Gas Dynamics
ESA 341
Chapter 3
Dr Kamarul Arifin B. Ahmad
PPK Aeroangkasa
Normal shock waves
 Definition of shock wave
 Formation of normal shock wave
 Governing equations
 Shock in the nozzle
Definition of shock wave
Shock wave is a very thin region in a
flow where a supersonic flow is
decelerated to subsonic flow. The
process is adiabatic but non-isentropic.
Shock wave
V
P
T
Formation of Shock Wave
A piston in a tube is given a small
constant velocity increment to the
right magnitude dV, a sound wave
travel ahead of the piston.
A second increment of velocity dV
causing a second wave to move into
the compressed gas behind the first
wave.
As the second wave move into a gas
that is already moving (into a
compressed gas having a slightly
elevated temperature), the second
waves travels with a greater velocity.
The wave next to the piston tend to
overtake those father down the tube.
As time passes, the compression
wave steepens.
Types of Shock Waves:
Normal shock wave
- easiest to analyze
Oblique shock wave
- will be analyzed
based on normal
shock relations
Curved shock wave
- difficult & will
not be analyzed
in this class
- The flow across a shock wave is adiabatic but
not isentropic (because it is irreversible). So:
02
01
02
01
P
P
T
T



Governing Equations
1
1
1
1

T
P
V
2
2
2
2

T
P
V
Conservation of mass:
Conservation of momentum:
Rearranging:
Combining:
A
V
A
V 2
2
1
1 
 
   
 
 
1
2
2
2
2
1
1
2
1
1
2
1
1
2
2
1
V
V
V
P
P
V
V
V
P
P
V
V
m
A
P
P












2
2
1
2
1
2
2
1
2
1
2
1
2
1


P
P
V
V
V
P
P
V
V
V






  2
1
2
2
2
1
2
1
1
1
V
V
P
P 













Conservation of energy:
Change of variable:
0
2
2
2
2
1
1
2
2
T
c
V
T
c
V
T
c p
p
p 























2
2
1
1
2
1
2
2
1
2



 P
P
V
V
combine
2
2
2
2
2
1
1
1
1
2
1
2
V
P
V
P




















 





Continued:
Multiplied by 2/p1:
Rearranging:
  




























2
2
1
1
2
1
2
1
1
2
1
1






P
P
P
P





































1
2
1
2
1
2
1
2
1
2
1
1
P
P
P
P









































1
2
1
2
1
2
1
1
1
1
1








P
P



































1
2
1
2
1
2
1
1
1
1
1
P
P
P
P






or
Governing Equations cont.




































1
2
1
2
2
1
1
2
1
1
1
1
1
P
P
P
P
V
V






2
1
1
2
1
2


P
P
T
T




































2
1
1
2
1
2
1
1
1
1
P
P
P
P
T
T




Governing Equations cont.
From conservation of mass:
From equation of state:
Governing Equations cont.
2
2
1
1 V
V 
 
   
   
2
2
2
2
1
1
2
2
2
2
2
2
1
1
1
1
2
2
1
1
1 M
P
M
P
P
a
V
P
V
P
V
V
m
A
P
P















 
 
  

























2
2
2
1
1
2
2
2
2
2
1
1
2
1
1
2
1
1
2
2
M
M
T
T
V
h
V
h


C
O
M
B
I
N
E
Conservation of mass
Conservation of momentum
Conservation of energy
   
    
  0
2
2
1
1
)
2
1
1
(
1
)
2
1
1
(
2
1
1
1
2
1
1
1
2
1
2
2
2
1
2
2
2
1
2
2
4
1
4
2
2
2
2
2
2
2
2
2
2
1
2
1
2
1
2
2
2
2
2
2
1
2
1
1
2
2
2
2
1
1
1
1
2
2
1
1























M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
RT
M
RT
P
RT
M
RT
P
V
V














Expanding the equations
Governing Equations cont.
 
 
1
2
2
1
2
1
2
1
2









M
M
M
Solution:
Mach number cannot be negative. So, only the positive value is realistic.
Governing Equations cont.
 
 
 
 
 
 
 
1
1
1
2
1
1
1
2
1
1
1
2
2
1
1
2
1
1
2
1
1
2
1
1
2
2
2
2
1
1
2
2
1
2
2
1
2
1
1
2
2
2
2
1
1
2

































 














































M
P
P
M
M
P
P
M
M
M
T
T
M
M
T
T
 
 
 
 
 
2
)
1
(
)
1
(
1
2
1
1
1
2
2
1
1
1
2
2
1
2
1
2
1
1
2
2
1
2
2
1
2
1
2
1
2
1
1
1
2
2
1
2
1
2
1
1
2





























 








M
M
M
M
M
M
M
M
T
T
M
M
V
V
















Temp. ratio
Pres. ratio
Dens. ratio
Simplifying:
1
2
3
Stagnation pressures:
Other relations:
 


























1
1
2
2
1
1
2
1
1 2
1
1
2
1
2
2
01
02
1
2
01
1
2
02
01
02




 

M
M
M
P
P
P
P
P
P
P
P
P
P
2
02
02
01
2
01
1
01
01
02
1
02
P
P
P
P
P
P
P
P
P
P
P
P


Governing Equations cont.
Entropy change:
But, S02=S2 and S01=S1 because the flow is
all isentropic before and after shockwave.
So, when applied to stagnation points:
But, flow across the shock wave is adiabatic & non-isentropic:
And the stagnation entropy is equal to the static entropy:
So:
Shock wave
1 2















1
2
1
2
1
2 ln
ln
P
P
R
T
T
c
s
s p















01
02
01
02
01
02 ln
ln
P
P
R
T
T
c
s
s p
02
01 T
T 
1
ln 1
2
01
02
01
02 










 s
s
P
P
R
s
s
  1
exp 1
2
01
02




R
s
s
P
P  Total pressure decreases across shock wave !
Governing Equations cont.
Group Exercises 3
1. Consider a normal shock wave in air where the upstream flow
properties are u1=680m/s, T1=288K, and p1=1 atm. Calculate the
velocity, temperature, and pressure downstream of the shock.
2. A stream of air travelling at 500 m/s with a static pressure of 75
kPa and a static temperature of 150
C undergoes a normal shock
wave. Determine the static temperature, pressure and the
stagnation pressure, temperature and the air velocity after the
shock wave.
3. Air has a temperature and pressure of 3000
K and 2 bars absolute
respectively. It is flowing with a velocity of 868m/s and enters a
normal shock. Determine the density before and after the shock.
0

s
M
1
1 
M 1
2 
M
01
01
1
1
1
T
P
T
P

01
02
01
02
1
2
1
2
1
2
T
T
P
P
T
T
P
P







1
M 2
M
1
2
P
P
1
2
T
T
1
2


1
2
a
a
01
02
P
P
1
02
P
P
Stationary Normal Shock Wave Table – Appendix C:

Chapter3 the solution book of aerospace.ppt

  • 1.
    Gas Dynamics ESA 341 Chapter3 Dr Kamarul Arifin B. Ahmad PPK Aeroangkasa
  • 2.
    Normal shock waves Definition of shock wave  Formation of normal shock wave  Governing equations  Shock in the nozzle
  • 3.
    Definition of shockwave Shock wave is a very thin region in a flow where a supersonic flow is decelerated to subsonic flow. The process is adiabatic but non-isentropic. Shock wave V P T
  • 4.
    Formation of ShockWave A piston in a tube is given a small constant velocity increment to the right magnitude dV, a sound wave travel ahead of the piston. A second increment of velocity dV causing a second wave to move into the compressed gas behind the first wave. As the second wave move into a gas that is already moving (into a compressed gas having a slightly elevated temperature), the second waves travels with a greater velocity. The wave next to the piston tend to overtake those father down the tube. As time passes, the compression wave steepens.
  • 5.
    Types of ShockWaves: Normal shock wave - easiest to analyze Oblique shock wave - will be analyzed based on normal shock relations Curved shock wave - difficult & will not be analyzed in this class - The flow across a shock wave is adiabatic but not isentropic (because it is irreversible). So: 02 01 02 01 P P T T   
  • 6.
    Governing Equations 1 1 1 1  T P V 2 2 2 2  T P V Conservation ofmass: Conservation of momentum: Rearranging: Combining: A V A V 2 2 1 1            1 2 2 2 2 1 1 2 1 1 2 1 1 2 2 1 V V V P P V V V P P V V m A P P             2 2 1 2 1 2 2 1 2 1 2 1 2 1   P P V V V P P V V V         2 1 2 2 2 1 2 1 1 1 V V P P               Conservation of energy: Change of variable: 0 2 2 2 2 1 1 2 2 T c V T c V T c p p p                         2 2 1 1 2 1 2 2 1 2     P P V V combine 2 2 2 2 2 1 1 1 1 2 1 2 V P V P                           
  • 7.
    Continued: Multiplied by 2/p1: Rearranging:                               2 2 1 1 2 1 2 1 1 2 1 1       P P P P                                      1 2 1 2 1 2 1 2 1 2 1 1 P P P P                                          1 2 1 2 1 2 1 1 1 1 1         P P                                    1 2 1 2 1 2 1 1 1 1 1 P P P P       or Governing Equations cont.
  • 8.
  • 9.
    Governing Equations cont. 2 2 1 1V V            2 2 2 2 1 1 2 2 2 2 2 2 1 1 1 1 2 2 1 1 1 M P M P P a V P V P V V m A P P                                                2 2 2 1 1 2 2 2 2 2 1 1 2 1 1 2 1 1 2 2 M M T T V h V h   C O M B I N E Conservation of mass Conservation of momentum Conservation of energy            0 2 2 1 1 ) 2 1 1 ( 1 ) 2 1 1 ( 2 1 1 1 2 1 1 1 2 1 2 2 2 1 2 2 2 1 2 2 4 1 4 2 2 2 2 2 2 2 2 2 2 1 2 1 2 1 2 2 2 2 2 2 1 2 1 1 2 2 2 2 1 1 1 1 2 2 1 1                        M M M M M M M M M M M M M M M M M M M M RT M RT P RT M RT P V V               Expanding the equations
  • 10.
    Governing Equations cont.    1 2 2 1 2 1 2 1 2          M M M Solution: Mach number cannot be negative. So, only the positive value is realistic.
  • 11.
    Governing Equations cont.              1 1 1 2 1 1 1 2 1 1 1 2 2 1 1 2 1 1 2 1 1 2 1 1 2 2 2 2 1 1 2 2 1 2 2 1 2 1 1 2 2 2 2 1 1 2                                                                                  M P P M M P P M M M T T M M T T           2 ) 1 ( ) 1 ( 1 2 1 1 1 2 2 1 1 1 2 2 1 2 1 2 1 1 2 2 1 2 2 1 2 1 2 1 2 1 1 1 2 2 1 2 1 2 1 1 2                                        M M M M M M M M T T M M V V                 Temp. ratio Pres. ratio Dens. ratio Simplifying: 1 2 3
  • 12.
    Stagnation pressures: Other relations:                            1 1 2 2 1 1 2 1 1 2 1 1 2 1 2 2 01 02 1 2 01 1 2 02 01 02        M M M P P P P P P P P P P 2 02 02 01 2 01 1 01 01 02 1 02 P P P P P P P P P P P P   Governing Equations cont.
  • 13.
    Entropy change: But, S02=S2and S01=S1 because the flow is all isentropic before and after shockwave. So, when applied to stagnation points: But, flow across the shock wave is adiabatic & non-isentropic: And the stagnation entropy is equal to the static entropy: So: Shock wave 1 2                1 2 1 2 1 2 ln ln P P R T T c s s p                01 02 01 02 01 02 ln ln P P R T T c s s p 02 01 T T  1 ln 1 2 01 02 01 02             s s P P R s s   1 exp 1 2 01 02     R s s P P  Total pressure decreases across shock wave ! Governing Equations cont.
  • 14.
    Group Exercises 3 1.Consider a normal shock wave in air where the upstream flow properties are u1=680m/s, T1=288K, and p1=1 atm. Calculate the velocity, temperature, and pressure downstream of the shock. 2. A stream of air travelling at 500 m/s with a static pressure of 75 kPa and a static temperature of 150 C undergoes a normal shock wave. Determine the static temperature, pressure and the stagnation pressure, temperature and the air velocity after the shock wave. 3. Air has a temperature and pressure of 3000 K and 2 bars absolute respectively. It is flowing with a velocity of 868m/s and enters a normal shock. Determine the density before and after the shock.
  • 15.
    0  s M 1 1  M 1 2 M 01 01 1 1 1 T P T P  01 02 01 02 1 2 1 2 1 2 T T P P T T P P        1 M 2 M 1 2 P P 1 2 T T 1 2   1 2 a a 01 02 P P 1 02 P P Stationary Normal Shock Wave Table – Appendix C:

Editor's Notes

  • #14 2)[76.6kPa, 374.4K, 247.5kPa, 412.5K, 276m/s]