏ ) + π‘š13 βˆ’π‘ 𝑝 β€² 𝑍 𝐿 (𝑍 𝐿) 𝑦 𝑝 β€² = π‘š21 βˆ’π‘ 𝑝 β€² 𝑍 𝐿 (𝑋 𝑝 βˆ’ 𝑋 𝐿) + π‘š22 βˆ’π‘ 𝑝 β€² 𝑍 𝐿 (π‘Œπ‘ βˆ’ π‘ŒπΏ) + π‘š23 βˆ’π‘ 𝑝 β€² 𝑍 𝐿 (𝑍 𝐿) Eq. 2 𝑧 𝑝 β€² = π‘š31 βˆ’π‘ 𝑝 β€² 𝑍 𝐿 (𝑋 𝑝 βˆ’ 𝑋 𝐿) + π‘š32 βˆ’π‘ 𝑝 β€² 𝑍 𝐿 (π‘Œπ‘ βˆ’ π‘ŒπΏ) + π‘š33 βˆ’π‘ 𝑝 β€² 𝑍 𝐿 (𝑍 𝐿) Factoring Eq. 2 gives π‘₯ 𝑝 β€² = βˆ’π‘ 𝑝 β€² 𝑍 𝐿 [ π‘š11( 𝑋 𝑃 βˆ’ 𝑋 𝐿) + π‘š12( π‘Œπ‘ƒ βˆ’ π‘ŒπΏ) + π‘š13(βˆ’ 𝑍 𝐿)] (d) 𝑦 𝑝 β€² = βˆ’π‘ 𝑝 β€² 𝑍 𝐿 [ π‘š21( 𝑋 𝑃 βˆ’ 𝑋 𝐿) + π‘š22 ( π‘Œπ‘ƒ βˆ’ π‘ŒπΏ) + π‘š23(βˆ’ 𝑍 𝐿)] (e) 𝑧 𝑝 β€² = βˆ’π‘ 𝑝 β€² 𝑍 𝐿 [ π‘š31 ( 𝑋 𝑃 βˆ’ 𝑋 𝐿) + π‘š32( π‘Œπ‘ƒ βˆ’ π‘ŒπΏ ) + π‘š33(βˆ’ 𝑍 𝐿)] (f) Dividing Eqs. (d) and (e) by Eqs. (f) yields π‘₯ 𝑝 β€² 𝑧 𝑝 β€² = π‘š11( 𝑋 π‘ƒβˆ’ 𝑋 𝐿)+ π‘š12( π‘Œ π‘ƒβˆ’ π‘Œ 𝐿 )+ π‘š13(βˆ’ 𝑍 𝐿) π‘š31 ( 𝑋 π‘ƒβˆ’ 𝑋 𝐿)+ π‘š32( π‘Œ π‘ƒβˆ’ π‘Œ 𝐿)+ π‘š33(βˆ’ 𝑍 𝐿) (g) 𝑦 𝑝 β€² 𝑧 𝑝 β€² = π‘š21( 𝑋 π‘ƒβˆ’ 𝑋 𝐿)+ π‘š22( π‘Œ π‘ƒβˆ’ π‘Œ 𝐿)+ π‘š23(βˆ’ 𝑍 𝐿) π‘š31 ( 𝑋 π‘ƒβˆ’ 𝑋 𝐿)+ π‘š32( π‘Œ π‘ƒβˆ’ π‘Œ 𝐿)+ π‘š33(βˆ’ 𝑍 𝐿 ) (h) Referring to Fig. 2, it can be seen that the x'y' coordinates are offset from the fiducial coordinates xy by x, and 𝑦0. Furthermore, for a photograph, the z coordinates are equal to -f. The following equations provide for these relationships: π‘₯ 𝑝 = π‘₯ 𝑝 β€² + π‘₯0 (i) 𝑦 𝑝 = 𝑦 𝑝 β€² + 𝑦0 (j) 𝑧 𝑝 = βˆ’π‘“ (k) Substituting Eqs. (i), (j), and (k) into Eqs. ( g ) and (h) and rearranging gives π‘₯ 𝑝 = π‘₯0 βˆ’ 𝑓[ π‘š11( 𝑋 𝑃 βˆ’ 𝑋 𝐿) + π‘š12( π‘Œπ‘ƒ βˆ’ π‘ŒπΏ) + π‘š13(βˆ’ 𝑍 𝐿) π‘š31 ( 𝑋 𝑃 βˆ’ 𝑋 𝐿) + π‘š32 ( π‘Œπ‘ƒ βˆ’ π‘ŒπΏ) + π‘š33(βˆ’ 𝑍 𝐿) ]
  • 4. Name: Muhammad Irsyadi Firdaus Student ID: P66067055 Course: Digital Photogrammetry 𝑦 𝑝 = 𝑦0 βˆ’ 𝑓 [ π‘š21( 𝑋 𝑃 βˆ’ 𝑋 𝐿) + π‘š22 ( π‘Œπ‘ƒ βˆ’ π‘ŒπΏ) + π‘š23(βˆ’ 𝑍 𝐿) π‘š31 ( 𝑋 𝑃 βˆ’ 𝑋 𝐿) + π‘š32( π‘Œπ‘ƒ βˆ’ π‘ŒπΏ) + π‘š33(βˆ’ 𝑍 𝐿) ] 2. Kinds of product that can be derived by the collinearity equation - Space Resection By Collinearity - Space Intersection By Collinearity - Interior Orientation - Relative Orientation - Absolute Orientation - Self-Calibration 3. Detail explanation about the equations (unknowns & knows) and their production workflow - Space Resection By Collinearity Space resection in photogrammetry is the process of determining the six exterior orientation parameters of a single tilted photo based on photographic measurements of object (control) points whose XYZ ground coordinates are known. Than the linearized forms of the space resection collinearity equations for a point A are 𝑏11 π‘‘πœ” + 𝑏12 π‘‘πœƒ + 𝑏13 𝑑𝑍𝐴 βˆ’ 𝑏14 𝑑𝑋 𝐿 βˆ’ 𝑏15 π‘‘π‘ŒπΏ βˆ’ 𝑏16 𝑑𝑍 𝐿 = 𝐽 + 𝑉π‘₯π‘Ž 𝑏21 π‘‘πœ” + 𝑏22 π‘‘πœƒ + 𝑏23 𝑑𝑍𝐴 βˆ’ 𝑏24 𝑑𝑋 𝐿 βˆ’ 𝑏25 π‘‘π‘ŒπΏ βˆ’ 𝑏26 𝑑𝑍 𝐿 = 𝐾 + π‘‰π‘¦π‘Ž Figure 2. Geometry of space resection using collinearity condition
  • 5. Name: Muhammad Irsyadi Firdaus Student ID: P66067055 Course: Digital Photogrammetry Production workflow The Rotation Matrix Initial Approximations Ground Control Coordinates Photo Coordinates The Linearized Observation Equations Add corrections Six Elements of Exterior Orientation Iteration Measurements A near-vertical aerial photograph taken with focal- length camera contains images of four ground control points 𝐴 through 𝐷. Refined photo coordinates and ground control coordinates (in a local vertical system). Calculate the exterior orientation parameters 𝑀, βˆ…, π‘˜, 𝑋 𝐿, π‘ŒπΏ and 𝑍 𝐿 for this photograph. Solution: a. Determine initial approximations a) Set πœ” = 00 and βˆ… = 00. b) Use the method Pythagorean theorem, based on points A and B, to compute H. 𝐴𝐡 = √( 𝑋 𝐡 βˆ’ 𝑋𝐴)2 + ( π‘Œπ΅ βˆ’ π‘Œπ΄ )2 c) Compute ground coordinates from an assumed vertical photo for every point. 𝑋𝐴 = π‘₯ π‘Ž ( 𝐻 βˆ’ β„Ž 𝐴 𝑓 ) π‘Œπ΄ = 𝑦 π‘Ž ( 𝐻 βˆ’ β„Ž 𝐴 𝑓 ) d) Compute two-dimensional conformal coordinate transformation parameters by a least squares solution using all control points, and use the results for assigning initial approximations. π‘Ž, 𝑏, 𝑇𝑋, π‘‡π‘Œ, π‘˜ Where 𝑋𝐴 = π‘Žπ‘₯ π‘Ž βˆ’ 𝑏𝑦 π‘Ž + 𝑇𝑋 π‘Œπ΄ = π‘Žπ‘₯ π‘Ž βˆ’ 𝑏𝑦 π‘Ž + π‘‡π‘Œ π‘˜ = πœƒ = π‘‘π‘Žπ‘›βˆ’1 ( π‘Ž 𝑏 )
  • 6. Name: Muhammad Irsyadi Firdaus Student ID: P66067055 Course: Digital Photogrammetry b. Form the rotation matrix 𝑀 = [ π‘š11 π‘š12 π‘š13 π‘š21 π‘š22 π‘š23 π‘š31 π‘š32 π‘š33 ] Where: π‘š11 = cosβˆ…cos π‘˜ π‘š12 = sin Ο‰ sin βˆ… cosπ‘˜ + cos Ο‰ sin π‘˜ π‘š13 = βˆ’cos Ο‰ sinβˆ… cos π‘˜ + sin πœ” sin π‘˜ π‘š21 = βˆ’ cosβˆ…sin π‘˜ π‘š22 = βˆ’sin Ο‰ sin βˆ… sin k + cosπœ” cos π‘˜ π‘š23 = cos πœ” sin βˆ…sin π‘˜ + sin πœ” cos π‘˜ π‘š31 = sin βˆ… π‘š32 = βˆ’sin Ο‰ cosβˆ… π‘š33 = cos πœ” cosβˆ… c. Form the linearized observation equations. Note that a pair of these equations is formed for each control point, and thus a total of eight equations results. These can be represented in matrix form as π΅βˆ†= πœ€ + 𝑉 Where 𝐡 = [ 𝑏11 π‘Ž 𝑏12 π‘Ž 𝑏13 π‘Ž 𝑏21 π‘Ž 𝑏22 π‘Ž 𝑏23 π‘Ž 𝑏11 𝑏 𝑏12 𝑏 𝑏13 𝑏 𝑏21 𝑏 𝑏22 𝑏 𝑏23 𝑏 𝑏11 𝑐 𝑏12 𝑐 𝑏13 𝑐 𝑏21 𝑐 𝑏22 𝑐 𝑏23 𝑐 𝑏11 𝑑 𝑏12 𝑑 𝑏13 𝑑 𝑏21 𝑑 𝑏22 𝑑 𝑏23 𝑑 βˆ’π‘14 π‘Ž βˆ’π‘15 π‘Ž βˆ’π‘16 π‘Ž βˆ’π‘24 π‘Ž βˆ’π‘25 π‘Ž βˆ’π‘26 π‘Ž βˆ’π‘14 𝑏 βˆ’π‘15 𝑏 βˆ’π‘16 𝑏 βˆ’π‘24 𝑏 βˆ’π‘25 𝑏 βˆ’π‘26 𝑏 βˆ’π‘14 𝑐 βˆ’π‘15 𝑐 βˆ’π‘16 𝑐 βˆ’π‘24 𝑐 βˆ’π‘25 𝑐 βˆ’π‘26 𝑐 βˆ’π‘14 𝑑 βˆ’π‘15 𝑑 βˆ’π‘16 𝑑 βˆ’π‘24 𝑑 βˆ’π‘25 𝑑 βˆ’π‘26 𝑑 ] βˆ†= [ π‘‘πœ” π‘‘βˆ… π‘‘π‘˜ 𝑑𝑋 𝐿 π‘‘π‘ŒπΏ 𝑑𝑍 𝐿] πœ€ = [ π½π‘Ž πΎπ‘Ž 𝐽𝑏 𝐾𝑏 𝐽𝑐 𝐾𝑐 𝐽 𝑑 𝐾𝑑] 𝑉 = [ 𝑉π‘₯ π‘Ž 𝑉𝑦 π‘Ž 𝑉π‘₯ 𝑏 𝑉𝑦 𝑏 𝑉π‘₯ 𝑐 𝑉𝑦𝑐 𝑉π‘₯ 𝑑 𝑉𝑦 𝑑 ] Calculation of the coefficients corresponding to point A is shown as an example. Compute r, s, and q terms for point A. π‘Ÿ = π‘š11( 𝑋𝐴 βˆ’ 𝑋 𝐿) + π‘š12( π‘Œπ΄ βˆ’ π‘ŒπΏ ) + π‘š13( 𝑍𝐴 βˆ’ 𝑍 𝐿 ) 𝑠 = π‘š21( 𝑋𝐴 βˆ’ 𝑋 𝐿) + π‘š22( π‘Œπ΄ βˆ’ π‘ŒπΏ ) + π‘š23( 𝑍𝐴 βˆ’ 𝑍 𝐿) π‘ž = π‘š31 ( 𝑋𝐴 βˆ’ 𝑋 𝐿) + π‘š32( π‘Œπ΄ βˆ’ π‘ŒπΏ) + π‘š33 ( 𝑍𝐴 βˆ’ 𝑍 𝐿) Compute linearized collinearity equation for point A 𝑏11 = 𝑓 π‘ž2 [ π‘Ÿ (βˆ’π‘š33βˆ†π‘Œ + π‘š32βˆ†π‘) βˆ’ π‘ž(βˆ’π‘š13βˆ†π‘Œ + π‘š12βˆ†π‘)] 𝑏12 = 𝑓 π‘ž2 [ π‘Ÿ (cosβˆ… βˆ†π‘‹ + sin πœ” sin βˆ… βˆ†Y βˆ’ cos πœ” sin βˆ… βˆ†π‘) βˆ’ π‘ž(βˆ’sin βˆ… cos π‘˜ βˆ†π‘‹ + sin πœ” cosβˆ…cos π‘˜ βˆ†π‘Œβˆ’ cos πœ” cosβˆ…cos π‘˜ βˆ†π‘)] 𝑏13 = βˆ’π‘“ π‘ž ( π‘š21βˆ†π‘‹ + π‘š22βˆ†π‘Œ + π‘š23βˆ†π‘) 𝑏14 = 𝑓 π‘ž2 ( π‘Ÿπ‘š31 βˆ’ π‘žπ‘š11)
  • 7. Name: Muhammad Irsyadi Firdaus Student ID: P66067055 Course: Digital Photogrammetry 𝑏15 = 𝑓 π‘ž2 ( π‘Ÿπ‘š32 βˆ’ π‘žπ‘š12) 𝑏16 = 𝑓 π‘ž2 ( π‘Ÿπ‘š33 βˆ’ π‘žπ‘š13) 𝑏21 = 𝑓 π‘ž2 [ 𝑠 (βˆ’π‘š33βˆ†π‘Œ+ π‘š32βˆ†π‘) βˆ’ π‘ž(βˆ’π‘š23βˆ†π‘Œ + π‘š22βˆ†π‘)] 𝑏22 = 𝑓 π‘ž2 [ 𝑠 (cosβˆ… βˆ†π‘‹ + sin πœ” sinβˆ… βˆ†Y βˆ’ cos πœ” sin βˆ… βˆ†π‘) βˆ’ π‘ž(βˆ’sin βˆ… cos π‘˜ βˆ†π‘‹ + sin πœ” cosβˆ…cos π‘˜ βˆ†π‘Œβˆ’ cos πœ” cosβˆ…cos π‘˜ βˆ†π‘)] 𝑏23 = 𝑓 π‘ž ( π‘š11βˆ†π‘‹ + π‘š12βˆ†π‘Œ + π‘š13βˆ†π‘) 𝑏24 = 𝑓 π‘ž2 ( π‘ π‘š31 βˆ’ π‘žπ‘š21) 𝑏25 = 𝑓 π‘ž2 ( π‘ π‘š32 βˆ’ π‘žπ‘š22) 𝑏16 = 𝑓 π‘ž2 ( π‘ π‘š33 βˆ’ π‘žπ‘š23) 𝐽 = π‘₯ π‘Ž βˆ’ π‘₯0 + 𝑓 π‘Ÿ π‘ž 𝐾 = 𝑦 π‘Ž βˆ’ 𝑦0 + 𝑓 𝑠 π‘ž Remaining coefficients, corresponding to points B, C, and D, are calculated in a similar manner. d. Form and solve normal equations, where βˆ†, 𝐡, and πœ€ have been substituted for 𝑋, π‘Œ, and 𝐿, respectively. The solution is βˆ†= ( 𝐡 𝑇 𝐡)βˆ’1( 𝐡 𝑇 πœ€) e. Add corrections. (Note: Angle corrections are in radians.) πœ” = 00 + 𝑑𝑀 ( 1800 πœ‹ ) βˆ… = 00 + π‘‘βˆ… ( 1800 πœ‹ ) π‘˜ = πœƒ + π‘‘π‘˜ 𝑋 𝐿 = 𝑇𝑋 + 𝑑𝑋 𝐿 π‘ŒπΏ = π‘‡π‘Œ + π‘‘π‘ŒπΏ 𝑍 𝐿 = 𝑇𝑍 + 𝑑𝑍 𝐿 f. Second iteration: Repeat step b, using updated approximations - Space Intersection By Collinearity In space intersection, two photos (in a stereo pair) with known exterior orientation parameters are used to determine the spatial position of any object point in the overlap area since the two rays to the same object point from the two photos must intersect at the point. The procedure is known as space intersection, so called because corresponding rays to the same object point from the two photo must intersect at the point. To calculate
  • 8. Name: Muhammad Irsyadi Firdaus Student ID: P66067055 Course: Digital Photogrammetry the coordinates of points A by space intersection, collinearity equations of the linearized. Note, however, that since the six elements of exterior orientation are known, the only remaining unknown in these equations are 𝑑𝑋𝐴, π‘‘π‘Œπ΄, 𝑑𝑍𝐴. These are corrections to be applied to initial approximations for object space coordinates 𝑋𝐴, π‘Œπ΄ , 𝑍𝐴 respectively, for ground point A. The linearized forms of the space intersection equations for point A are 𝑏14 𝑑𝑋𝐴 + 𝑏15 π‘‘π‘Œπ΄ + 𝑏16 𝑑𝑍𝐴 = 𝐽 + 𝑉π‘₯π‘Ž 𝑏24 𝑑𝑋𝐴 + 𝑏25 π‘‘π‘Œπ΄ + 𝑏26 𝑑𝑍𝐴 = 𝐽 + π‘‰π‘¦π‘Ž Figure 3. Space intersection with a stereopair of aerial photos - Self-Calibration Self-calibration is a computational process wherein calibration parameters are included in the photogrammetric solution, generally in a combined interior-relative- absolute orientation. The process uses collinearity equations that have been augmented with additional terms to account for adjustment of the calibrated focal length, principal-point offsets, and symmetric radial and decentering lens distortion. The common form of the augmented collinearity equations is given as π‘₯ π‘Ž = π‘₯0 βˆ’ π‘₯Μ… π‘Ž( π‘˜1 π‘Ÿπ‘Ž 2 + π‘˜2 π‘Ÿπ‘Ž 4 + π‘˜3 π‘Ÿπ‘Ž 6) βˆ’ (1 + 𝑝3 2 π‘Ÿπ‘Ž 2)[ 𝑝1(3π‘₯Μ… π‘Ž 2 + 𝑦̅ π‘Ž 2) + 2𝑝2 π‘₯Μ… π‘Ž 𝑦̅ π‘Ž] βˆ’ 𝑓 π‘Ÿ π‘ž 𝑦 π‘Ž = 𝑦0 βˆ’ 𝑦̅ π‘Ž( π‘˜1 π‘Ÿπ‘Ž 2 + π‘˜2 π‘Ÿπ‘Ž 4 + π‘˜3 π‘Ÿπ‘Ž 6) βˆ’ (1 + 𝑝3 2 π‘Ÿπ‘Ž 2)[2𝑝1 π‘₯Μ… π‘Ž 𝑦̅ π‘Ž + 𝑝2( π‘₯Μ… π‘Ž 2 + 3𝑦̅̅̅̅ π‘Ž 2)] βˆ’ 𝑓 𝑠 π‘ž Where π‘₯ π‘Ž, 𝑦 π‘Ž = measured photo coordinates related to fiducials π‘₯0, 𝑦0 = coordinates of the principal point π‘₯Μ… π‘Ž = π‘₯ π‘Ž βˆ’ π‘₯0
  • 9. Name: Muhammad Irsyadi Firdaus Student ID: P66067055 Course: Digital Photogrammetry 𝑦̅ π‘Ž = 𝑦 π‘Ž βˆ’ 𝑦0 π‘Ÿπ‘Ž 6 = π‘₯Μ… π‘Ž 2 + 𝑦̅ π‘Ž 2 π‘˜1, π‘˜2, π‘˜3 = symmetric radial lens distortioncoefficients 𝑝1, 𝑝2, 𝑝3 = decentering distortion coefficients 𝑓 = calibrated focal length π‘Ÿ, 𝑠, π‘ž = collinearity equation terms