SlideShare a Scribd company logo
1 of 45
Download to read offline
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis1
Chapter 2
Principles of Steady-State Converter Analysis
2.1. Introduction
2.2. Inductor volt-second balance, capacitor charge
balance, and the small ripple approximation
2.3. Boost converter example
2.4. Cuk converter example
2.5. Estimating the ripple in converters containing two-
pole low-pass filters
2.6. Summary of key points
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis2
2.1 Introduction
Buck converter
SPDT switch changes dc
component
Switch output voltage
waveform
complement Dβ€²:
Dβ€² = 1 - D
Duty cycle D:
0 ≀ D ≀ 1
+
–
R
+
v(t)
–
1
2
+
vs(t)
–
Vg
vs(t)
Vg
DTs D'Ts
0
t0 DTs Ts
Switch
position: 1 2 1
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis3
Dc component of switch output voltage
vs = 1
Ts
vs(t) dt
0
Ts
vs = 1
Ts
(DTsVg) = DVg
Fourier analysis: Dc component = average value
vs(t)
Vg
0
t0 DTs Ts
〈vsβŒͺ = DVgarea =
DTsVg
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis4
Insertion of low-pass filter to remove switching
harmonics and pass only dc component
v β‰ˆ vs = DVg
+
–
L
C R
+
v(t)
–
1
2
+
vs(t)
–
Vg
Vg
0
0 D
V
1
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis5
Three basic dc-dc converters
Buck
Boost
Buck-boost
M(D)
D
0
0.2
0.4
0.6
0.8
1
0 0.2 0.4 0.6 0.8 1
M(D)
D
0
1
2
3
4
5
0 0.2 0.4 0.6 0.8 1
M(D)
D
–5
–4
–3
–2
–1
0
0 0.2 0.4 0.6 0.8 1
(a)
(b)
(c)
+
–
L
C R
+
v
–
1
2
+
–
L
C R
+
v
–
1
2
+
– L
C R
+
v
–
1 2
M(D) = D
M(D) = 1
1 – D
M(D) = – D
1 – D
iL (t)
Vg
iL (t)
Vg
iL (t)
Vg
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis6
Objectives of this chapter
G Develop techniques for easily determining output
voltage of an arbitrary converter circuit
G Derive the principles of inductor volt-second balance
and capacitor charge (amp-second) balance
G Introduce the key small ripple approximation
G Develop simple methods for selecting filter element
values
G Illustrate via examples
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis7
2.2. Inductor volt-second balance, capacitor charge
balance, and the small ripple approximation
Buck converter
containing practical
low-pass filter
Actual output voltage
waveform
v(t) = V + vripple(t)
Actual output voltage waveform, buck converter
+
–
L
C R
+
v(t)
–
1
2
iL(t)
+ vL(t) –
iC(t)
Vg
v(t)
t
0
V
Actual waveform
v(t) = V + vripple(t)
dc component V
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis8
The small ripple approximation
In a well-designed converter, the output voltage ripple is small. Hence,
the waveforms can be easily determined by ignoring the ripple:
v(t) β‰ˆ V
v(t) = V + vripple(t)
v(t)
t
0
V
Actual waveform
v(t) = V + vripple(t)
dc component V
vripple < V
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis9
Buck converter analysis:
inductor current waveform
original
converter
switch in position 2switch in position 1
+
–
L
C R
+
v(t)
–
1
2
iL(t)
+ vL(t) –
iC(t)
Vg
L
C R
+
v(t)
–
iL(t)
+ vL(t) –
iC(t)
+
–
Vg
L
C R
+
v(t)
–
iL(t)
+ vL(t) –
iC(t)
+
–
Vg
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis10
Inductor voltage and current
Subinterval 1: switch in position 1
vL = Vg – v(t)
Inductor voltage
Small ripple approximation:
vL β‰ˆ Vg – V
Knowing the inductor voltage, we can now find the inductor current via
vL(t) = L
diL(t)
dt
Solve for the slope:
diL(t)
dt
=
vL(t)
L
β‰ˆ
Vg – V
L
β‡’ The inductor current changes with an
essentially constant slope
L
C R
+
v(t)
–
iL(t)
+ vL(t) –
iC(t)
+
–
Vg
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis11
Inductor voltage and current
Subinterval 2: switch in position 2
Inductor voltage
Small ripple approximation:
Knowing the inductor voltage, we can again find the inductor current via
vL(t) = L
diL(t)
dt
Solve for the slope:
β‡’ The inductor current changes with an
essentially constant slope
vL(t) = – v(t)
vL(t) β‰ˆ – V
diL(t)
dt
β‰ˆ – V
L
L
C R
+
v(t)
–
iL(t)
+ vL(t) –
iC(t)
+
–
Vg
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis12
Inductor voltage and current waveforms
vL(t) = L
diL(t)
dt
vL(t)
Vg – V
t
– V
D'TsDTs
Switch
position: 1 2 1
– V
L
Vg – V
L
iL(t)
t0 DTs Ts
I
iL(0)
iL(DTs)
βˆ†iL
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis13
Determination of inductor current ripple magnitude
(change in iL) = (slope)(length of subinterval)
2βˆ†iL =
Vg – V
L
DTs
βˆ†iL =
Vg – V
2L
DTs
L =
Vg – V
2βˆ†iL
DTs⇒
– V
L
Vg – V
L
iL(t)
t0 DTs Ts
I
iL(0)
iL(DTs)
βˆ†iL
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis14
Inductor current waveform
during turn-on transient
When the converter operates in equilibrium:
iL((n + 1)Ts) = iL(nTs)
iL(t)
t0 DTs
Ts
iL(0) = 0
iL(nTs)
iL
(Ts
)
2Ts nTs
(n + 1)Ts
iL((n + 1)Ts)
Vg – v(t)
L
– v(t)
L
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis15
The principle of inductor volt-second balance:
Derivation
Inductor defining relation:
Integrate over one complete switching period:
In periodic steady state, the net change in inductor current is zero:
Hence, the total area (or volt-seconds) under the inductor voltage
waveform is zero whenever the converter operates in steady state.
An equivalent form:
The average inductor voltage is zero in steady state.
vL(t) = L
diL(t)
dt
iL(Ts) – iL(0) = 1
L
vL(t) dt
0
Ts
0 = vL(t) dt
0
Ts
0 = 1
Ts
vL(t) dt
0
Ts
= vL
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis16
Inductor volt-second balance:
Buck converter example
Inductor voltage waveform,
previously derived:
Integral of voltage waveform is area of rectangles:
Ξ» = vL(t) dt
0
Ts
= (Vg – V)(DTs) + ( – V)(D'Ts)
Average voltage is
vL = Ξ»
Ts
= D(Vg – V) + D'( – V)
Equate to zero and solve for V:
0 = DVg – (D + D')V = DVg – V β‡’ V = DVg
vL(t)
Vg – V
t
– V
DTs
Total area Ξ»
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis17
The principle of capacitor charge balance:
Derivation
Capacitor defining relation:
Integrate over one complete switching period:
In periodic steady state, the net change in capacitor voltage is zero:
Hence, the total area (or charge) under the capacitor current
waveform is zero whenever the converter operates in steady state.
The average capacitor current is then zero.
iC(t) = C
dvC(t)
dt
vC(Ts) – vC(0) = 1
C
iC(t) dt
0
Ts
0 = 1
Ts
iC(t) dt
0
Ts
= iC
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis18
2.3 Boost converter example
Boost converter
with ideal switch
Realization using
power MOSFET
and diode
+
–
L
C R
+
v
–
1
2
iL(t)
Vg
iC(t)
+ vL(t) –
+
–
L
C R
+
v
–
iL(t)
Vg
iC(t)
+ vL(t) –
D1
Q1
DTs Ts
+
–
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis19
Boost converter analysis
original
converter
switch in position 2switch in position 1
+
–
L
C R
+
v
–
1
2
iL(t)
Vg
iC(t)
+ vL(t) –
C R
+
v
–
iC(t)
+
–
L
iL(t)
Vg
+ vL(t) –
C R
+
v
–
iC(t)
+
–
L
iL(t)
Vg
+ vL(t) –
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis20
Subinterval 1: switch in position 1
Inductor voltage and capacitor current
Small ripple approximation:
vL = Vg
iC = – v / R
vL = Vg
iC = – V / R
C R
+
v
–
iC(t)
+
–
L
iL(t)
Vg
+ vL(t) –
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis21
Subinterval 2: switch in position 2
Inductor voltage and capacitor current
Small ripple approximation:
vL = Vg – v
iC = iL – v / R
vL = Vg – V
iC = I – V / R
C R
+
v
–
iC(t)
+
–
L
iL(t)
Vg
+ vL(t) –
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis22
Inductor voltage and capacitor current waveforms
vL(t)
Vg – V
t
DTs
Vg
D'Ts
iC(t)
– V/R
t
DTs
I – V/R
D'Ts
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis23
Inductor volt-second balance
Net volt-seconds applied to inductor
over one switching period:
vL(t) dt
0
Ts
= (Vg) DTs + (Vg – V) D'Ts
Equate to zero and collect terms:
Vg (D + D') – V D' = 0
Solve for V:
V =
Vg
D'
The voltage conversion ratio is therefore
M(D) = V
Vg
= 1
D'
= 1
1 – D
vL(t)
Vg – V
t
DTs
Vg
D'Ts
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis24
Conversion ratio M(D) of the boost converterM(D)
D
0
1
2
3
4
5
0 0.2 0.4 0.6 0.8 1
M(D) = 1
D'
= 1
1 – D
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis25
Determination of inductor current dc component
Capacitor charge balance:
iC(t) dt
0
Ts
= ( – V
R
) DTs + (I – V
R
) D'Ts
Collect terms and equate to zero:
– V
R
(D + D') + I D' = 0
Solve for I:
I = V
D' R
I =
Vg
D'2
R
Eliminate V to express in terms of Vg:
iC(t)
– V/R
t
DTs
I – V/R
D'Ts
D
0
2
4
6
8
0 0.2 0.4 0.6 0.8 1
I
Vg/R
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis26
Determination of inductor current ripple
Inductor current slope during
subinterval 1:
diL(t)
dt
=
vL(t)
L
=
Vg – V
L
Inductor current slope during
subinterval 2:
2βˆ†iL =
Vg
L
DTs
diL(t)
dt
=
vL(t)
L
=
Vg
L
Change in inductor current during subinterval 1 is (slope) (length of subinterval):
Solve for peak ripple:
βˆ†iL =
Vg
2L
DTs
β€’ Choose L such that desired ripple magnitude
is obtained
Vg – V
L
Vg
L
iL(t)
t0 DTs Ts
I βˆ†iL
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis27
Determination of capacitor voltage ripple
Capacitor voltage slope during
subinterval 1:
Capacitor voltage slope during
subinterval 2:
Change in capacitor voltage during subinterval 1 is (slope) (length of subinterval):
Solve for peak ripple: β€’ Choose C such that desired voltage ripple
magnitude is obtained
β€’ In practice, capacitor equivalent series
resistance (esr) leads to increased voltage ripple
dvC(t)
dt
=
iC(t)
C
= – V
RC
dvC(t)
dt
=
iC(t)
C
= I
C
– V
RC
– 2βˆ†v = – V
RC
DTs
βˆ†v = V
2RC
DTs
v(t)
t0 DTs Ts
V βˆ†v
I
C
– V
RC
– V
RC
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis28
2.4 Cuk converter example
+
–
L1
C2 R
+
v2
–
C1 L2
1 2
+ v1 –i1
i2
Vg
+
–
L1
C2 R
+
v2
–
C1 L2
+ v1 –i1
i2
D1Q1Vg
Cuk converter,
with ideal switch
Cuk converter:
practical realization
using MOSFET and
diode
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis29
Cuk converter circuit
with switch in positions 1 and 2
+
–
L1
C2 R
+
v2
–
C1
L2
i1
i2
–
v1
+
iC1 iC2
+ vL2 –+ vL1 –
Vg
+
–
L1
C2 R
+
v2
–
C1
L2i1 i2
+
v1
–
iC1
iC2
+ vL2 –+ vL1 –
Vg
Switch in position 1:
MOSFET conducts
Capacitor C1 releases
energy to output
Switch in position 2:
diode conducts
Capacitor C1 is
charged from input
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis30
Waveforms during subinterval 1
MOSFET conduction interval
+
–
L1
C2 R
+
v2
–
C1
L2
i1
i2
–
v1
+
iC1 iC2
+ vL2 –+ vL1 –
Vg
vL1 = Vg
vL2 = – v1 – v2
iC1 = i2
iC2 = i2 –
v2
R
Inductor voltages and
capacitor currents:
Small ripple approximation for subinterval 1:
vL1 = Vg
vL2 = – V1 – V2
iC1 = I2
iC2 = I2 –
V2
R
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis31
Waveforms during subinterval 2
Diode conduction interval
Inductor voltages and
capacitor currents:
Small ripple approximation for subinterval 2:
+
–
L1
C2 R
+
v2
–
C1
L2i1 i2
+
v1
–
iC1
iC2
+ vL2 –+ vL1 –
Vg
vL1 = Vg – v1
vL2 = – v2
iC1 = i1
iC2 = i2 –
v2
R
vL1 = Vg – V1
vL2 = – V2
iC1 = I1
iC2 = I2 –
V2
R
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis32
Equate average values to zero
The principles of inductor volt-second and capacitor charge balance
state that the average values of the periodic inductor voltage and
capacitor current waveforms are zero, when the converter operates in
steady state. Hence, to determine the steady-state conditions in the
converter, let us sketch the inductor voltage and capacitor current
waveforms, and equate their average values to zero.
Waveforms:
vL1(t)
Vg – V1
t
DTs
Vg
D'Ts
Inductor voltage vL1(t)
vL1 = DVg + D'(Vg – V1) = 0
Volt-second balance on L1:
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis33
Equate average values to zero
vL2(t)
– V1 – V2
t
DTs
– V2
D'Ts
iC1(t)
I2
t
DTs
I1
D'Ts
Inductor L2 voltage
Capacitor C1 current
vL2 = D( – V1 – V2) + D'( – V2) = 0
iC1 = DI2 + D'I1 = 0
Average the waveforms:
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis34
Equate average values to zero
iC2(t)
I2 – V2 / R (= 0)
tDTs D'Ts
Capacitor current iC2(t) waveform
Note: during both subintervals, the
capacitor current iC2 is equal to the
difference between the inductor current
i2 and the load current V2/R. When
ripple is neglected, iC2 is constant and
equal to zero.
iC2 = I2 –
V2
R
= 0
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis35
Cuk converter conversion ratio M = V/VgM(D)
D
-5
-4
-3
-2
-1
0
0 0.2 0.4 0.6 0.8 1
M(D) =
V2
Vg
= – D
1 – D
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis36
Inductor current waveforms
di1(t)
dt
=
vL1(t)
L1
=
Vg
L1
di2(t)
dt
=
vL2(t)
L2
=
– V1 – V2
L2
Interval 1 slopes, using small
ripple approximation:
Interval 2 slopes:
di1(t)
dt
=
vL1(t)
L1
=
Vg – V1
L1
di2(t)
dt
=
vL2(t)
L2
=
– V2
L2
i1(t)
tDTs Ts
I1
βˆ†i1
Vg – V1
L1
Vg
L1
– V2
L2
– V1 – V2
L2
i2(t)
tDTs Ts
I2 βˆ†i2
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis37
Capacitor C1 waveform
dv1(t)
dt
=
iC1(t)
C1
=
I2
C1
Subinterval 1:
Subinterval 2:
dv1(t)
dt
=
iC1(t)
C1
=
I1
C1
I1
C1
I2
C1
v1(t)
tDTs Ts
V1
βˆ†v1
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis38
Ripple magnitudes
βˆ†i1 =
VgDTs
2L1
βˆ†i2 =
V1 + V2
2L2
DTs
βˆ†v1 =
– I2DTs
2C1
Use dc converter solution to simplify:
βˆ†i1 =
VgDTs
2L1
βˆ†i2 =
VgDTs
2L2
βˆ†v1 =
VgD2
Ts
2D'RC1
Analysis results
Q: How large is the output voltage ripple?
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis39
2.5 Estimating ripple in converters
containing two-pole low-pass filters
Buck converter example: Determine output voltage ripple
Inductor current
waveform.
What is the
capacitor current?
+
–
L
C R
+
vC(t)
–
1
2
iC(t) iR(t)
iL(t)
Vg
– V
L
Vg – V
L
iL(t)
t0 DTs
Ts
I
iL(0)
iL(DTs)
βˆ†iL
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis40
Capacitor current and voltage, buck example
Must not
neglect
inductor
current ripple!
If the capacitor
voltage ripple is
small, then
essentially all of
the ac component
of inductor current
flows through the
capacitor.
iC(t)
vC(t)
t
t
Total charge
q
DTs D'Ts
Ts /2
V
βˆ†iL
βˆ†v
βˆ†v
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis41
Estimating capacitor voltage ripple βˆ†v
q = C (2βˆ†v)
Current iC(t) is positive for half
of the switching period. This
positive current causes the
capacitor voltage vC(t) to
increase between its minimum
and maximum extrema.
During this time, the total
charge q is deposited on the
capacitor plates, where
(change in charge) =
C (change in voltage)
iC(t)
vC(t)
t
t
Total charge
q
DTs D'Ts
Ts /2
V
βˆ†iL
βˆ†v
βˆ†v
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis42
Estimating capacitor voltage ripple βˆ†v
The total charge q is the area
of the triangle, as shown:
q = 1
2 βˆ†iL
Ts
2
Eliminate q and solve for βˆ†v:
βˆ†v =
βˆ†iL Ts
8 C
Note: in practice, capacitor
equivalent series resistance
(esr) further increases βˆ†v.
iC(t)
vC(t)
t
t
Total charge
q
DTs D'Ts
Ts /2
V
βˆ†iL
βˆ†v
βˆ†v
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis43
Inductor current ripple in two-pole filters
Example:
problem 2.9
can use similar arguments, with
Ξ» = L (2βˆ†i)
Ξ» = inductor flux linkages
= inductor volt-seconds
R
+
v
–
+
–
C2
L2L1
C1
+
vC1
–
i1
iT
i2
D1
Q1
Vg
vL(t)
iL(t)
t
t
Total
flux linkage
Ξ»
DTs D'Ts
Ts /2
I
βˆ†v
βˆ†i
βˆ†i
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis44
2.6 Summary of Key Points
1. The dc component of a converter waveform is given by its average
value, or the integral over one switching period, divided by the
switching period. Solution of a dc-dc converter to find its dc, or steady-
state, voltages and currents therefore involves averaging the
waveforms.
2. The linear ripple approximation greatly simplifies the analysis. In a well-
designed converter, the switching ripples in the inductor currents and
capacitor voltages are small compared to the respective dc
components, and can be neglected.
3. The principle of inductor volt-second balance allows determination of the
dc voltage components in any switching converter. In steady-state, the
average voltage applied to an inductor must be zero.
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis45
Summary of Chapter 2
4. The principle of capacitor charge balance allows determination of the dc
components of the inductor currents in a switching converter. In steady-
state, the average current applied to a capacitor must be zero.
5. By knowledge of the slopes of the inductor current and capacitor voltage
waveforms, the ac switching ripple magnitudes may be computed.
Inductance and capacitance values can then be chosen to obtain
desired ripple magnitudes.
6. In converters containing multiple-pole filters, continuous (nonpulsating)
voltages and currents are applied to one or more of the inductors or
capacitors. Computation of the ac switching ripple in these elements
can be done using capacitor charge and/or inductor flux-linkage
arguments, without use of the small-ripple approximation.
7. Converters capable of increasing (boost), decreasing (buck), and
inverting the voltage polarity (buck-boost and Cuk) have been
described. Converter circuits are explored more fully in a later chapter.

More Related Content

What's hot

Initial and final condition for circuit
Initial and final condition for circuitInitial and final condition for circuit
Initial and final condition for circuitvishalgohel12195
Β 
Chapter 3 - Resonant-mode DC-DC Converter.pdf
Chapter 3 - Resonant-mode DC-DC Converter.pdfChapter 3 - Resonant-mode DC-DC Converter.pdf
Chapter 3 - Resonant-mode DC-DC Converter.pdfbenson215
Β 
Chap 2 basic electronics gp 1
Chap 2 basic electronics gp 1Chap 2 basic electronics gp 1
Chap 2 basic electronics gp 1Ankit Dubey
Β 
Review of ac fundamentals
Review of ac fundamentalsReview of ac fundamentals
Review of ac fundamentalsMeenakumari R
Β 
Step respponse of rlc circuit by Aditya Pratap Singh Delhi University
Step respponse of rlc circuit by Aditya Pratap Singh Delhi UniversityStep respponse of rlc circuit by Aditya Pratap Singh Delhi University
Step respponse of rlc circuit by Aditya Pratap Singh Delhi UniversityAditya Pratap Singh
Β 
dc biasing of bjt
dc biasing of bjtdc biasing of bjt
dc biasing of bjtabhinavmj
Β 
Single Phase Uncontrolled Bridge Rectifier with RLE Load
Single Phase Uncontrolled Bridge Rectifier with RLE LoadSingle Phase Uncontrolled Bridge Rectifier with RLE Load
Single Phase Uncontrolled Bridge Rectifier with RLE LoadDhairya Gandha
Β 
AC electricity
AC electricityAC electricity
AC electricitynlahoud
Β 
Ac fundamentals 3 power in ac circuits
Ac fundamentals 3  power in ac circuitsAc fundamentals 3  power in ac circuits
Ac fundamentals 3 power in ac circuitsUniversity of Potsdam
Β 
Topic 2 - Switch Realization.pptx
Topic 2 - Switch Realization.pptxTopic 2 - Switch Realization.pptx
Topic 2 - Switch Realization.pptxVanJasperCastillo
Β 
Bipolar Junction Transistor (BJT) DC and AC Analysis
Bipolar Junction Transistor (BJT) DC and AC AnalysisBipolar Junction Transistor (BJT) DC and AC Analysis
Bipolar Junction Transistor (BJT) DC and AC AnalysisJess Rangcasajo
Β 
Series parallel resonance circuit
Series parallel resonance circuitSeries parallel resonance circuit
Series parallel resonance circuitPraveen Vaidya
Β 
Mini emergency-light
Mini emergency-lightMini emergency-light
Mini emergency-lightER Punit Jain
Β 
Fundamentals of power electronics [presentation slides] 2nd ed r. erickson ww
Fundamentals of power electronics [presentation slides] 2nd ed   r. erickson wwFundamentals of power electronics [presentation slides] 2nd ed   r. erickson ww
Fundamentals of power electronics [presentation slides] 2nd ed r. erickson wwnedjaabachir
Β 
Chapter 05
Chapter 05Chapter 05
Chapter 05Tha Mike
Β 

What's hot (20)

Initial and final condition for circuit
Initial and final condition for circuitInitial and final condition for circuit
Initial and final condition for circuit
Β 
Solved problems
Solved problemsSolved problems
Solved problems
Β 
Chapter 3 - Resonant-mode DC-DC Converter.pdf
Chapter 3 - Resonant-mode DC-DC Converter.pdfChapter 3 - Resonant-mode DC-DC Converter.pdf
Chapter 3 - Resonant-mode DC-DC Converter.pdf
Β 
Chap 2 basic electronics gp 1
Chap 2 basic electronics gp 1Chap 2 basic electronics gp 1
Chap 2 basic electronics gp 1
Β 
Review of ac fundamentals
Review of ac fundamentalsReview of ac fundamentals
Review of ac fundamentals
Β 
Step respponse of rlc circuit by Aditya Pratap Singh Delhi University
Step respponse of rlc circuit by Aditya Pratap Singh Delhi UniversityStep respponse of rlc circuit by Aditya Pratap Singh Delhi University
Step respponse of rlc circuit by Aditya Pratap Singh Delhi University
Β 
dc biasing of bjt
dc biasing of bjtdc biasing of bjt
dc biasing of bjt
Β 
Single Phase Uncontrolled Bridge Rectifier with RLE Load
Single Phase Uncontrolled Bridge Rectifier with RLE LoadSingle Phase Uncontrolled Bridge Rectifier with RLE Load
Single Phase Uncontrolled Bridge Rectifier with RLE Load
Β 
AC electricity
AC electricityAC electricity
AC electricity
Β 
A.c circuits
A.c circuitsA.c circuits
A.c circuits
Β 
Ac fundamentals 3 power in ac circuits
Ac fundamentals 3  power in ac circuitsAc fundamentals 3  power in ac circuits
Ac fundamentals 3 power in ac circuits
Β 
Topic 2 - Switch Realization.pptx
Topic 2 - Switch Realization.pptxTopic 2 - Switch Realization.pptx
Topic 2 - Switch Realization.pptx
Β 
Bipolar Junction Transistor (BJT) DC and AC Analysis
Bipolar Junction Transistor (BJT) DC and AC AnalysisBipolar Junction Transistor (BJT) DC and AC Analysis
Bipolar Junction Transistor (BJT) DC and AC Analysis
Β 
Impedance in transmission line
Impedance in transmission lineImpedance in transmission line
Impedance in transmission line
Β 
dc ac inverters
  dc ac inverters  dc ac inverters
dc ac inverters
Β 
Series parallel resonance circuit
Series parallel resonance circuitSeries parallel resonance circuit
Series parallel resonance circuit
Β 
FET Biasing
FET BiasingFET Biasing
FET Biasing
Β 
Mini emergency-light
Mini emergency-lightMini emergency-light
Mini emergency-light
Β 
Fundamentals of power electronics [presentation slides] 2nd ed r. erickson ww
Fundamentals of power electronics [presentation slides] 2nd ed   r. erickson wwFundamentals of power electronics [presentation slides] 2nd ed   r. erickson ww
Fundamentals of power electronics [presentation slides] 2nd ed r. erickson ww
Β 
Chapter 05
Chapter 05Chapter 05
Chapter 05
Β 

Viewers also liked

The Fastest Possible Search Algorithm: Grover's Search and the World of Quant...
The Fastest Possible Search Algorithm: Grover's Search and the World of Quant...The Fastest Possible Search Algorithm: Grover's Search and the World of Quant...
The Fastest Possible Search Algorithm: Grover's Search and the World of Quant...Daniel Austin
Β 
Quantum mechanics in electronics
Quantum mechanics in electronicsQuantum mechanics in electronics
Quantum mechanics in electronicsAmit Kumar Mohapatra
Β 
Chapter 03
Chapter 03Chapter 03
Chapter 03Tha Mike
Β 
Chapter 14
Chapter 14Chapter 14
Chapter 14Tha Mike
Β 
7.7.3 Phasors
7.7.3 Phasors7.7.3 Phasors
7.7.3 PhasorsTalia Carbis
Β 
Chapter 15
Chapter 15Chapter 15
Chapter 15Tha Mike
Β 
Chapter 16
Chapter 16Chapter 16
Chapter 16Tha Mike
Β 
Steady-state Analysis for Switched Electronic Systems Trough Complementarity
Steady-state Analysis for Switched Electronic Systems Trough ComplementaritySteady-state Analysis for Switched Electronic Systems Trough Complementarity
Steady-state Analysis for Switched Electronic Systems Trough ComplementarityGianluca Angelone
Β 
Ecd302 unit 04 (analysis)
Ecd302 unit 04 (analysis)Ecd302 unit 04 (analysis)
Ecd302 unit 04 (analysis)Xi Qiu
Β 
L18 1 ph-ac
L18 1 ph-acL18 1 ph-ac
L18 1 ph-acSatyakam
Β 
Chapter 17
Chapter 17Chapter 17
Chapter 17Tha Mike
Β 
Chapter 20
Chapter 20Chapter 20
Chapter 20Tha Mike
Β 
Impedence
ImpedenceImpedence
ImpedenceGopi Chand
Β 
Basic electronics.rtf
Basic electronics.rtfBasic electronics.rtf
Basic electronics.rtfsagarpiet16
Β 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsSimen Li
Β 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisSimen Li
Β 
Power electronics note
Power electronics notePower electronics note
Power electronics noteravalgautu
Β 

Viewers also liked (20)

The Fastest Possible Search Algorithm: Grover's Search and the World of Quant...
The Fastest Possible Search Algorithm: Grover's Search and the World of Quant...The Fastest Possible Search Algorithm: Grover's Search and the World of Quant...
The Fastest Possible Search Algorithm: Grover's Search and the World of Quant...
Β 
Quantum mechanics in electronics
Quantum mechanics in electronicsQuantum mechanics in electronics
Quantum mechanics in electronics
Β 
Chapter 03
Chapter 03Chapter 03
Chapter 03
Β 
Chapter 14
Chapter 14Chapter 14
Chapter 14
Β 
7.7.3 Phasors
7.7.3 Phasors7.7.3 Phasors
7.7.3 Phasors
Β 
Chapter 15
Chapter 15Chapter 15
Chapter 15
Β 
Chapter 16
Chapter 16Chapter 16
Chapter 16
Β 
Steady-state Analysis for Switched Electronic Systems Trough Complementarity
Steady-state Analysis for Switched Electronic Systems Trough ComplementaritySteady-state Analysis for Switched Electronic Systems Trough Complementarity
Steady-state Analysis for Switched Electronic Systems Trough Complementarity
Β 
Ecd302 unit 04 (analysis)
Ecd302 unit 04 (analysis)Ecd302 unit 04 (analysis)
Ecd302 unit 04 (analysis)
Β 
L18 1 ph-ac
L18 1 ph-acL18 1 ph-ac
L18 1 ph-ac
Β 
Chapter 17
Chapter 17Chapter 17
Chapter 17
Β 
Lecture 29 ac circuits. phasors.
Lecture 29   ac circuits. phasors.Lecture 29   ac circuits. phasors.
Lecture 29 ac circuits. phasors.
Β 
Chapter 20
Chapter 20Chapter 20
Chapter 20
Β 
Impedence
ImpedenceImpedence
Impedence
Β 
Basic electronics.rtf
Basic electronics.rtfBasic electronics.rtf
Basic electronics.rtf
Β 
Electronics ..
Electronics ..Electronics ..
Electronics ..
Β 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Β 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Β 
Basic electronics
Basic electronicsBasic electronics
Basic electronics
Β 
Power electronics note
Power electronics notePower electronics note
Power electronics note
Β 

Similar to Chapter 02

Ch2slide (1).pdf
Ch2slide (1).pdfCh2slide (1).pdf
Ch2slide (1).pdfTahirNIAZIKHAN
Β 
Three State Switching Boost Converter ppt
Three State Switching Boost Converter pptThree State Switching Boost Converter ppt
Three State Switching Boost Converter pptMamta Bagoria
Β 
Chapter 1 - PWM DC-DC Converter.pdf
Chapter 1 - PWM DC-DC Converter.pdfChapter 1 - PWM DC-DC Converter.pdf
Chapter 1 - PWM DC-DC Converter.pdfbenson215
Β 
Chapter 10
Chapter 10Chapter 10
Chapter 10Tha Mike
Β 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)Claudia Sin
Β 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)Claudia Sin
Β 
Chapter 18
Chapter 18Chapter 18
Chapter 18Tha Mike
Β 
A Novel Nonlinear Control of Boost Converter using CCM Phase Plane
A Novel Nonlinear Control of Boost Converter using CCM Phase PlaneA Novel Nonlinear Control of Boost Converter using CCM Phase Plane
A Novel Nonlinear Control of Boost Converter using CCM Phase PlaneIJECEIAES
Β 
STATE-SPACE AVERAGING METHOD
STATE-SPACE AVERAGING METHOD STATE-SPACE AVERAGING METHOD
STATE-SPACE AVERAGING METHOD Slobodan Cuk
Β 
chapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxchapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxLiewChiaPing
Β 
3. Half-Wave Rectifier_verstud.pdf
3. Half-Wave Rectifier_verstud.pdf3. Half-Wave Rectifier_verstud.pdf
3. Half-Wave Rectifier_verstud.pdfLIEWHUIFANGUNIMAP
Β 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.pptShivamChaturvedi67
Β 
BUCK CONVERTER
BUCK CONVERTERBUCK CONVERTER
BUCK CONVERTERNIT MEGHALAYA
Β 
Ee6378 linear regulators
Ee6378 linear regulatorsEe6378 linear regulators
Ee6378 linear regulatorsssuser2038c9
Β 
Chapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfChapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfLiewChiaPing
Β 
L-24(DK&SSG)(PE) ((EE)NPTEL) (4 files merged).pdf
L-24(DK&SSG)(PE) ((EE)NPTEL) (4 files merged).pdfL-24(DK&SSG)(PE) ((EE)NPTEL) (4 files merged).pdf
L-24(DK&SSG)(PE) ((EE)NPTEL) (4 files merged).pdfsatyam jha
Β 

Similar to Chapter 02 (20)

Ch2slide (1).pdf
Ch2slide (1).pdfCh2slide (1).pdf
Ch2slide (1).pdf
Β 
CC1.ppt
CC1.pptCC1.ppt
CC1.ppt
Β 
abc.ppt
abc.pptabc.ppt
abc.ppt
Β 
Three State Switching Boost Converter ppt
Three State Switching Boost Converter pptThree State Switching Boost Converter ppt
Three State Switching Boost Converter ppt
Β 
Chapter 1 - PWM DC-DC Converter.pdf
Chapter 1 - PWM DC-DC Converter.pdfChapter 1 - PWM DC-DC Converter.pdf
Chapter 1 - PWM DC-DC Converter.pdf
Β 
Chapter 10
Chapter 10Chapter 10
Chapter 10
Β 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)
Β 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)
Β 
Chapter 18
Chapter 18Chapter 18
Chapter 18
Β 
A Novel Nonlinear Control of Boost Converter using CCM Phase Plane
A Novel Nonlinear Control of Boost Converter using CCM Phase PlaneA Novel Nonlinear Control of Boost Converter using CCM Phase Plane
A Novel Nonlinear Control of Boost Converter using CCM Phase Plane
Β 
STATE-SPACE AVERAGING METHOD
STATE-SPACE AVERAGING METHOD STATE-SPACE AVERAGING METHOD
STATE-SPACE AVERAGING METHOD
Β 
chapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxchapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptx
Β 
3. Half-Wave Rectifier_verstud.pdf
3. Half-Wave Rectifier_verstud.pdf3. Half-Wave Rectifier_verstud.pdf
3. Half-Wave Rectifier_verstud.pdf
Β 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.ppt
Β 
BUCK CONVERTER
BUCK CONVERTERBUCK CONVERTER
BUCK CONVERTER
Β 
Ee6378 linear regulators
Ee6378 linear regulatorsEe6378 linear regulators
Ee6378 linear regulators
Β 
Chapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdfChapter 5 DC-DC Converters.pdf
Chapter 5 DC-DC Converters.pdf
Β 
Edc unit 2
Edc unit 2Edc unit 2
Edc unit 2
Β 
Edcqnaunit 2
Edcqnaunit 2Edcqnaunit 2
Edcqnaunit 2
Β 
L-24(DK&SSG)(PE) ((EE)NPTEL) (4 files merged).pdf
L-24(DK&SSG)(PE) ((EE)NPTEL) (4 files merged).pdfL-24(DK&SSG)(PE) ((EE)NPTEL) (4 files merged).pdf
L-24(DK&SSG)(PE) ((EE)NPTEL) (4 files merged).pdf
Β 

Recently uploaded

New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
Β 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
Β 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
Β 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
Β 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
Β 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
Β 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
Β 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
Β 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
Β 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
Β 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
Β 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
Β 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
Β 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
Β 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
Β 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
Β 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
Β 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDGMarianaLemus7
Β 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
Β 

Recently uploaded (20)

New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Β 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Β 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
Β 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
Β 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
Β 
Hot Sexy call girls in Panjabi Bagh πŸ” 9953056974 πŸ” Delhi escort Service
Hot Sexy call girls in Panjabi Bagh πŸ” 9953056974 πŸ” Delhi escort ServiceHot Sexy call girls in Panjabi Bagh πŸ” 9953056974 πŸ” Delhi escort Service
Hot Sexy call girls in Panjabi Bagh πŸ” 9953056974 πŸ” Delhi escort Service
Β 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
Β 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
Β 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
Β 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
Β 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
Β 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Β 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
Β 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
Β 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
Β 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
Β 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
Β 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
Β 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDG
Β 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
Β 

Chapter 02

  • 1. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis1 Chapter 2 Principles of Steady-State Converter Analysis 2.1. Introduction 2.2. Inductor volt-second balance, capacitor charge balance, and the small ripple approximation 2.3. Boost converter example 2.4. Cuk converter example 2.5. Estimating the ripple in converters containing two- pole low-pass filters 2.6. Summary of key points
  • 2. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis2 2.1 Introduction Buck converter SPDT switch changes dc component Switch output voltage waveform complement Dβ€²: Dβ€² = 1 - D Duty cycle D: 0 ≀ D ≀ 1 + – R + v(t) – 1 2 + vs(t) – Vg vs(t) Vg DTs D'Ts 0 t0 DTs Ts Switch position: 1 2 1
  • 3. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis3 Dc component of switch output voltage vs = 1 Ts vs(t) dt 0 Ts vs = 1 Ts (DTsVg) = DVg Fourier analysis: Dc component = average value vs(t) Vg 0 t0 DTs Ts 〈vsβŒͺ = DVgarea = DTsVg
  • 4. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis4 Insertion of low-pass filter to remove switching harmonics and pass only dc component v β‰ˆ vs = DVg + – L C R + v(t) – 1 2 + vs(t) – Vg Vg 0 0 D V 1
  • 5. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis5 Three basic dc-dc converters Buck Boost Buck-boost M(D) D 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 M(D) D 0 1 2 3 4 5 0 0.2 0.4 0.6 0.8 1 M(D) D –5 –4 –3 –2 –1 0 0 0.2 0.4 0.6 0.8 1 (a) (b) (c) + – L C R + v – 1 2 + – L C R + v – 1 2 + – L C R + v – 1 2 M(D) = D M(D) = 1 1 – D M(D) = – D 1 – D iL (t) Vg iL (t) Vg iL (t) Vg
  • 6. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis6 Objectives of this chapter G Develop techniques for easily determining output voltage of an arbitrary converter circuit G Derive the principles of inductor volt-second balance and capacitor charge (amp-second) balance G Introduce the key small ripple approximation G Develop simple methods for selecting filter element values G Illustrate via examples
  • 7. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis7 2.2. Inductor volt-second balance, capacitor charge balance, and the small ripple approximation Buck converter containing practical low-pass filter Actual output voltage waveform v(t) = V + vripple(t) Actual output voltage waveform, buck converter + – L C R + v(t) – 1 2 iL(t) + vL(t) – iC(t) Vg v(t) t 0 V Actual waveform v(t) = V + vripple(t) dc component V
  • 8. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis8 The small ripple approximation In a well-designed converter, the output voltage ripple is small. Hence, the waveforms can be easily determined by ignoring the ripple: v(t) β‰ˆ V v(t) = V + vripple(t) v(t) t 0 V Actual waveform v(t) = V + vripple(t) dc component V vripple < V
  • 9. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis9 Buck converter analysis: inductor current waveform original converter switch in position 2switch in position 1 + – L C R + v(t) – 1 2 iL(t) + vL(t) – iC(t) Vg L C R + v(t) – iL(t) + vL(t) – iC(t) + – Vg L C R + v(t) – iL(t) + vL(t) – iC(t) + – Vg
  • 10. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis10 Inductor voltage and current Subinterval 1: switch in position 1 vL = Vg – v(t) Inductor voltage Small ripple approximation: vL β‰ˆ Vg – V Knowing the inductor voltage, we can now find the inductor current via vL(t) = L diL(t) dt Solve for the slope: diL(t) dt = vL(t) L β‰ˆ Vg – V L β‡’ The inductor current changes with an essentially constant slope L C R + v(t) – iL(t) + vL(t) – iC(t) + – Vg
  • 11. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis11 Inductor voltage and current Subinterval 2: switch in position 2 Inductor voltage Small ripple approximation: Knowing the inductor voltage, we can again find the inductor current via vL(t) = L diL(t) dt Solve for the slope: β‡’ The inductor current changes with an essentially constant slope vL(t) = – v(t) vL(t) β‰ˆ – V diL(t) dt β‰ˆ – V L L C R + v(t) – iL(t) + vL(t) – iC(t) + – Vg
  • 12. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis12 Inductor voltage and current waveforms vL(t) = L diL(t) dt vL(t) Vg – V t – V D'TsDTs Switch position: 1 2 1 – V L Vg – V L iL(t) t0 DTs Ts I iL(0) iL(DTs) βˆ†iL
  • 13. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis13 Determination of inductor current ripple magnitude (change in iL) = (slope)(length of subinterval) 2βˆ†iL = Vg – V L DTs βˆ†iL = Vg – V 2L DTs L = Vg – V 2βˆ†iL DTsβ‡’ – V L Vg – V L iL(t) t0 DTs Ts I iL(0) iL(DTs) βˆ†iL
  • 14. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis14 Inductor current waveform during turn-on transient When the converter operates in equilibrium: iL((n + 1)Ts) = iL(nTs) iL(t) t0 DTs Ts iL(0) = 0 iL(nTs) iL (Ts ) 2Ts nTs (n + 1)Ts iL((n + 1)Ts) Vg – v(t) L – v(t) L
  • 15. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis15 The principle of inductor volt-second balance: Derivation Inductor defining relation: Integrate over one complete switching period: In periodic steady state, the net change in inductor current is zero: Hence, the total area (or volt-seconds) under the inductor voltage waveform is zero whenever the converter operates in steady state. An equivalent form: The average inductor voltage is zero in steady state. vL(t) = L diL(t) dt iL(Ts) – iL(0) = 1 L vL(t) dt 0 Ts 0 = vL(t) dt 0 Ts 0 = 1 Ts vL(t) dt 0 Ts = vL
  • 16. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis16 Inductor volt-second balance: Buck converter example Inductor voltage waveform, previously derived: Integral of voltage waveform is area of rectangles: Ξ» = vL(t) dt 0 Ts = (Vg – V)(DTs) + ( – V)(D'Ts) Average voltage is vL = Ξ» Ts = D(Vg – V) + D'( – V) Equate to zero and solve for V: 0 = DVg – (D + D')V = DVg – V β‡’ V = DVg vL(t) Vg – V t – V DTs Total area Ξ»
  • 17. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis17 The principle of capacitor charge balance: Derivation Capacitor defining relation: Integrate over one complete switching period: In periodic steady state, the net change in capacitor voltage is zero: Hence, the total area (or charge) under the capacitor current waveform is zero whenever the converter operates in steady state. The average capacitor current is then zero. iC(t) = C dvC(t) dt vC(Ts) – vC(0) = 1 C iC(t) dt 0 Ts 0 = 1 Ts iC(t) dt 0 Ts = iC
  • 18. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis18 2.3 Boost converter example Boost converter with ideal switch Realization using power MOSFET and diode + – L C R + v – 1 2 iL(t) Vg iC(t) + vL(t) – + – L C R + v – iL(t) Vg iC(t) + vL(t) – D1 Q1 DTs Ts + –
  • 19. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis19 Boost converter analysis original converter switch in position 2switch in position 1 + – L C R + v – 1 2 iL(t) Vg iC(t) + vL(t) – C R + v – iC(t) + – L iL(t) Vg + vL(t) – C R + v – iC(t) + – L iL(t) Vg + vL(t) –
  • 20. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis20 Subinterval 1: switch in position 1 Inductor voltage and capacitor current Small ripple approximation: vL = Vg iC = – v / R vL = Vg iC = – V / R C R + v – iC(t) + – L iL(t) Vg + vL(t) –
  • 21. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis21 Subinterval 2: switch in position 2 Inductor voltage and capacitor current Small ripple approximation: vL = Vg – v iC = iL – v / R vL = Vg – V iC = I – V / R C R + v – iC(t) + – L iL(t) Vg + vL(t) –
  • 22. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis22 Inductor voltage and capacitor current waveforms vL(t) Vg – V t DTs Vg D'Ts iC(t) – V/R t DTs I – V/R D'Ts
  • 23. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis23 Inductor volt-second balance Net volt-seconds applied to inductor over one switching period: vL(t) dt 0 Ts = (Vg) DTs + (Vg – V) D'Ts Equate to zero and collect terms: Vg (D + D') – V D' = 0 Solve for V: V = Vg D' The voltage conversion ratio is therefore M(D) = V Vg = 1 D' = 1 1 – D vL(t) Vg – V t DTs Vg D'Ts
  • 24. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis24 Conversion ratio M(D) of the boost converterM(D) D 0 1 2 3 4 5 0 0.2 0.4 0.6 0.8 1 M(D) = 1 D' = 1 1 – D
  • 25. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis25 Determination of inductor current dc component Capacitor charge balance: iC(t) dt 0 Ts = ( – V R ) DTs + (I – V R ) D'Ts Collect terms and equate to zero: – V R (D + D') + I D' = 0 Solve for I: I = V D' R I = Vg D'2 R Eliminate V to express in terms of Vg: iC(t) – V/R t DTs I – V/R D'Ts D 0 2 4 6 8 0 0.2 0.4 0.6 0.8 1 I Vg/R
  • 26. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis26 Determination of inductor current ripple Inductor current slope during subinterval 1: diL(t) dt = vL(t) L = Vg – V L Inductor current slope during subinterval 2: 2βˆ†iL = Vg L DTs diL(t) dt = vL(t) L = Vg L Change in inductor current during subinterval 1 is (slope) (length of subinterval): Solve for peak ripple: βˆ†iL = Vg 2L DTs β€’ Choose L such that desired ripple magnitude is obtained Vg – V L Vg L iL(t) t0 DTs Ts I βˆ†iL
  • 27. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis27 Determination of capacitor voltage ripple Capacitor voltage slope during subinterval 1: Capacitor voltage slope during subinterval 2: Change in capacitor voltage during subinterval 1 is (slope) (length of subinterval): Solve for peak ripple: β€’ Choose C such that desired voltage ripple magnitude is obtained β€’ In practice, capacitor equivalent series resistance (esr) leads to increased voltage ripple dvC(t) dt = iC(t) C = – V RC dvC(t) dt = iC(t) C = I C – V RC – 2βˆ†v = – V RC DTs βˆ†v = V 2RC DTs v(t) t0 DTs Ts V βˆ†v I C – V RC – V RC
  • 28. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis28 2.4 Cuk converter example + – L1 C2 R + v2 – C1 L2 1 2 + v1 –i1 i2 Vg + – L1 C2 R + v2 – C1 L2 + v1 –i1 i2 D1Q1Vg Cuk converter, with ideal switch Cuk converter: practical realization using MOSFET and diode
  • 29. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis29 Cuk converter circuit with switch in positions 1 and 2 + – L1 C2 R + v2 – C1 L2 i1 i2 – v1 + iC1 iC2 + vL2 –+ vL1 – Vg + – L1 C2 R + v2 – C1 L2i1 i2 + v1 – iC1 iC2 + vL2 –+ vL1 – Vg Switch in position 1: MOSFET conducts Capacitor C1 releases energy to output Switch in position 2: diode conducts Capacitor C1 is charged from input
  • 30. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis30 Waveforms during subinterval 1 MOSFET conduction interval + – L1 C2 R + v2 – C1 L2 i1 i2 – v1 + iC1 iC2 + vL2 –+ vL1 – Vg vL1 = Vg vL2 = – v1 – v2 iC1 = i2 iC2 = i2 – v2 R Inductor voltages and capacitor currents: Small ripple approximation for subinterval 1: vL1 = Vg vL2 = – V1 – V2 iC1 = I2 iC2 = I2 – V2 R
  • 31. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis31 Waveforms during subinterval 2 Diode conduction interval Inductor voltages and capacitor currents: Small ripple approximation for subinterval 2: + – L1 C2 R + v2 – C1 L2i1 i2 + v1 – iC1 iC2 + vL2 –+ vL1 – Vg vL1 = Vg – v1 vL2 = – v2 iC1 = i1 iC2 = i2 – v2 R vL1 = Vg – V1 vL2 = – V2 iC1 = I1 iC2 = I2 – V2 R
  • 32. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis32 Equate average values to zero The principles of inductor volt-second and capacitor charge balance state that the average values of the periodic inductor voltage and capacitor current waveforms are zero, when the converter operates in steady state. Hence, to determine the steady-state conditions in the converter, let us sketch the inductor voltage and capacitor current waveforms, and equate their average values to zero. Waveforms: vL1(t) Vg – V1 t DTs Vg D'Ts Inductor voltage vL1(t) vL1 = DVg + D'(Vg – V1) = 0 Volt-second balance on L1:
  • 33. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis33 Equate average values to zero vL2(t) – V1 – V2 t DTs – V2 D'Ts iC1(t) I2 t DTs I1 D'Ts Inductor L2 voltage Capacitor C1 current vL2 = D( – V1 – V2) + D'( – V2) = 0 iC1 = DI2 + D'I1 = 0 Average the waveforms:
  • 34. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis34 Equate average values to zero iC2(t) I2 – V2 / R (= 0) tDTs D'Ts Capacitor current iC2(t) waveform Note: during both subintervals, the capacitor current iC2 is equal to the difference between the inductor current i2 and the load current V2/R. When ripple is neglected, iC2 is constant and equal to zero. iC2 = I2 – V2 R = 0
  • 35. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis35 Cuk converter conversion ratio M = V/VgM(D) D -5 -4 -3 -2 -1 0 0 0.2 0.4 0.6 0.8 1 M(D) = V2 Vg = – D 1 – D
  • 36. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis36 Inductor current waveforms di1(t) dt = vL1(t) L1 = Vg L1 di2(t) dt = vL2(t) L2 = – V1 – V2 L2 Interval 1 slopes, using small ripple approximation: Interval 2 slopes: di1(t) dt = vL1(t) L1 = Vg – V1 L1 di2(t) dt = vL2(t) L2 = – V2 L2 i1(t) tDTs Ts I1 βˆ†i1 Vg – V1 L1 Vg L1 – V2 L2 – V1 – V2 L2 i2(t) tDTs Ts I2 βˆ†i2
  • 37. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis37 Capacitor C1 waveform dv1(t) dt = iC1(t) C1 = I2 C1 Subinterval 1: Subinterval 2: dv1(t) dt = iC1(t) C1 = I1 C1 I1 C1 I2 C1 v1(t) tDTs Ts V1 βˆ†v1
  • 38. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis38 Ripple magnitudes βˆ†i1 = VgDTs 2L1 βˆ†i2 = V1 + V2 2L2 DTs βˆ†v1 = – I2DTs 2C1 Use dc converter solution to simplify: βˆ†i1 = VgDTs 2L1 βˆ†i2 = VgDTs 2L2 βˆ†v1 = VgD2 Ts 2D'RC1 Analysis results Q: How large is the output voltage ripple?
  • 39. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis39 2.5 Estimating ripple in converters containing two-pole low-pass filters Buck converter example: Determine output voltage ripple Inductor current waveform. What is the capacitor current? + – L C R + vC(t) – 1 2 iC(t) iR(t) iL(t) Vg – V L Vg – V L iL(t) t0 DTs Ts I iL(0) iL(DTs) βˆ†iL
  • 40. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis40 Capacitor current and voltage, buck example Must not neglect inductor current ripple! If the capacitor voltage ripple is small, then essentially all of the ac component of inductor current flows through the capacitor. iC(t) vC(t) t t Total charge q DTs D'Ts Ts /2 V βˆ†iL βˆ†v βˆ†v
  • 41. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis41 Estimating capacitor voltage ripple βˆ†v q = C (2βˆ†v) Current iC(t) is positive for half of the switching period. This positive current causes the capacitor voltage vC(t) to increase between its minimum and maximum extrema. During this time, the total charge q is deposited on the capacitor plates, where (change in charge) = C (change in voltage) iC(t) vC(t) t t Total charge q DTs D'Ts Ts /2 V βˆ†iL βˆ†v βˆ†v
  • 42. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis42 Estimating capacitor voltage ripple βˆ†v The total charge q is the area of the triangle, as shown: q = 1 2 βˆ†iL Ts 2 Eliminate q and solve for βˆ†v: βˆ†v = βˆ†iL Ts 8 C Note: in practice, capacitor equivalent series resistance (esr) further increases βˆ†v. iC(t) vC(t) t t Total charge q DTs D'Ts Ts /2 V βˆ†iL βˆ†v βˆ†v
  • 43. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis43 Inductor current ripple in two-pole filters Example: problem 2.9 can use similar arguments, with Ξ» = L (2βˆ†i) Ξ» = inductor flux linkages = inductor volt-seconds R + v – + – C2 L2L1 C1 + vC1 – i1 iT i2 D1 Q1 Vg vL(t) iL(t) t t Total flux linkage Ξ» DTs D'Ts Ts /2 I βˆ†v βˆ†i βˆ†i
  • 44. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis44 2.6 Summary of Key Points 1. The dc component of a converter waveform is given by its average value, or the integral over one switching period, divided by the switching period. Solution of a dc-dc converter to find its dc, or steady- state, voltages and currents therefore involves averaging the waveforms. 2. The linear ripple approximation greatly simplifies the analysis. In a well- designed converter, the switching ripples in the inductor currents and capacitor voltages are small compared to the respective dc components, and can be neglected. 3. The principle of inductor volt-second balance allows determination of the dc voltage components in any switching converter. In steady-state, the average voltage applied to an inductor must be zero.
  • 45. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis45 Summary of Chapter 2 4. The principle of capacitor charge balance allows determination of the dc components of the inductor currents in a switching converter. In steady- state, the average current applied to a capacitor must be zero. 5. By knowledge of the slopes of the inductor current and capacitor voltage waveforms, the ac switching ripple magnitudes may be computed. Inductance and capacitance values can then be chosen to obtain desired ripple magnitudes. 6. In converters containing multiple-pole filters, continuous (nonpulsating) voltages and currents are applied to one or more of the inductors or capacitors. Computation of the ac switching ripple in these elements can be done using capacitor charge and/or inductor flux-linkage arguments, without use of the small-ripple approximation. 7. Converters capable of increasing (boost), decreasing (buck), and inverting the voltage polarity (buck-boost and Cuk) have been described. Converter circuits are explored more fully in a later chapter.