SlideShare a Scribd company logo
1 of 19
Download to read offline
1
Class #5.0
Structural Dynamics
Single Degree of Freedom Systems
Forced-Damped Vibrations
Resonance
Dynamic Amplification
Dr. Tesfaye Alemu
2
SDOF: Forced, Undamped & Damped
( ) ( )
t
Sin
p
t
p F

0
= frequency
forcing
F =

⚫ Damped
Response
⚫ Transient Response = difference between
Total Response and
Steady State Response
⚫ Undamped Response
( ) ( ) ( )
( ) ( )
( )
( ) ( )
( )





















+
−
−
+








+
−
−
+













 +
+
= −
t
Cos
r
r
r
t
Sin
r
r
r
u
t
Sin
u
u
t
Cos
u
e
t
u
is
solution
TOTAL
The
F
F
Static
D
D
N
D
t
N










2
2
2
2
2
2
2
0
0
0
2
1
2
2
1
1
:

⚫ Transient Response decays
3
SDOF: Forced, damped, Resonance
( ) ( ) ( )
( ) ( )
( )
( ) ( )
( )
( ) ( ) ( )
( ) ( )
( )
( ) ( )
( )
( ) ( ) ( )   ( )
( ) ( )
( )
( ) ( )  ( )
( ) ( )
( ) ( )
t
Cos
u
t
u
t
t
Cos
u
t
u
Since
t
Cos
u
e
t
u
t
Cos
t
Sin
u
t
Sin
e
t
u
u
u
conditions
rest
at
initially
For
t
Cos
t
Sin
u
t
Sin
u
u
t
Cos
u
e
t
u
r
thus
sonance
At
t
Cos
r
r
r
t
Sin
r
r
r
u
t
Sin
u
u
t
Cos
u
e
t
u
is
solution
TOTAL
The
N
Static
F
N
Static
N
F
F
Static
t
F
F
Static
D
D
t
F
F
Static
D
D
N
D
t
N
F
N
F
F
F
Static
D
D
N
D
t
N
N
N
N









































2
1
2
:
2
0
2
0
1
1
2
0
0
0
0
0
0
:
2
0
1
1
2
2
0
1
1
0
1
1
1
:
Re
2
1
2
2
1
1
:
2
2
0
0
2
2
2
2
0
0
0
2
2
2
2
2
2
2
0
0
0
−
=
=





−
=
=





−
+
=
















+
=
−
−
+
+













 +
+
=
=
=
















+
=
−
−
+






+
=
−
=
−
+













 +
+
=
=
=
=


















+
−
−
+








+
−
−
+













 +
+
=
−
−
−
−



Resonance time
history
N
F 
 =
Resonance
4
SDOF: Forced, damped, Dynamic Amplification
( ) ( ) ( )
( ) ( )
( )
( ) ( )
( )
( ) ( )
( ) ( )
( )
( ) ( )
( )
( )
( ) ( )
( ) ( ) ( ) ( )
 
( )
( ) ( ) ( ) ( )
( )
( ) ( )
( )
( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
 
( ) ( )
 










































−
=
−
+
=
+
−
=
+
−
−
=






−
=
+
−
=




















+
−
−
+










+
−
−
+
−
=
−
+
−
+
−
=


















+
−
−
+








+
−
−
+
=


















+
−
−
+








+
−
−
+













 +
+
=

−
−
−
t
Sin
R
u
t
u
t
Cos
Sin
t
Sin
Cos
R
u
t
u
r
r
r
Sin
r
r
r
Cos
r
r
Tan
Angle
Lag
Phase
Define
r
r
R
Factor
ion
Amplificat
sponse
nt
Displaceme
Dynamic
Define
t
Cos
r
r
r
t
Sin
r
r
r
r
r
u
t
u
t
Cos
r
t
Sin
r
r
r
u
t
u
t
Cos
r
r
r
t
Sin
r
r
r
u
small
very
t
u
small
becomes
e
time
with
decays
solution
Transient
t
Cos
r
r
r
t
Sin
r
r
r
u
t
Sin
u
u
t
Cos
u
e
t
u
for
solution
d
generalize
is
solution
TOTAL
The
F
d
Static
F
F
d
Static
d
F
F
Static
F
F
Static
F
F
Static
t
F
F
Static
D
D
N
D
t
N
F
N
N
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
0
0
0
2
1
2
2
1
1
1
2
:
:
2
1
1
:
Re
:
2
1
2
2
1
1
2
1
2
1
2
1
2
1
2
2
1
1
:
2
1
2
2
1
1
:

( )
r

2
( )
2
1 r
−
( ) ( )2
2
2
2
1 r
r 
+
−

5
SDOF: Forced, damped, Dynamic Amplification
( )
( ) ( )
 
( ) ( )
sponse
nt
Displaceme
Static
Max
sponse
nt
Displaceme
Dynamic
State
Steady
R
Factor
ion
Amplificat
sponse
nt
Displaceme
Dynamic
r
r
R
Angle
Lag
Phase
r
r
Tan
t
Sin
R
u
t
u
for
is
solution
State
Steady
Final
The
d
d
F
d
Static
N
F
Re
Re
Re
2
1
1
:
1
2
:
2
2
2
2
1
=
=
+
−
=
=






−
=
−
=

−







⚫ Rd depends on:
⚫ Forcing Function:
⚫ System natural characteristics:
( )
r

2
( )
2
1 r
−
( ) ( )2
2
2
2
1 r
r 
+
−

Damping
Frequency
Natural
m
k
N
=
=
=


Frequency
Forcing
F =

6
SDOF: Forced, damped, Dynamic Amplification
( ) ( )
 
( ) ( )
sponse
nt
Displaceme
Static
Max
sponse
nt
Displaceme
Dynamic
R
Factor
ion
Amplificat
sponse
Dynamic
r
r
R
Angle
Lag
Phase
r
r
Tan
t
Sin
R
u
t
u
is
solution
State
Steady
Final
The
d
d
F
d
Static
Re
Re
Re
2
1
1
:
1
2
:
2
2
2
2
1
=
=
+
−
=
=






−
=
−
=
−





⚫ Max Static response
occurs a same time as
max forcing function
⚫ Dynamic response lags
by 

2
7
SDOF: Forced, damped, Dynamic Amplification, r<<1
( ) ( )
 
( ) ( )
( ) ( )
k
p
k
p
u
u
ku
p
ku
F
R
r
For
r
r
R
t
Sin
R
u
t
u
is
solution
State
Steady
Final
The
Static
Static
d
d
F
d
Static
0
0
max
0
2
2
2
1
1
1
1
1
2
1
1
:
=
=
=
=
=


+
−
=
−
=



⚫ At r << 1
⚫ Forcing Frequency << Natural Frequency
⚫ Rd ≤1
⚫ Little or no amplification of
response
⚫ Response controlled by
stiffness.
Ratio
Frequency
r
N
F
=
=


Rd
=
Dynamic
Displacement
Response
Amplification
Factor
N
F 
 
Ratio
Frequency
r F
=
=


8
SDOF: Forced, damped, Dynamic Amplification, r>>1
( ) ( )
 
( ) ( )
( )
2
0
2
0
2
max
0
2
2
2
2
2
2
2
2
1
1
1
2
1
1
:
F
F
F
Static
Static
F
F
N
N
F
d
d
F
d
Static
m
p
m
k
k
p
m
k
u
u
ku
p
ku
F
m
k
r
R
r
For
r
r
R
t
Sin
R
u
t
u
is
solution
State
Steady
Final
The











=








=








=
=
=
=
=
=


+
−
=
−
=
⚫ At r >> 1
⚫ Forcing Frequency >> Natural Frequency
⚫ Rd <<1
⚫ Response de-amplification.
⚫ Response approaches zero.
⚫ Response controlled by mass.
Ratio
Frequency
r
N
F
=
=


Rd
=
Dynamic
Displacement
Response
Amplification
Factor
N
F 
 
Ratio
Frequency
r F
=
=


9
SDOF: Forced, damped, Dynamic Amplification, r ≈ 1
( ) ( )
 
( ) ( )
( ) ( )
( )
N
N
N
Static
Static
d
d
F
d
Static
c
p
u
m
c
m
p
r
k
p
r
u
u
ku
p
ku
F
r
r
R
r
For
r
r
R
t
Sin
R
u
t
u
is
solution
State
Steady
Final
The











0
max
2
0
0
max
0
2
2
2
2
2
2
2
1
1
2
1
2
1
2
1
2
0
1
1
2
1
1
:
=






















=
=








=
=








=
=
=
=
+


+
−
=
−
=
⚫ At r ≈ 1, Resonance
⚫ Forcing Frequency ≈ Natural Frequency
⚫ Rd = Very Large
⚫ Large Response amplification.
⚫ Response controlled by damping.
Ratio
Frequency
r
N
F
=
=


Rd
=
Dynamic
Displacement
Response
Amplification
Factor
Ratio
Frequency
r F
=
=


N
F 
 
10
SDOF: Forced, damped, Dynamic Amplification, phase angle
⚫ Phase Angle
⚫ r<<1,  ≈ 0, response in
phase with forcing function.
⚫ Response peaks at same time as forcing function
⚫ r>>1,  ≈ 180˚, response out of
phase with forcing function.
⚫ Response has negative peak at the time when
forcing function has positive peak.
⚫ r ≈ 1,  ≈ 90˚, response peaks
when forcing function at zero.
Ratio
Frequency
r
N
F
=
=


( ) ( )
 
:
1
2
:
2
1
Angle
Phase
r
r
Tan
t
Sin
R
u
t
u
is
solution
State
Steady
Final
The
F
d
Static
=






−
=
−
=
− 



Rd
=
Dynamic
Displacement
Response
Amplification
Factor
Ratio
Frequency
r F
=
=


11
SDOF: Dynamic Response Amplification: Velocity
⚫ Dynamic Response Amplification for
Velocity:
⚫ Rv = Very Large at Resonance, r=1
⚫ Rv = 0 at r ≈ 0 (Rd ≈ 1)
⚫ Rv approaches zero at r = large
(Rd ≈ 1/r2) Ratio
Frequency
r
N
F
=
=


( ) ( )
  ( )
 
( ) ( )
( ) ( )
 
( ) ( )
  ( )
 
( ) ( )
  ( )
 
( ) ( )
 





















−
=






−
=
−
=
−








=
−
=
=
=
−
=
=
+
−
=
−
=
−
=
t
Cos
R
km
p
t
u
t
Cos
R
km
p
t
Cos
R
m
k
p
t
u
t
Cos
R
m
k
k
p
t
Cos
R
k
p
t
u
rR
R
R
R
Define
t
Cos
R
k
p
t
u
sponse
Static
Max
sponse
nt
Displaceme
Dynamic
State
Steady
r
r
R
t
Sin
R
k
p
t
Sin
R
u
t
u
is
solution
State
Steady
Final
The
F
v
F
v
F
v
F
v
F
v
N
d
v
d
F
v
N
F
d
F
d
F
d
F
d
Static
0
0
2
1
2
1
0
2
1
2
1
0
0
0
2
2
2
0
:
Re
Re
2
1
1
:




d
v rR
R =
12
SDOF: Dynamic Response Amplification: Acceleration
⚫ Dynamic Response Amplification for
Acceleration:
⚫ Ra = Very Large at Resonance, r = 1
⚫ Ra = 0 at r ≈ 0 (Rd ≈ 1)
⚫ Ra approaches 1 at r = large
(Rd ≈ 1/r2)
Ratio
Frequency
r
N
F
=
=


( ) ( )
  ( )
 
( ) ( )
( ) ( )
 
( ) ( )
  ( )
 
( ) ( )
 
( ) ( )
 





















−
−
=






−
−
=
−
=
−
−
=
=
=
−
−
=
=
+
−
=
−
=
−
=
t
Sin
R
m
p
t
u
t
Sin
R
m
p
t
u
t
Sin
R
m
p
t
Sin
R
k
p
t
u
R
r
R
R
R
Define
t
Sin
R
k
p
t
u
sponse
Static
Max
sponse
nt
Displaceme
Dynamic
State
Steady
r
r
R
t
Sin
R
k
p
t
Sin
R
u
t
u
is
solution
State
Steady
Final
The
F
a
F
a
F
a
N
N
F
a
N
d
a
d
F
a
N
F
d
F
d
F
d
F
d
Static
0
0
2
2
0
2
0
2
2
2
2
0
2
2
2
0
:
Re
Re
2
1
1
:








d
a R
r
R 2
=
13
SDOF: Dynamic Response Amplification: Displacement, Velocity,
Acceleration
⚫ Will use this
relationship later,
in development of
design code
Response Spectra
( ) ( )
 
( ) ( )
 
( ) ( )
sponse
nt
Displaceme
Static
Max
sponse
nt
Displaceme
Dynamic
R
r
r
R
t
Sin
R
k
p
t
u
t
Sin
R
u
t
u
is
solution
State
Steady
Final
The
d
d
F
d
F
d
Static
Re
Re
2
1
1
:
2
2
2
0
=
+
−
=
−
=
−
=





d
v
a
rR
R
r
R
=
=
Response Spectra for ASCE 7-05
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Period, T (sec)
Sa
(g)
TL=8, Lancaster, CA
Ratio
Frequency
r
N
F
=
=


14
SDOF: Dynamic Response Amplification: Displacement, Velocity,
Acceleration
Find the frequency at which, Rd ,
Response Displacement is max
Take the derivative of Rd with
respect to r; set derivative = 0.
Ratio
Frequency
r
N
F
=
=


( ) ( )
( )
 
( )
  ( )
 
( )
 
( )
( )
( )
( ) max
Re
2
1
2
1
2
1
4
4
2
1
4
1
2
4
0
4
1
2
4
1
2
2
1
2
1
0
1
2
2
1
2
1
1
2
2
2
2
3
2
3
2
3
2
2
3
4
2
2
2
2
1
4
2
2
2
2
2
=
=
−
=
=
−
=
−
=
−
+
−
=
+
−
+
−
+





 −
=
=
=
=
+
−
+
=
+
−
=





 −





 −
d
F
N
N
F
d
d
a
d
v
d
R
for
Frequency
sonant
r
r
r
r
r
r
brackets
two
first
the
in
terms
the
out
Factor
r
r
r
r
dr
dR
R
r
R
rR
R
r
r
r
r
R













15
SDOF: Dynamic Response Amplification: Displacement, Velocity,
Acceleration
Find the frequency at which, Rv ,
Response Velocity is max
Take the derivative of Rv with
respect to r; set derivative = 0.
Ratio
Frequency
r
N
F
=
=


( ) ( )
( )
 
( )
 
( )
  ( )
  ( )
 
( )
  ( )
  ( )
 
( )
 
( )
  ( )
  ( )
 
( )
  ( )
 
( )
  ( )
 
max
Re
1
1
:
2
1
2
2
1
2
2
1
1
2
2
1
2
2
1
1
2
2
4
4
1
2
4
2
1
2
2
1
)
1
(
1
2
2
1
4
1
2
4
1
2
2
1
2
1
2
2
1
)
1
(
4
1
2
4
1
2
2
1
2
1
2
2
1
0
1
2
2
1
1
2
2
1
2
1
1
4
4
2
2
4
2
2
2
2
2
4
2
2
2
2
2
3
2
4
2
2
2
3
4
2
2
3
2
2
3
4
2
2
2
1
4
2
2
3
2
2
3
4
2
2
2
1
4
2
2
2
1
4
2
2
2
1
4
2
2
2
2
2
=
=
=
=
=
+
−
=
+
−
+
+
−
=
+
−
+
+
−







 −
=
+
−





 −
=
+
−
+
−
+
−
+
+
−
+
−
+





 −
=
+
−
+
−
+
−
+
−
+





 −
+
+
−
+
=
=
+
−
+
=
=
+
−
+
=
+
−
=





 −





 −





 −





 −





 −





 −
N
F
v
v
d
v
d
R
for
Frequency
sonant
r
r
is
solution
the
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
by
sides
both
Multiply
r
r
r
r
r
r
r
r
r
r
r
r
r
r
dr
dR
r
r
r
R
rR
R
r
r
r
r
R





















16
SDOF: Dynamic Response Amplification: Displacement, Velocity,
Acceleration
Find the frequency at which, Ra ,
Response Acceleration is max
Take the derivative of Ra with
respect to r; set derivative = 0.
Ratio
Frequency
r
N
F
=
=


( )
 
( )
  ( )
  ( )
 
( )
  ( )
  ( )
 
( )
 
( )
  ( )
  ( )
 
( )
  ( )
  ( )
 
( )
( ) ( )
( )
max
Re
2
1
2
1
1
1
2
1
1
2
1
1
2
1
2
1
2
2
1
1
2
2
4
4
1
2
4
2
1
2
2
1
)
2
(
1
2
2
1
4
1
2
4
1
2
2
1
2
1
2
2
1
)
2
(
4
1
2
4
1
2
2
1
2
1
2
2
1
2
0
1
2
2
1
2
2
2
2
2
2
2
2
4
2
2
2
2
2
4
2
2
2
2
3
3
2
2
4
2
2
2
3
4
2
2
3
2
2
3
4
2
2
2
2
1
4
2
2
3
2
2
3
4
2
2
2
2
1
4
2
2
2
1
4
2
2
2
2
=
=
−
=
=
−
=
−
−
−
−
=
+
−
=
+
−
=
+
−
+
+
−







 −
=
+
−







 −
=
+
−
+
−
+
−
+
+
−
+
−
+







 −
=
+
−
+
−
+
−
+
−
+







 −
+
+
−
+
=
=
+
−
+
=
=





 −





 −





 −





 −





 −
a
F
N
N
F
a
a
d
a
R
for
Frequency
sonant
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
by
sides
both
Multiply
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
dr
dR
r
r
r
R
R
r
R






















17
SDOF: Dynamic Response Amplification: Displacement, Velocity,
Acceleration
Find Max Dynamic Response
Displacement.
It will occur at the
resonant frequency for Rd
Ratio
Frequency
r
N
F
=
=


( )
( )
( )
 
( )( ) ( )
 
( ) ( )
 
 
 
( )( )
 
( )
2
2
1
2
2
2
1
4
2
2
1
4
2
4
2
2
1
4
2
2
4
2
2
1
2
2
2
2
2
2
1
4
2
2
2
Re
2
1
2
1
1
4
4
4
4
4
1
2
8
8
1
4
4
1
2
1
4
2
2
1
2
1
2
1
1
2
2
1
1
2
2
1
2
1
max
Re
2
1























−
=
−
=
−
=
+
−
+
−
−
+
=
+
−
+
+
−
−
+
=
−
+
−
−
+
=
=
=
+
−
+
=
−
=
=
−
=





 −





 −





 −





 −





 −





 −
MAX
MAX
MAX
MAX
MAX
MAX
d
d
d
d
d
d
d
a
d
v
d
sonant
d
N
F
R
R
R
R
R
R
R
r
R
rR
R
r
r
R
r
R
for
Frequency
sonant
18
SDOF: Dynamic Response Amplification: Displacement, Velocity,
Acceleration
Find Max Dynamic Response Velocity.
It will occur at the resonant frequency
for Rv
Ratio
Frequency
r
N
F
=
=


( )
 
  ( )( ) ( )
 
( )
 
 
 
 ( )









2
1
2
4
1
2
4
1
1
1
2
2
1
1
1
1
2
2
1
1
1
2
2
1
1
max
Re
1
2
1
2
2
1
2
2
1
2
2
1
4
2
2
2
2
1
4
2
2
Re
=
=
=
+
−
+
=
+
−
+
=
=
+
=
−
+
=
=
=
=
+
−
+
=
=
=
=
−





 −





 −





 −





 −





 −
MAX
MAX
MAX
MAX
MAX
MAX
v
v
v
v
v
v
d
a
d
v
d
sonant
v
N
F
R
R
R
R
R
r
r
r
R
R
r
R
rR
R
r
r
R
r
R
for
Frequency
sonant
19
SDOF: Dynamic Response Amplification: Displacement, Velocity,
Acceleration
Find Max Dynamic Response
Acceleration.
It will occur at the
resonant frequency for Ra
Ratio
Frequency
r
N
F
=
=


( )
( ) ( )
( )
 
( )
  ( )( ) ( )
 
( ) ( )( ) ( )
 
 
( ) ( )( )
 
( )
 
 
  ( )( )
 
( )
2
2
1
2
2
2
1
4
2
2
1
4
2
4
2
2
1
2
4
2
4
2
2
1
1
2
2
2
2
2
1
2
2
1
2
2
2
2
2
1
2
2
1
2
2
1
2
2
2
2
1
4
2
2
2
1
2
2
Re
2
1
2
1
1
4
4
4
2
8
8
4
4
2
1
2
1
4
2
2
4
4
1
1
2
1
1
2
2
2
1
2
1
2
1
1
2
2
1
2
1
2
1
2
1
1
2
2
1
2
1
1
2
2
1
2
1
2
1
1
max
Re
2
1


































−
=
−
=
−
+
=
−
−
+
+
−
=
+
+
−
−
+
+
−
=
+
−
−
+
−
=
−
+
−
−
+
−
=
−
+
−
−
+
−
=
=
=
=
+
−
+
=
−
=
−
=
=
=
−
=
−
−
−
−
−
+
+
−
−
−
+





 −
−
−
−





 −





 −
MAX
MAX
MAX
MAX
MAX
MAX
a
a
a
a
a
a
d
a
d
v
d
N
F
sonant
a
N
F
R
R
R
R
R
r
R
R
r
R
rR
R
r
r
R
r
R
for
Frequency
sonant

More Related Content

Similar to Class T.5.pdf

THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCETHE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
Frank Nielsen
 
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
Sean Meyn
 

Similar to Class T.5.pdf (20)

THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCETHE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
 
Transient analysis
Transient analysisTransient analysis
Transient analysis
 
Conference ppt
Conference pptConference ppt
Conference ppt
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
Time-Response Lecture
Time-Response LectureTime-Response Lecture
Time-Response Lecture
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
 
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
 
Decomposition and Denoising for moment sequences using convex optimization
Decomposition and Denoising for moment sequences using convex optimizationDecomposition and Denoising for moment sequences using convex optimization
Decomposition and Denoising for moment sequences using convex optimization
 
Module 5, Spring 2020.pdf
Module 5, Spring 2020.pdfModule 5, Spring 2020.pdf
Module 5, Spring 2020.pdf
 
10 range and doppler measurements in radar systems
10 range and doppler measurements in radar systems10 range and doppler measurements in radar systems
10 range and doppler measurements in radar systems
 
1 radar signal processing
1 radar signal processing1 radar signal processing
1 radar signal processing
 
Analytic dynamics
Analytic dynamicsAnalytic dynamics
Analytic dynamics
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
Transient response analysis
Transient response analysisTransient response analysis
Transient response analysis
 
Finding self-force quantities in a post-Newtonian expansion
Finding self-force quantities in a post-Newtonian expansionFinding self-force quantities in a post-Newtonian expansion
Finding self-force quantities in a post-Newtonian expansion
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
 
10 - 29 Jan - Recursion Part 2
10 - 29 Jan - Recursion Part 210 - 29 Jan - Recursion Part 2
10 - 29 Jan - Recursion Part 2
 
Second order systems
Second order systemsSecond order systems
Second order systems
 

Recently uploaded

Final DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualFinal DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manual
BalamuruganV28
 
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
drjose256
 
Artificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdfArtificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdf
Kira Dess
 

Recently uploaded (20)

Artificial Intelligence in due diligence
Artificial Intelligence in due diligenceArtificial Intelligence in due diligence
Artificial Intelligence in due diligence
 
Final DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualFinal DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manual
 
Working Principle of Echo Sounder and Doppler Effect.pdf
Working Principle of Echo Sounder and Doppler Effect.pdfWorking Principle of Echo Sounder and Doppler Effect.pdf
Working Principle of Echo Sounder and Doppler Effect.pdf
 
Circuit Breakers for Engineering Students
Circuit Breakers for Engineering StudentsCircuit Breakers for Engineering Students
Circuit Breakers for Engineering Students
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptx
 
Software Engineering Practical File Front Pages.pdf
Software Engineering Practical File Front Pages.pdfSoftware Engineering Practical File Front Pages.pdf
Software Engineering Practical File Front Pages.pdf
 
handbook on reinforce concrete and detailing
handbook on reinforce concrete and detailinghandbook on reinforce concrete and detailing
handbook on reinforce concrete and detailing
 
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxSLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
 
engineering chemistry power point presentation
engineering chemistry  power point presentationengineering chemistry  power point presentation
engineering chemistry power point presentation
 
Independent Solar-Powered Electric Vehicle Charging Station
Independent Solar-Powered Electric Vehicle Charging StationIndependent Solar-Powered Electric Vehicle Charging Station
Independent Solar-Powered Electric Vehicle Charging Station
 
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptx
 
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
 
Intro to Design (for Engineers) at Sydney Uni
Intro to Design (for Engineers) at Sydney UniIntro to Design (for Engineers) at Sydney Uni
Intro to Design (for Engineers) at Sydney Uni
 
Insurance management system project report.pdf
Insurance management system project report.pdfInsurance management system project report.pdf
Insurance management system project report.pdf
 
Interfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdfInterfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdf
 
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
 
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdfInvolute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
 
CLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalCLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference Modal
 
Artificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdfArtificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdf
 

Class T.5.pdf

  • 1. 1 Class #5.0 Structural Dynamics Single Degree of Freedom Systems Forced-Damped Vibrations Resonance Dynamic Amplification Dr. Tesfaye Alemu
  • 2. 2 SDOF: Forced, Undamped & Damped ( ) ( ) t Sin p t p F  0 = frequency forcing F =  ⚫ Damped Response ⚫ Transient Response = difference between Total Response and Steady State Response ⚫ Undamped Response ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                      + − − +         + − − +               + + = − t Cos r r r t Sin r r r u t Sin u u t Cos u e t u is solution TOTAL The F F Static D D N D t N           2 2 2 2 2 2 2 0 0 0 2 1 2 2 1 1 :  ⚫ Transient Response decays
  • 3. 3 SDOF: Forced, damped, Resonance ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   ( ) ( ) ( ) ( ) ( ) ( )  ( ) ( ) ( ) ( ) ( ) t Cos u t u t t Cos u t u Since t Cos u e t u t Cos t Sin u t Sin e t u u u conditions rest at initially For t Cos t Sin u t Sin u u t Cos u e t u r thus sonance At t Cos r r r t Sin r r r u t Sin u u t Cos u e t u is solution TOTAL The N Static F N Static N F F Static t F F Static D D t F F Static D D N D t N F N F F F Static D D N D t N N N N                                          2 1 2 : 2 0 2 0 1 1 2 0 0 0 0 0 0 : 2 0 1 1 2 2 0 1 1 0 1 1 1 : Re 2 1 2 2 1 1 : 2 2 0 0 2 2 2 2 0 0 0 2 2 2 2 2 2 2 0 0 0 − = =      − = =      − + =                 + = − − + +               + + = = =                 + = − − +       + = − = − +               + + = = = =                   + − − +         + − − +               + + = − − − −    Resonance time history N F   = Resonance
  • 4. 4 SDOF: Forced, damped, Dynamic Amplification ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   ( ) ( )                                             − = − + = + − = + − − =       − = + − =                     + − − +           + − − + − = − + − + − =                   + − − +         + − − + =                   + − − +         + − − +               + + =  − − − t Sin R u t u t Cos Sin t Sin Cos R u t u r r r Sin r r r Cos r r Tan Angle Lag Phase Define r r R Factor ion Amplificat sponse nt Displaceme Dynamic Define t Cos r r r t Sin r r r r r u t u t Cos r t Sin r r r u t u t Cos r r r t Sin r r r u small very t u small becomes e time with decays solution Transient t Cos r r r t Sin r r r u t Sin u u t Cos u e t u for solution d generalize is solution TOTAL The F d Static F F d Static d F F Static F F Static F F Static t F F Static D D N D t N F N N 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 2 1 2 2 1 1 1 2 : : 2 1 1 : Re : 2 1 2 2 1 1 2 1 2 1 2 1 2 1 2 2 1 1 : 2 1 2 2 1 1 :  ( ) r  2 ( ) 2 1 r − ( ) ( )2 2 2 2 1 r r  + − 
  • 5. 5 SDOF: Forced, damped, Dynamic Amplification ( ) ( ) ( )   ( ) ( ) sponse nt Displaceme Static Max sponse nt Displaceme Dynamic State Steady R Factor ion Amplificat sponse nt Displaceme Dynamic r r R Angle Lag Phase r r Tan t Sin R u t u for is solution State Steady Final The d d F d Static N F Re Re Re 2 1 1 : 1 2 : 2 2 2 2 1 = = + − = =       − = − =  −        ⚫ Rd depends on: ⚫ Forcing Function: ⚫ System natural characteristics: ( ) r  2 ( ) 2 1 r − ( ) ( )2 2 2 2 1 r r  + −  Damping Frequency Natural m k N = = =   Frequency Forcing F = 
  • 6. 6 SDOF: Forced, damped, Dynamic Amplification ( ) ( )   ( ) ( ) sponse nt Displaceme Static Max sponse nt Displaceme Dynamic R Factor ion Amplificat sponse Dynamic r r R Angle Lag Phase r r Tan t Sin R u t u is solution State Steady Final The d d F d Static Re Re Re 2 1 1 : 1 2 : 2 2 2 2 1 = = + − = =       − = − = −      ⚫ Max Static response occurs a same time as max forcing function ⚫ Dynamic response lags by   2
  • 7. 7 SDOF: Forced, damped, Dynamic Amplification, r<<1 ( ) ( )   ( ) ( ) ( ) ( ) k p k p u u ku p ku F R r For r r R t Sin R u t u is solution State Steady Final The Static Static d d F d Static 0 0 max 0 2 2 2 1 1 1 1 1 2 1 1 : = = = = =   + − = − =    ⚫ At r << 1 ⚫ Forcing Frequency << Natural Frequency ⚫ Rd ≤1 ⚫ Little or no amplification of response ⚫ Response controlled by stiffness. Ratio Frequency r N F = =   Rd = Dynamic Displacement Response Amplification Factor N F    Ratio Frequency r F = =  
  • 8. 8 SDOF: Forced, damped, Dynamic Amplification, r>>1 ( ) ( )   ( ) ( ) ( ) 2 0 2 0 2 max 0 2 2 2 2 2 2 2 2 1 1 1 2 1 1 : F F F Static Static F F N N F d d F d Static m p m k k p m k u u ku p ku F m k r R r For r r R t Sin R u t u is solution State Steady Final The            =         =         = = = = = =   + − = − = ⚫ At r >> 1 ⚫ Forcing Frequency >> Natural Frequency ⚫ Rd <<1 ⚫ Response de-amplification. ⚫ Response approaches zero. ⚫ Response controlled by mass. Ratio Frequency r N F = =   Rd = Dynamic Displacement Response Amplification Factor N F    Ratio Frequency r F = =  
  • 9. 9 SDOF: Forced, damped, Dynamic Amplification, r ≈ 1 ( ) ( )   ( ) ( ) ( ) ( ) ( ) N N N Static Static d d F d Static c p u m c m p r k p r u u ku p ku F r r R r For r r R t Sin R u t u is solution State Steady Final The            0 max 2 0 0 max 0 2 2 2 2 2 2 2 1 1 2 1 2 1 2 1 2 0 1 1 2 1 1 : =                       = =         = =         = = = = +   + − = − = ⚫ At r ≈ 1, Resonance ⚫ Forcing Frequency ≈ Natural Frequency ⚫ Rd = Very Large ⚫ Large Response amplification. ⚫ Response controlled by damping. Ratio Frequency r N F = =   Rd = Dynamic Displacement Response Amplification Factor Ratio Frequency r F = =   N F   
  • 10. 10 SDOF: Forced, damped, Dynamic Amplification, phase angle ⚫ Phase Angle ⚫ r<<1,  ≈ 0, response in phase with forcing function. ⚫ Response peaks at same time as forcing function ⚫ r>>1,  ≈ 180˚, response out of phase with forcing function. ⚫ Response has negative peak at the time when forcing function has positive peak. ⚫ r ≈ 1,  ≈ 90˚, response peaks when forcing function at zero. Ratio Frequency r N F = =   ( ) ( )   : 1 2 : 2 1 Angle Phase r r Tan t Sin R u t u is solution State Steady Final The F d Static =       − = − = −     Rd = Dynamic Displacement Response Amplification Factor Ratio Frequency r F = =  
  • 11. 11 SDOF: Dynamic Response Amplification: Velocity ⚫ Dynamic Response Amplification for Velocity: ⚫ Rv = Very Large at Resonance, r=1 ⚫ Rv = 0 at r ≈ 0 (Rd ≈ 1) ⚫ Rv approaches zero at r = large (Rd ≈ 1/r2) Ratio Frequency r N F = =   ( ) ( )   ( )   ( ) ( ) ( ) ( )   ( ) ( )   ( )   ( ) ( )   ( )   ( ) ( )                        − =       − = − = −         = − = = = − = = + − = − = − = t Cos R km p t u t Cos R km p t Cos R m k p t u t Cos R m k k p t Cos R k p t u rR R R R Define t Cos R k p t u sponse Static Max sponse nt Displaceme Dynamic State Steady r r R t Sin R k p t Sin R u t u is solution State Steady Final The F v F v F v F v F v N d v d F v N F d F d F d F d Static 0 0 2 1 2 1 0 2 1 2 1 0 0 0 2 2 2 0 : Re Re 2 1 1 :     d v rR R =
  • 12. 12 SDOF: Dynamic Response Amplification: Acceleration ⚫ Dynamic Response Amplification for Acceleration: ⚫ Ra = Very Large at Resonance, r = 1 ⚫ Ra = 0 at r ≈ 0 (Rd ≈ 1) ⚫ Ra approaches 1 at r = large (Rd ≈ 1/r2) Ratio Frequency r N F = =   ( ) ( )   ( )   ( ) ( ) ( ) ( )   ( ) ( )   ( )   ( ) ( )   ( ) ( )                        − − =       − − = − = − − = = = − − = = + − = − = − = t Sin R m p t u t Sin R m p t u t Sin R m p t Sin R k p t u R r R R R Define t Sin R k p t u sponse Static Max sponse nt Displaceme Dynamic State Steady r r R t Sin R k p t Sin R u t u is solution State Steady Final The F a F a F a N N F a N d a d F a N F d F d F d F d Static 0 0 2 2 0 2 0 2 2 2 2 0 2 2 2 0 : Re Re 2 1 1 :         d a R r R 2 =
  • 13. 13 SDOF: Dynamic Response Amplification: Displacement, Velocity, Acceleration ⚫ Will use this relationship later, in development of design code Response Spectra ( ) ( )   ( ) ( )   ( ) ( ) sponse nt Displaceme Static Max sponse nt Displaceme Dynamic R r r R t Sin R k p t u t Sin R u t u is solution State Steady Final The d d F d F d Static Re Re 2 1 1 : 2 2 2 0 = + − = − = − =      d v a rR R r R = = Response Spectra for ASCE 7-05 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Period, T (sec) Sa (g) TL=8, Lancaster, CA Ratio Frequency r N F = =  
  • 14. 14 SDOF: Dynamic Response Amplification: Displacement, Velocity, Acceleration Find the frequency at which, Rd , Response Displacement is max Take the derivative of Rd with respect to r; set derivative = 0. Ratio Frequency r N F = =   ( ) ( ) ( )   ( )   ( )   ( )   ( ) ( ) ( ) ( ) max Re 2 1 2 1 2 1 4 4 2 1 4 1 2 4 0 4 1 2 4 1 2 2 1 2 1 0 1 2 2 1 2 1 1 2 2 2 2 3 2 3 2 3 2 2 3 4 2 2 2 2 1 4 2 2 2 2 2 = = − = = − = − = − + − = + − + − +       − = = = = + − + = + − =       −       − d F N N F d d a d v d R for Frequency sonant r r r r r r brackets two first the in terms the out Factor r r r r dr dR R r R rR R r r r r R             
  • 15. 15 SDOF: Dynamic Response Amplification: Displacement, Velocity, Acceleration Find the frequency at which, Rv , Response Velocity is max Take the derivative of Rv with respect to r; set derivative = 0. Ratio Frequency r N F = =   ( ) ( ) ( )   ( )   ( )   ( )   ( )   ( )   ( )   ( )   ( )   ( )   ( )   ( )   ( )   ( )   ( )   ( )   max Re 1 1 : 2 1 2 2 1 2 2 1 1 2 2 1 2 2 1 1 2 2 4 4 1 2 4 2 1 2 2 1 ) 1 ( 1 2 2 1 4 1 2 4 1 2 2 1 2 1 2 2 1 ) 1 ( 4 1 2 4 1 2 2 1 2 1 2 2 1 0 1 2 2 1 1 2 2 1 2 1 1 4 4 2 2 4 2 2 2 2 2 4 2 2 2 2 2 3 2 4 2 2 2 3 4 2 2 3 2 2 3 4 2 2 2 1 4 2 2 3 2 2 3 4 2 2 2 1 4 2 2 2 1 4 2 2 2 1 4 2 2 2 2 2 = = = = = + − = + − + + − = + − + + −         − = + −       − = + − + − + − + + − + − +       − = + − + − + − + − +       − + + − + = = + − + = = + − + = + − =       −       −       −       −       −       − N F v v d v d R for Frequency sonant r r is solution the r r r r r r r r r r r r r r r r r by sides both Multiply r r r r r r r r r r r r r r dr dR r r r R rR R r r r r R                     
  • 16. 16 SDOF: Dynamic Response Amplification: Displacement, Velocity, Acceleration Find the frequency at which, Ra , Response Acceleration is max Take the derivative of Ra with respect to r; set derivative = 0. Ratio Frequency r N F = =   ( )   ( )   ( )   ( )   ( )   ( )   ( )   ( )   ( )   ( )   ( )   ( )   ( )   ( )   ( ) ( ) ( ) ( ) max Re 2 1 2 1 1 1 2 1 1 2 1 1 2 1 2 1 2 2 1 1 2 2 4 4 1 2 4 2 1 2 2 1 ) 2 ( 1 2 2 1 4 1 2 4 1 2 2 1 2 1 2 2 1 ) 2 ( 4 1 2 4 1 2 2 1 2 1 2 2 1 2 0 1 2 2 1 2 2 2 2 2 2 2 2 4 2 2 2 2 2 4 2 2 2 2 3 3 2 2 4 2 2 2 3 4 2 2 3 2 2 3 4 2 2 2 2 1 4 2 2 3 2 2 3 4 2 2 2 2 1 4 2 2 2 1 4 2 2 2 2 = = − = = − = − − − − = + − = + − = + − + + −         − = + −         − = + − + − + − + + − + − +         − = + − + − + − + − +         − + + − + = = + − + = =       −       −       −       −       − a F N N F a a d a R for Frequency sonant r r r r r r r r r r r r r r r r r r by sides both Multiply r r r r r r r r r r r r r r r r dr dR r r r R R r R                      
  • 17. 17 SDOF: Dynamic Response Amplification: Displacement, Velocity, Acceleration Find Max Dynamic Response Displacement. It will occur at the resonant frequency for Rd Ratio Frequency r N F = =   ( ) ( ) ( )   ( )( ) ( )   ( ) ( )       ( )( )   ( ) 2 2 1 2 2 2 1 4 2 2 1 4 2 4 2 2 1 4 2 2 4 2 2 1 2 2 2 2 2 2 1 4 2 2 2 Re 2 1 2 1 1 4 4 4 4 4 1 2 8 8 1 4 4 1 2 1 4 2 2 1 2 1 2 1 1 2 2 1 1 2 2 1 2 1 max Re 2 1                        − = − = − = + − + − − + = + − + + − − + = − + − − + = = = + − + = − = = − =       −       −       −       −       −       − MAX MAX MAX MAX MAX MAX d d d d d d d a d v d sonant d N F R R R R R R R r R rR R r r R r R for Frequency sonant
  • 18. 18 SDOF: Dynamic Response Amplification: Displacement, Velocity, Acceleration Find Max Dynamic Response Velocity. It will occur at the resonant frequency for Rv Ratio Frequency r N F = =   ( )     ( )( ) ( )   ( )        ( )          2 1 2 4 1 2 4 1 1 1 2 2 1 1 1 1 2 2 1 1 1 2 2 1 1 max Re 1 2 1 2 2 1 2 2 1 2 2 1 4 2 2 2 2 1 4 2 2 Re = = = + − + = + − + = = + = − + = = = = + − + = = = = −       −       −       −       −       − MAX MAX MAX MAX MAX MAX v v v v v v d a d v d sonant v N F R R R R R r r r R R r R rR R r r R r R for Frequency sonant
  • 19. 19 SDOF: Dynamic Response Amplification: Displacement, Velocity, Acceleration Find Max Dynamic Response Acceleration. It will occur at the resonant frequency for Ra Ratio Frequency r N F = =   ( ) ( ) ( ) ( )   ( )   ( )( ) ( )   ( ) ( )( ) ( )     ( ) ( )( )   ( )       ( )( )   ( ) 2 2 1 2 2 2 1 4 2 2 1 4 2 4 2 2 1 2 4 2 4 2 2 1 1 2 2 2 2 2 1 2 2 1 2 2 2 2 2 1 2 2 1 2 2 1 2 2 2 2 1 4 2 2 2 1 2 2 Re 2 1 2 1 1 4 4 4 2 8 8 4 4 2 1 2 1 4 2 2 4 4 1 1 2 1 1 2 2 2 1 2 1 2 1 1 2 2 1 2 1 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 2 1 1 max Re 2 1                                   − = − = − + = − − + + − = + + − − + + − = + − − + − = − + − − + − = − + − − + − = = = = + − + = − = − = = = − = − − − − − + + − − − +       − − − −       −       − MAX MAX MAX MAX MAX MAX a a a a a a d a d v d N F sonant a N F R R R R R r R R r R rR R r r R r R for Frequency sonant