SlideShare a Scribd company logo
1 of 14
Download to read offline
1
Fourier Transform
Z. Aliyazicioglu
Electrical & Computer Engineering Dept.
Cal Poly Pomona
ECE 307
Fourier Transform
The Fourier transform (FT) is the extension of the Fourier series to
nonperiodic signals. The Fourier transform of a signal exist if
satisfies the following condition.
The Fourier transform
The inverse Fourier transform (IFT) of X(ω) is x(t)and given by
2
( )
x t dt
∞
−∞
< ∞
∫
( ) ( ) j t
X x t e dt
ω
ω
∞
−
−∞
= ∫
1
( ) ( )
2
j t
x t X e d
ω
ω ω
π
∞
−∞
= ∫
2
Fourier Transform
Also, The Fourier transform can be defined in terms of frequency of
Hertz as
and corresponding inverse Fourier transform is
2
( ) ( ) j ft
X f x t e dt
π
∞
−
−∞
= ∫
2
( ) ( ) j ft
x t X f e df
π
∞
−∞
= ∫
Fourier Transform
Determine the Fourier transform of a rectangular pulse
shown in the following figure
Example:
-a/2 a/2
h
t
x(t)
/ 2
2 2
/ 2
( )
sin( )
2 2
sin( )
2
2
sinc
2
a a a
j j
j t
a
h
X he dt e e
j
a
h a
ha
a
a
ha
ω ω
ω
ω
ω
ω
ω
ω
ω
ω
π
−
−
−
 
= = −
 
−  
= =
 
=  
 
∫
3
Fourier Transform
Example: To find in frequency domain,
( )
/ 2 2 2
2 2 2
/ 2
( )
2
sin( )
sin( )
sinc
a fa fa
j j
j ft
a
h
X f he dt e e
j f
h fa
fa ha
f fa
ha fa
π π
π
π
π
π
π π
−
−
−
 
= = −
 
−  
= =
=
∫
>> h=1;
>> a=1;
>> f=-3.5:0.01:3.5;
>> w=2*pi*f;
>> x=h*a*sinc(w*a/(2*pi));
>> plot (w,x)
>> title ('X(omega)')
>> xlabel('omega');
>>
1,
1
( ) 2sinc
2
h
a
X
ω
ω
π
=
=
 
=  
 
Fourier Transform
1,
2
2
( ) 2sinc
2
h
a
X
ω
ω
π
=
=
 
=  
 
>> h=1;
>> a=1;
>> f=-3.5:0.01:3.5;
>> w=2*pi*f;
>> x=abs(h*a*sinc(w*a/(2*pi)));
>> subplot (2,1,1)
>> plot (w,x)
>> title ('|X(omega)|')
>> xlabel('omega')
>> xp=phase(h*a*sinc(w*a/(2*pi)));
>> subplot (2,1,2)
>> plot (w,xp)
>> title ('phase X(omega)')
>> xlabel('omega')
4
Fourier Transform
Determine the Fourier transform of the Delta function δ(t)
Example
0
( ) ( ) 1
j t j
X t e dt e
ω ω
ω δ
∞
− −
−∞
= = =
∫
1
X(ω)
ω
Fourier Transform
Properties of the Fourier Transform
We summarize several important properties of the Fourier Transform as follows.
1. Linearity (Superposition)
1 1
( ) ( )
x t X ω
⇔ 2 2
( ) ( )
x t X ω
⇔
1 1 2 2 1 1 2 2
( ) ( ) ( ) ( )
a x t a x t a X a X
ω ω
+ ⇔ +
Then,
If and
Proof:
[ ]
1 1 2 2 1 1 2 2
1 1 2 2
( ) ( ) ( ) ( )
( ) ( )
j t j t j t
a x t a x t e dt a x t e dt a x t e dt
a X a X
ω ω ω
ω ω
∞ ∞ ∞
− − −
−∞ −∞ −∞
+ = +
= +
∫ ∫ ∫
5
Fourier Transform
Properties of the Fourier Transform
2. Time Shifting
Then,
If
Proof:
( ) ( )
x t X ω
⇔
0
0
( ) ( ) j t
x t t X e ω
ω −
− ⇔
0
t t
τ = − 0
t t
τ
= + dt dτ
=
0
0
0
( )
0
( ) ( )
( )
( )
j t
j t
j t j
j t
x t t e dt x e d
e x e d
e X
ω τ
ω
ω ωτ
ω
τ τ
τ τ
ω
∞ ∞
− +
−
−∞ −∞
∞
− −
−∞
−
− =
=
=
∫ ∫
∫
Let then and
Fourier Transform
Let
0
( ) ( )
y t x t t
= −
0 0
0
( )
( ( ) )
( ) ( ) ( )
( )
j t j t
j X
j X t
Y X e X e e
X e
ω ω
ω
ω ω
ω ω ω
ω
− −
∠
∠ −
= =
=
0
( ( ) )
( )
( ) ( ) j X t
j Y
Y e X e ω ω
ω
ω ω ∠ −
∠
=
Therefore, the amplitude spectrum of the time shifted signal is the
same as the amplitude spectrum of the original signal, and the phase
spectrum of the time-shifted signal is the sum of the phase spectrum of
the original signal and a linear phase term.
6
Fourier Transform
Example: Determine the Fourier transform of the following time
shifted rectangular pulse.
0 a
h
t
x(t)
2
( ) sinc
2
a
j
a
X ha e
ω
ω
ω
π
−
 
=  
 
>> h=1;
>> a=1;
>> f=-3.5:0.01:3.5;
>> w=2*pi*f;
>> x=abs(h*a*sinc(w*a/(2*pi)).*exp(-
j*w*1/2));
>> subplot (2,1,1)
>> plot (w,x)
>> title ('|X(omega)|')
>> xlabel('omega')
>> xp=phase(h*a*sinc(w*a/(2*pi)).*exp(-
j*w.*1/2));
>> subplot (2,1,2)
>> plot (w,xp)
>> xlabel('omega')
>> title ('phaseX(omega)')
Fourier Transform
3. Time Scaling
then
Proof:
If , a>0 then
( ) ( )
x t X ω
⇔
If
1
( ) ( )
x at X
a a
ω
⇔
at
τ = /
t a
τ
= (1/ )
dt a dτ
=
Let then and
1
( ) ( )
1
( )
j
j t a
x at e dt x e d
a
X
a a
ω
τ
ω
τ τ
ω
∞ ∞
−
−
−∞ −∞
=
=
∫ ∫
If , a<0 then
1
( ) ( )
1 1
( ) ( )
j
j t a
j
a
x at e dt x e d
a
x e d X
a a a
ω
τ
ω
ω
τ
τ τ
ω
τ τ
∞ ∞
−
−
−∞ −∞
∞
−
−∞
=
= =
∫ ∫
∫
7
Fourier Transform
Example. if , then find the Fourier transform of the
following signals
1
( 2 ) ( )
2 2
x t X
ω
−
− ⇔
( /5) 5 (5 )
x t X ω
⇔
2
1
( 5( 2)) ( )
5 5
j
x t X e ω
ω −
−
− − ⇔
( ) ( )
x t X ω
⇔
a.
b.
c.
Example: Find the Fourier transform of the following signal.
1 1
( ) ( ) ( ) sinc
2
x t t X
ω
ω
π
 
= ∏ ⇔ =  
 
2 2 1
1 1
( ) (5 ) ( ) ( ) sinc
5 5 5 10
x t t X X
ω ω
ω
π
 
= ∏ ⇔ = =  
 
3 3 1
( ) ( /5) ( ) 5 (5 ) 5sinc
0.4
x t t X X
ω
ω ω
π
 
= ∏ ⇔ = =  
 
a.
b.
c.
Fourier Transform
4. Duality (Symmetry)
If then
( ) ( )
x t X ω
⇔
( ) 2 ( )
X t x
π ω
⇔ − ( ) ( )
X t x f
⇔ −
or
Proof: Since t and ω are arbitrary variables in the inverse Fourier
transform
1
( ) ( )
2
j t
x t X e d
ω
ω ω
π
∞
−∞
= ∫
we can replace ω with t and t with - ω to get
1
( ) ( )
2
j t
x X t e dt
ω
ω
π
∞
−
−∞
− = ∫
{ }
( ) ( ) 2 ( )
j t
X t X t e dt x
F ω
π ω
∞
−
−∞
= = −
∫
Therefore,
8
Fourier Transform
Similarly, if we can replace f with t and t with -f in the inverse
Fourier transform
2
( ) ( ) j ft
x t X f e df
π
∞
−∞
= ∫
2
( ) ( ) j ft
x f X t e df
π
∞
−
−∞
− = ∫
{ }
( ) ( )
X t x f
F = −
to get
Therefore,
then
Let
Fourier Transform
Example: Applying symmetry property,
( ) ( ) ( ) 1
x t t X
δ ω
= ⇔ =
( ) 1 ( ) 2 ( ) 2 ( )
x t X ω πδ ω πδ ω
= ⇔ = − = ( is even function)
( )
δ ω
( ) 1 ( ) ( ) ( )
x t X f f f
δ δ
= ⇔ = − =
or
Example:
( ) ( ) sinc
2
t a
x t rect X a
a
ω
ω
π
   
= ⇔ =
   
   
( ) sinc ( ) 2 2
2
ta
x t a X rect rect
a a
ω ω
ω π π
π
−
     
= ⇔ = =
     
     
2
a
c
π
= 2
a c
π
=
( )
1
( ) sinc ( ) 2
2 2
x t a ct X rect rect
c c c
ω ω
ω π
π π
   
= ⇔ = =
   
   
9
Fourier Transform
Time Reversal
If then
( ) ( )
x t X ω
⇔
( ) ( )
x t X ω
− ⇔ −
Proof: Let . Then and
t τ
− = t τ
= − dt dτ
= −
( )
( ) ( ) ( )
j t j
x t e dt x e d X
ω ω τ
τ τ ω
∞ ∞
− − −
−∞ −∞
− = − = −
∫ ∫
Fourier Transform
Frequency Shifting
If then
( ) ( )
x t X ω
⇔
( ) ( )
c
j t
c
x t e X
ω
ω ω
−
⇔ −
( )
( ) ( ) ( )
c c
j t j t
j t
c
x t e e dt x t e dt X
ω ω ω
ω
ω ω
∞ ∞
− −
−
−∞ −∞
= = −
∫ ∫
Proof:
10
Fourier Transform
Determine the Fourier transform of and
Example: cos ct
ω sin ct
ω
[ ]
1 1
( ) cos ( ) ( ) ( )
2 2
c c
j t j t
c c c
x t t e e X
ω ω
ω ω π δ ω ω δ ω ω
−
= = + ⇔ = − + +
[ ]
1 1 1
( ) cos ( ) ( ) ( )
2 2 2
c c
j t j t
c c c
x t t e e X f f f f f
ω ω
ω δ δ
−
= = + ⇔ = − + +
or
f
1/2
fc
-fc
The phase spectrum is zero everywhere.
X(f)
Fourier Transform
[ ]
1 1
( ) sin ( ) ( ) ( )
2 2
c c
j t j t
c c c
x t t e e X j
j j
ω ω
ω ω π δ ω ω δ ω ω
−
= = − ⇔ = − − − +
[ ]
1 1
( ) sin ( ) ( ) ( )
2 2 2
c c
j t j t
c c c
j
x t t e e X f f f f f
j j
ω ω
ω δ δ
− −
= = − ⇔ = − − +
f
π/2
-fc
fc
-π/2
f
1/2
fc
-fc
|X(f)|
θ(f)
11
Fourier Transform
7. Modulation
If then
Proof:
( ) ( )
x t X ω
⇔
[ ]
1
( )cos( ) ( ) ( )
2
c c c
x t t X X
ω ω ω ω ω
⇔ − + +
[ ]
( ) ( )
1
( )cos( ) ( )
2
1
( ) ( )
2
1
( ) ( )
2
c c
c c
j t j t
j t j t
c
j t j t
c c
x t t e dt x t e e e dt
x t e dt x t e dt
X X
ω ω
ω ω
ω ω ω ω
ω
ω ω ω ω
∞ ∞
− −
−∞ −∞
∞ ∞
− − − +
−∞ −∞
 
= +
 
 
= +
 
 
= − + +
∫ ∫
∫ ∫
Fourier Transform
8. Time Differentiation:
If then
Proof:
( ) ( )
x t X ω
⇔
( )
( )
dx t
j X
dt
ω ω
⇔
( )
( ) ( )
n
n
n
d x t
j X
dt
ω ω
⇔
General case
Taking the derivative of the inverse Fourier transform
1
( ) ( )
2
j t
x t X e d
ω
ω ω
π
∞
−∞
= ∫
( ) 1
( )
2
j t
dx t
j X e d
dt
ω
ω ω ω
π
∞
−∞
= ∫
( )
( )
dx t
j X
dt
ω ω
⇔
we obtain
Therefore
12
Fourier Transform
9. Time Differentiation:
If then
Proof:
( ) ( )
x t X ω
⇔ General case
Taking derivative of Fourier Transform
( )
( )
dX j
tx t j
d
ω
ω
⇔
( )
( )
n
n n
n
d X
t x t j
d
ω
ω
⇔
( ) ( ) j t
X x t e dt
ω
ω
∞
−
−∞
= ∫
( )
( ) ( ) j t
dX
jt x t e dt
d
ω
ω
ω
∞
−
−∞
= −
∫
with respect to ω, we obtain
( )
( )
dX j
tx t j
d
ω
ω
⇔
Therefore
Fourier Transform
10 Conjugate
If then
Proof:
( ) ( )
x t X ω
⇔
If x(t) is real so that
* *
( ) ( )
x t X ω
⇔ −
*
* ( ) *
( ) ( ) ( )
j t j t
x t e dt x t e dt X
ω ω
ω
∞ ∞
− − −
−∞ −∞
 
= = −
 
 
∫ ∫
*
( ) ( )
x t x t
= *
( ) ( )
X X
ω ω
= −
13
Fourier Transform
11. Convolution
Proof:
Interchanging the order of integration, we obtain
If , , and
( ) ( )
x t X ω
⇔ ( ) ( )
h t H ω
⇔ ( ) ( )
y t Y ω
⇔
( ) ( ) * ( ) ( ) ( )
y t h t x t h x t d
τ τ τ
∞
−∞
= = −
∫
( ) ( ) ( )
Y H X
ω ω ω
=
( ) ( ) ( ) j t
Y h x t d e dt
ω
ω τ τ τ
∞ ∞
−
−∞ −∞
 
= −
 
 
∫ ∫
( ) ( ) ( ) j t
Y h x t e dt d
ω
ω τ τ τ
∞ ∞
−
−∞ −∞
 
= −
 
 
∫ ∫
( ) ( ) ( ) ( ) ( )
( ) ( )
j j
Y h X e d X h e d
X H
ωτ ωτ
ω τ ω τ ω τ τ
ω ω
∞ ∞
− −
−∞ −∞
= =
=
∫ ∫
Fourier Transform
12. Multiplication
or
If , and
1 2 1 2 1 2
1 1
( ) ( ) ( ) * ( ) ( ) ( )
2 2
x t x t X X X v X v dv
ω ω ω
π π
∞
−∞
⇔ = −
∫
1 1
( ) ( )
x t X ω
⇔ 2 2
( ) ( )
x t X ω
⇔
1 2 1 2 1 2
( ) ( ) ( ) * ( ) ( ) ( )
x t x t X f X f X v X f v dv
∞
−∞
⇔ = −
∫
14
Fourier Transform
13. Parseval’s Theorem
Proof
If , then total normalized(based on one ohms
resistor) energy E of and x(t) is given by
1 1
( ) ( )
x t X ω
⇔
2 2 2
1
( ) ( ) ( )
2
E x t dt X d X f df
ω ω
π
∞ ∞ ∞
−∞ −∞ −∞
= = =
∫ ∫ ∫
2 * *
1
( ) ( ) ( ) ( ) ( )
2
j t
x t dt x t x t dt x t X e d dt
ω
ω ω
π
∞ ∞ ∞ ∞
−
−∞ −∞ −∞ −∞
 
= =  
 
∫ ∫ ∫ ∫
Interchanging the order of integration, we obtain
Fourier Transform
2 *
*
2
1
( ) ( ) ( )
2
1
( ) ( )
2
1
( )
2
j t
x t dt X x t e dt d
X X d
X d
ω
ω ω
π
ω ω ω
π
ω ω
π
∞ ∞ ∞
−
−∞ −∞ −∞
∞
−∞
∞
−∞
 
=  
 
=
=
∫ ∫ ∫
∫
∫
Proof (cont)

More Related Content

What's hot

DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformAmr E. Mohamed
 
Introduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis宗翰 謝
 
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)Amr E. Mohamed
 
Presentation on fourier transformation
Presentation on fourier transformationPresentation on fourier transformation
Presentation on fourier transformationWasim Shah
 
Signal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsSignal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsArvind Devaraj
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transformskalung0313
 
Fourier sine and cosine series
Fourier sine and cosine seriesFourier sine and cosine series
Fourier sine and cosine seriesTarun Gehlot
 
the fourier series
the fourier seriesthe fourier series
the fourier seriessafi al amu
 
Chapter 2 Laplace Transform
Chapter 2 Laplace TransformChapter 2 Laplace Transform
Chapter 2 Laplace TransformZakiah Saad
 
Fourier analysis
Fourier analysisFourier analysis
Fourier analysisAyzaJabeen
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transformsIffat Anjum
 
History and Real Life Applications of Fourier Analaysis
History and Real Life Applications of Fourier AnalaysisHistory and Real Life Applications of Fourier Analaysis
History and Real Life Applications of Fourier AnalaysisSyed Ahmed Zaki
 
Laplace transform & fourier series
Laplace transform & fourier seriesLaplace transform & fourier series
Laplace transform & fourier seriesvaibhav tailor
 
Application of Fourier Transformation
Application of Fourier TransformationApplication of Fourier Transformation
Application of Fourier TransformationManishKumar3747
 

What's hot (20)

DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
 
Introduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis
 
Fourier transforms
Fourier transforms Fourier transforms
Fourier transforms
 
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
 
Presentation on fourier transformation
Presentation on fourier transformationPresentation on fourier transformation
Presentation on fourier transformation
 
Signal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsSignal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier Transforms
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transforms
 
Inverse laplace transforms
Inverse laplace transformsInverse laplace transforms
Inverse laplace transforms
 
Fourier sine and cosine series
Fourier sine and cosine seriesFourier sine and cosine series
Fourier sine and cosine series
 
the fourier series
the fourier seriesthe fourier series
the fourier series
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Fourier Series
Fourier SeriesFourier Series
Fourier Series
 
Chapter 2 Laplace Transform
Chapter 2 Laplace TransformChapter 2 Laplace Transform
Chapter 2 Laplace Transform
 
Ft and FFT
Ft and FFTFt and FFT
Ft and FFT
 
Fourier analysis
Fourier analysisFourier analysis
Fourier analysis
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transforms
 
History and Real Life Applications of Fourier Analaysis
History and Real Life Applications of Fourier AnalaysisHistory and Real Life Applications of Fourier Analaysis
History and Real Life Applications of Fourier Analaysis
 
Fourier series and transforms
Fourier series and transformsFourier series and transforms
Fourier series and transforms
 
Laplace transform & fourier series
Laplace transform & fourier seriesLaplace transform & fourier series
Laplace transform & fourier series
 
Application of Fourier Transformation
Application of Fourier TransformationApplication of Fourier Transformation
Application of Fourier Transformation
 

Similar to Fourier transform

Signals and Systems Ch 4 5_Fourier Domain
Signals and Systems Ch 4 5_Fourier DomainSignals and Systems Ch 4 5_Fourier Domain
Signals and Systems Ch 4 5_Fourier DomainKetan Solanki
 
5. fourier properties
5. fourier properties5. fourier properties
5. fourier propertiesskysunilyadav
 
Advance Engineering Mathematics
Advance Engineering MathematicsAdvance Engineering Mathematics
Advance Engineering MathematicsPrasenjitRathore
 
Fourier Transform
Fourier TransformFourier Transform
Fourier TransformAamir Saeed
 
Sheet with useful_formulas
Sheet with useful_formulasSheet with useful_formulas
Sheet with useful_formulasHoopeer Hoopeer
 
Lecture8 Signal and Systems
Lecture8 Signal and SystemsLecture8 Signal and Systems
Lecture8 Signal and Systemsbabak danyal
 
Unit 2 analysis of continuous time signals-mcq questions
Unit 2   analysis of continuous time signals-mcq questionsUnit 2   analysis of continuous time signals-mcq questions
Unit 2 analysis of continuous time signals-mcq questionsDr.SHANTHI K.G
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsVjekoslavKovac1
 
Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systemsHouw Liong The
 

Similar to Fourier transform (20)

CVD020 - Lecture Week 2
CVD020 - Lecture Week 2CVD020 - Lecture Week 2
CVD020 - Lecture Week 2
 
Signals and Systems Ch 4 5_Fourier Domain
Signals and Systems Ch 4 5_Fourier DomainSignals and Systems Ch 4 5_Fourier Domain
Signals and Systems Ch 4 5_Fourier Domain
 
5. fourier properties
5. fourier properties5. fourier properties
5. fourier properties
 
Advance Engineering Mathematics
Advance Engineering MathematicsAdvance Engineering Mathematics
Advance Engineering Mathematics
 
Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
 
Sheet with useful_formulas
Sheet with useful_formulasSheet with useful_formulas
Sheet with useful_formulas
 
Lecture8 Signal and Systems
Lecture8 Signal and SystemsLecture8 Signal and Systems
Lecture8 Signal and Systems
 
4. cft
4. cft4. cft
4. cft
 
Tables
TablesTables
Tables
 
Sect5 4
Sect5 4Sect5 4
Sect5 4
 
Unit 2 analysis of continuous time signals-mcq questions
Unit 2   analysis of continuous time signals-mcq questionsUnit 2   analysis of continuous time signals-mcq questions
Unit 2 analysis of continuous time signals-mcq questions
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
Lect7-Fourier-Transform.pdf
Lect7-Fourier-Transform.pdfLect7-Fourier-Transform.pdf
Lect7-Fourier-Transform.pdf
 
Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systems
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
 
Fourier slide
Fourier slideFourier slide
Fourier slide
 
Signal & system
Signal & systemSignal & system
Signal & system
 
SDEE: Lectures 3 and 4
SDEE: Lectures 3 and 4SDEE: Lectures 3 and 4
SDEE: Lectures 3 and 4
 
Properties of Fourier transform
Properties of Fourier transformProperties of Fourier transform
Properties of Fourier transform
 

Recently uploaded

APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDGMarianaLemus7
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 

Recently uploaded (20)

APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDG
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort ServiceHot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 

Fourier transform

  • 1. 1 Fourier Transform Z. Aliyazicioglu Electrical & Computer Engineering Dept. Cal Poly Pomona ECE 307 Fourier Transform The Fourier transform (FT) is the extension of the Fourier series to nonperiodic signals. The Fourier transform of a signal exist if satisfies the following condition. The Fourier transform The inverse Fourier transform (IFT) of X(ω) is x(t)and given by 2 ( ) x t dt ∞ −∞ < ∞ ∫ ( ) ( ) j t X x t e dt ω ω ∞ − −∞ = ∫ 1 ( ) ( ) 2 j t x t X e d ω ω ω π ∞ −∞ = ∫
  • 2. 2 Fourier Transform Also, The Fourier transform can be defined in terms of frequency of Hertz as and corresponding inverse Fourier transform is 2 ( ) ( ) j ft X f x t e dt π ∞ − −∞ = ∫ 2 ( ) ( ) j ft x t X f e df π ∞ −∞ = ∫ Fourier Transform Determine the Fourier transform of a rectangular pulse shown in the following figure Example: -a/2 a/2 h t x(t) / 2 2 2 / 2 ( ) sin( ) 2 2 sin( ) 2 2 sinc 2 a a a j j j t a h X he dt e e j a h a ha a a ha ω ω ω ω ω ω ω ω ω ω π − − −   = = −   −   = =   =     ∫
  • 3. 3 Fourier Transform Example: To find in frequency domain, ( ) / 2 2 2 2 2 2 / 2 ( ) 2 sin( ) sin( ) sinc a fa fa j j j ft a h X f he dt e e j f h fa fa ha f fa ha fa π π π π π π π π − − −   = = −   −   = = = ∫ >> h=1; >> a=1; >> f=-3.5:0.01:3.5; >> w=2*pi*f; >> x=h*a*sinc(w*a/(2*pi)); >> plot (w,x) >> title ('X(omega)') >> xlabel('omega'); >> 1, 1 ( ) 2sinc 2 h a X ω ω π = =   =     Fourier Transform 1, 2 2 ( ) 2sinc 2 h a X ω ω π = =   =     >> h=1; >> a=1; >> f=-3.5:0.01:3.5; >> w=2*pi*f; >> x=abs(h*a*sinc(w*a/(2*pi))); >> subplot (2,1,1) >> plot (w,x) >> title ('|X(omega)|') >> xlabel('omega') >> xp=phase(h*a*sinc(w*a/(2*pi))); >> subplot (2,1,2) >> plot (w,xp) >> title ('phase X(omega)') >> xlabel('omega')
  • 4. 4 Fourier Transform Determine the Fourier transform of the Delta function δ(t) Example 0 ( ) ( ) 1 j t j X t e dt e ω ω ω δ ∞ − − −∞ = = = ∫ 1 X(ω) ω Fourier Transform Properties of the Fourier Transform We summarize several important properties of the Fourier Transform as follows. 1. Linearity (Superposition) 1 1 ( ) ( ) x t X ω ⇔ 2 2 ( ) ( ) x t X ω ⇔ 1 1 2 2 1 1 2 2 ( ) ( ) ( ) ( ) a x t a x t a X a X ω ω + ⇔ + Then, If and Proof: [ ] 1 1 2 2 1 1 2 2 1 1 2 2 ( ) ( ) ( ) ( ) ( ) ( ) j t j t j t a x t a x t e dt a x t e dt a x t e dt a X a X ω ω ω ω ω ∞ ∞ ∞ − − − −∞ −∞ −∞ + = + = + ∫ ∫ ∫
  • 5. 5 Fourier Transform Properties of the Fourier Transform 2. Time Shifting Then, If Proof: ( ) ( ) x t X ω ⇔ 0 0 ( ) ( ) j t x t t X e ω ω − − ⇔ 0 t t τ = − 0 t t τ = + dt dτ = 0 0 0 ( ) 0 ( ) ( ) ( ) ( ) j t j t j t j j t x t t e dt x e d e x e d e X ω τ ω ω ωτ ω τ τ τ τ ω ∞ ∞ − + − −∞ −∞ ∞ − − −∞ − − = = = ∫ ∫ ∫ Let then and Fourier Transform Let 0 ( ) ( ) y t x t t = − 0 0 0 ( ) ( ( ) ) ( ) ( ) ( ) ( ) j t j t j X j X t Y X e X e e X e ω ω ω ω ω ω ω ω ω − − ∠ ∠ − = = = 0 ( ( ) ) ( ) ( ) ( ) j X t j Y Y e X e ω ω ω ω ω ∠ − ∠ = Therefore, the amplitude spectrum of the time shifted signal is the same as the amplitude spectrum of the original signal, and the phase spectrum of the time-shifted signal is the sum of the phase spectrum of the original signal and a linear phase term.
  • 6. 6 Fourier Transform Example: Determine the Fourier transform of the following time shifted rectangular pulse. 0 a h t x(t) 2 ( ) sinc 2 a j a X ha e ω ω ω π −   =     >> h=1; >> a=1; >> f=-3.5:0.01:3.5; >> w=2*pi*f; >> x=abs(h*a*sinc(w*a/(2*pi)).*exp(- j*w*1/2)); >> subplot (2,1,1) >> plot (w,x) >> title ('|X(omega)|') >> xlabel('omega') >> xp=phase(h*a*sinc(w*a/(2*pi)).*exp(- j*w.*1/2)); >> subplot (2,1,2) >> plot (w,xp) >> xlabel('omega') >> title ('phaseX(omega)') Fourier Transform 3. Time Scaling then Proof: If , a>0 then ( ) ( ) x t X ω ⇔ If 1 ( ) ( ) x at X a a ω ⇔ at τ = / t a τ = (1/ ) dt a dτ = Let then and 1 ( ) ( ) 1 ( ) j j t a x at e dt x e d a X a a ω τ ω τ τ ω ∞ ∞ − − −∞ −∞ = = ∫ ∫ If , a<0 then 1 ( ) ( ) 1 1 ( ) ( ) j j t a j a x at e dt x e d a x e d X a a a ω τ ω ω τ τ τ ω τ τ ∞ ∞ − − −∞ −∞ ∞ − −∞ = = = ∫ ∫ ∫
  • 7. 7 Fourier Transform Example. if , then find the Fourier transform of the following signals 1 ( 2 ) ( ) 2 2 x t X ω − − ⇔ ( /5) 5 (5 ) x t X ω ⇔ 2 1 ( 5( 2)) ( ) 5 5 j x t X e ω ω − − − − ⇔ ( ) ( ) x t X ω ⇔ a. b. c. Example: Find the Fourier transform of the following signal. 1 1 ( ) ( ) ( ) sinc 2 x t t X ω ω π   = ∏ ⇔ =     2 2 1 1 1 ( ) (5 ) ( ) ( ) sinc 5 5 5 10 x t t X X ω ω ω π   = ∏ ⇔ = =     3 3 1 ( ) ( /5) ( ) 5 (5 ) 5sinc 0.4 x t t X X ω ω ω π   = ∏ ⇔ = =     a. b. c. Fourier Transform 4. Duality (Symmetry) If then ( ) ( ) x t X ω ⇔ ( ) 2 ( ) X t x π ω ⇔ − ( ) ( ) X t x f ⇔ − or Proof: Since t and ω are arbitrary variables in the inverse Fourier transform 1 ( ) ( ) 2 j t x t X e d ω ω ω π ∞ −∞ = ∫ we can replace ω with t and t with - ω to get 1 ( ) ( ) 2 j t x X t e dt ω ω π ∞ − −∞ − = ∫ { } ( ) ( ) 2 ( ) j t X t X t e dt x F ω π ω ∞ − −∞ = = − ∫ Therefore,
  • 8. 8 Fourier Transform Similarly, if we can replace f with t and t with -f in the inverse Fourier transform 2 ( ) ( ) j ft x t X f e df π ∞ −∞ = ∫ 2 ( ) ( ) j ft x f X t e df π ∞ − −∞ − = ∫ { } ( ) ( ) X t x f F = − to get Therefore, then Let Fourier Transform Example: Applying symmetry property, ( ) ( ) ( ) 1 x t t X δ ω = ⇔ = ( ) 1 ( ) 2 ( ) 2 ( ) x t X ω πδ ω πδ ω = ⇔ = − = ( is even function) ( ) δ ω ( ) 1 ( ) ( ) ( ) x t X f f f δ δ = ⇔ = − = or Example: ( ) ( ) sinc 2 t a x t rect X a a ω ω π     = ⇔ =         ( ) sinc ( ) 2 2 2 ta x t a X rect rect a a ω ω ω π π π −       = ⇔ = =             2 a c π = 2 a c π = ( ) 1 ( ) sinc ( ) 2 2 2 x t a ct X rect rect c c c ω ω ω π π π     = ⇔ = =        
  • 9. 9 Fourier Transform Time Reversal If then ( ) ( ) x t X ω ⇔ ( ) ( ) x t X ω − ⇔ − Proof: Let . Then and t τ − = t τ = − dt dτ = − ( ) ( ) ( ) ( ) j t j x t e dt x e d X ω ω τ τ τ ω ∞ ∞ − − − −∞ −∞ − = − = − ∫ ∫ Fourier Transform Frequency Shifting If then ( ) ( ) x t X ω ⇔ ( ) ( ) c j t c x t e X ω ω ω − ⇔ − ( ) ( ) ( ) ( ) c c j t j t j t c x t e e dt x t e dt X ω ω ω ω ω ω ∞ ∞ − − − −∞ −∞ = = − ∫ ∫ Proof:
  • 10. 10 Fourier Transform Determine the Fourier transform of and Example: cos ct ω sin ct ω [ ] 1 1 ( ) cos ( ) ( ) ( ) 2 2 c c j t j t c c c x t t e e X ω ω ω ω π δ ω ω δ ω ω − = = + ⇔ = − + + [ ] 1 1 1 ( ) cos ( ) ( ) ( ) 2 2 2 c c j t j t c c c x t t e e X f f f f f ω ω ω δ δ − = = + ⇔ = − + + or f 1/2 fc -fc The phase spectrum is zero everywhere. X(f) Fourier Transform [ ] 1 1 ( ) sin ( ) ( ) ( ) 2 2 c c j t j t c c c x t t e e X j j j ω ω ω ω π δ ω ω δ ω ω − = = − ⇔ = − − − + [ ] 1 1 ( ) sin ( ) ( ) ( ) 2 2 2 c c j t j t c c c j x t t e e X f f f f f j j ω ω ω δ δ − − = = − ⇔ = − − + f π/2 -fc fc -π/2 f 1/2 fc -fc |X(f)| θ(f)
  • 11. 11 Fourier Transform 7. Modulation If then Proof: ( ) ( ) x t X ω ⇔ [ ] 1 ( )cos( ) ( ) ( ) 2 c c c x t t X X ω ω ω ω ω ⇔ − + + [ ] ( ) ( ) 1 ( )cos( ) ( ) 2 1 ( ) ( ) 2 1 ( ) ( ) 2 c c c c j t j t j t j t c j t j t c c x t t e dt x t e e e dt x t e dt x t e dt X X ω ω ω ω ω ω ω ω ω ω ω ω ω ∞ ∞ − − −∞ −∞ ∞ ∞ − − − + −∞ −∞   = +     = +     = − + + ∫ ∫ ∫ ∫ Fourier Transform 8. Time Differentiation: If then Proof: ( ) ( ) x t X ω ⇔ ( ) ( ) dx t j X dt ω ω ⇔ ( ) ( ) ( ) n n n d x t j X dt ω ω ⇔ General case Taking the derivative of the inverse Fourier transform 1 ( ) ( ) 2 j t x t X e d ω ω ω π ∞ −∞ = ∫ ( ) 1 ( ) 2 j t dx t j X e d dt ω ω ω ω π ∞ −∞ = ∫ ( ) ( ) dx t j X dt ω ω ⇔ we obtain Therefore
  • 12. 12 Fourier Transform 9. Time Differentiation: If then Proof: ( ) ( ) x t X ω ⇔ General case Taking derivative of Fourier Transform ( ) ( ) dX j tx t j d ω ω ⇔ ( ) ( ) n n n n d X t x t j d ω ω ⇔ ( ) ( ) j t X x t e dt ω ω ∞ − −∞ = ∫ ( ) ( ) ( ) j t dX jt x t e dt d ω ω ω ∞ − −∞ = − ∫ with respect to ω, we obtain ( ) ( ) dX j tx t j d ω ω ⇔ Therefore Fourier Transform 10 Conjugate If then Proof: ( ) ( ) x t X ω ⇔ If x(t) is real so that * * ( ) ( ) x t X ω ⇔ − * * ( ) * ( ) ( ) ( ) j t j t x t e dt x t e dt X ω ω ω ∞ ∞ − − − −∞ −∞   = = −     ∫ ∫ * ( ) ( ) x t x t = * ( ) ( ) X X ω ω = −
  • 13. 13 Fourier Transform 11. Convolution Proof: Interchanging the order of integration, we obtain If , , and ( ) ( ) x t X ω ⇔ ( ) ( ) h t H ω ⇔ ( ) ( ) y t Y ω ⇔ ( ) ( ) * ( ) ( ) ( ) y t h t x t h x t d τ τ τ ∞ −∞ = = − ∫ ( ) ( ) ( ) Y H X ω ω ω = ( ) ( ) ( ) j t Y h x t d e dt ω ω τ τ τ ∞ ∞ − −∞ −∞   = −     ∫ ∫ ( ) ( ) ( ) j t Y h x t e dt d ω ω τ τ τ ∞ ∞ − −∞ −∞   = −     ∫ ∫ ( ) ( ) ( ) ( ) ( ) ( ) ( ) j j Y h X e d X h e d X H ωτ ωτ ω τ ω τ ω τ τ ω ω ∞ ∞ − − −∞ −∞ = = = ∫ ∫ Fourier Transform 12. Multiplication or If , and 1 2 1 2 1 2 1 1 ( ) ( ) ( ) * ( ) ( ) ( ) 2 2 x t x t X X X v X v dv ω ω ω π π ∞ −∞ ⇔ = − ∫ 1 1 ( ) ( ) x t X ω ⇔ 2 2 ( ) ( ) x t X ω ⇔ 1 2 1 2 1 2 ( ) ( ) ( ) * ( ) ( ) ( ) x t x t X f X f X v X f v dv ∞ −∞ ⇔ = − ∫
  • 14. 14 Fourier Transform 13. Parseval’s Theorem Proof If , then total normalized(based on one ohms resistor) energy E of and x(t) is given by 1 1 ( ) ( ) x t X ω ⇔ 2 2 2 1 ( ) ( ) ( ) 2 E x t dt X d X f df ω ω π ∞ ∞ ∞ −∞ −∞ −∞ = = = ∫ ∫ ∫ 2 * * 1 ( ) ( ) ( ) ( ) ( ) 2 j t x t dt x t x t dt x t X e d dt ω ω ω π ∞ ∞ ∞ ∞ − −∞ −∞ −∞ −∞   = =     ∫ ∫ ∫ ∫ Interchanging the order of integration, we obtain Fourier Transform 2 * * 2 1 ( ) ( ) ( ) 2 1 ( ) ( ) 2 1 ( ) 2 j t x t dt X x t e dt d X X d X d ω ω ω π ω ω ω π ω ω π ∞ ∞ ∞ − −∞ −∞ −∞ ∞ −∞ ∞ −∞   =     = = ∫ ∫ ∫ ∫ ∫ Proof (cont)