SlideShare a Scribd company logo
1 of 37
Download to read offline
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode1
Chapter 5. The Discontinuous Conduction Mode
5.1. Origin of the discontinuous conduction mode, and
mode boundary
5.2. Analysis of the conversion ratio M(D,K)
5.3. Boost converter example
5.4. Summary of results and key points
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode2
Introduction to
Discontinuous Conduction Mode (DCM)
q Occurs because switching ripple in inductor current or capacitor voltage
causes polarity of applied switch current or voltage to reverse, such
that the current- or voltage-unidirectional assumptions made in realizing
the switch are violated.
q Commonly occurs in dc-dc converters and rectifiers, having single-
quadrant switches. May also occur in converters having two-quadrant
switches.
q Typical example: dc-dc converter operating at light load (small load
current). Sometimes, dc-dc converters and rectifiers are purposely
designed to operate in DCM at all loads.
q Properties of converters change radically when DCM is entered:
M becomes load-dependent
Output impedance is increased
Dynamics are altered
Control of output voltage may be lost when load is removed
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode3
5.1. Origin of the discontinuous conduction
mode, and mode boundary
Buck converter example, with single-quadrant switches
+
–
Q1
L
C R
+
V
–
D1Vg
iL(t)
iD(t)
iL(t)
t
βˆ†iL
I
0 DTs Ts
conducting
devices: Q1 D1 Q1
iD(t)
t0 DTs Ts
βˆ†iL
Iβˆ†iL =
(Vg – V)
2L
DTs =
Vg DD'Ts
2L
continuous conduction mode (CCM)
Minimum diode current is (I – βˆ†iL)
Dc component I = V/R
Current ripple is
Note that I depends on load, but βˆ†iL
does not.
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode4
Reduction of load current
Increase R, until I = βˆ†iL
+
–
Q1
L
C R
+
V
–
D1Vg
iL(t)
iD(t)
βˆ†iL =
(Vg – V)
2L
DTs =
Vg DD'Ts
2L
CCM-DCM boundary
Minimum diode current is (I – βˆ†iL)
Dc component I = V/R
Current ripple is
Note that I depends on load, but βˆ†iL
does not.
iL(t)
t0 DTs Ts
conducting
devices: Q1 D1 Q1
βˆ†iL
I
iD(t)
t0 DTs Ts
I
βˆ†iL
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode5
Further reduce load current
Increase R some more, such that I < βˆ†iL
+
–
Q1
L
C R
+
V
–
D1Vg
iL(t)
iD(t)
βˆ†iL =
(Vg – V)
2L
DTs =
Vg DD'Ts
2L
Discontinuous conduction mode
Minimum diode current is (I – βˆ†iL)
Dc component I = V/R
Current ripple is
Note that I depends on load, but βˆ†iL
does not.
The load current continues to be
positive and non-zero.
iL(t)
t0 DTs Ts
conducting
devices: Q1 D1
Q1
I
X
D1Ts D2Ts D3Ts
iD(t)
t0 DTs Ts
D2Ts
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode6
Mode boundary
I > βˆ†iL for CCM
I < βˆ†iL for DCM
Insert buck converter expressions for I and βˆ†iL :
DVg
R
<
DD'TsVg
2L
2L
RTs
< D'
Simplify:
This expression is of the form
K < Kcrit(D) for DCM
where K = 2L
RTs
and Kcrit(D) = D'
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode7
K and Kcrit vs. D
Kcrit(D) = 1 – D
0 D1
0
1
2
K = 2L/RTs
K < Kcrit:
DCM
K > Kcrit:
CCM
Kcrit(D) = 1 – D
0 D1
0
1
2
K = 2L/RTs
K > Kcrit:
CCM
for K < 1: for K > 1:
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode8
Critical load resistance Rcrit
R < Rcrit(D) for CCM
R > Rcrit(D) for DCM
where Rcrit(D) = 2L
D'Ts
Solve Kcrit equation for load resistance R:
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode9
Summary: mode boundary
K > Kcrit(D) or R < Rcrit(D) for CCM
K < Kcrit(D) or R > Rcrit(D) for DCM
Table 5.1. CCM-DCM mode boundaries for the buck, boost, and buck-boost converters
Converter Kcrit(D) max
0 ≀ D ≀ 1
( Kcrit )
Rcrit(D) min
0 ≀ D ≀ 1
( Rcrit )
Buck (1 – D) 1
2L
(1 – D)T s
2 L
Ts
Boost D (1 – D)2
4
27
2L
D (1 – D)2
T s
27
2
L
Ts
Buck-boost (1 – D)2
1
2L
(1 – D)2
T s
2 L
Ts
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode10
5.2. Analysis of the conversion ratio M(D,K)
Inductor volt-second balance
Analysis techniques for the discontinuous conduction mode:
vL = 1
Ts
vL(t) dt
0
Ts
= 0
Capacitor charge balance
iC = 1
Ts
iC(t) dt
0
Ts
= 0
Small ripple approximation sometimes applies:
v(t) β‰ˆ V because βˆ†v << V
i(t) β‰ˆ I is a poor approximation when βˆ†i > I
Converter steady-state equations obtained via charge balance on
each capacitor and volt-second balance on each inductor. Use care in
applying small ripple approximation.
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode11
Example: Analysis of
DCM buck converter M(D,K)
+
–
Q1
L
C R
+
V
–
D1Vg
iL(t)
iD(t)
+
–
Vg
L
C R
+
v(t)
–
iC(t)+ vL(t) –
iL(t)
+
–
Vg
L
C R
+
v(t)
–
iC(t)+ vL(t) –
iL(t)
+
–
Vg
L
C R
+
v(t)
–
iC(t)+ vL(t) –
iL(t)
subinterval 1
subinterval 2
subinterval 3
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode12
Subinterval 1
+
–
Vg
L
C R
+
v(t)
–
iC(t)+ vL(t) –
iL(t)
vL(t) = Vg – v(t)
iC(t) = iL(t) – v(t) / R
vL(t) β‰ˆ Vg – V
iC(t) β‰ˆ iL(t) – V / R
Small ripple approximation
for v(t) (but not for i(t)!):
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode13
Subinterval 2
Small ripple approximation
for v(t) but not for i(t):
+
–
Vg
L
C R
+
v(t)
–
iC(t)+ vL(t) –
iL(t)
vL(t) = – v(t)
iC(t) = iL(t) – v(t) / R
vL(t) β‰ˆ – V
iC(t) β‰ˆ iL(t) – V / R
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode14
Subinterval 3
+
–
Vg
L
C R
+
v(t)
–
iC(t)+ vL(t) –
iL(t)
vL = 0, iL = 0
iC(t) = iL(t) – v(t) / R
Small ripple approximation:
vL(t) = 0
iC(t) = – V / R
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode15
Inductor volt-second balance
vL(t)
0
Ts t
D1Ts D2Ts D3Ts
Vg – V
– V
Volt-second balance:
Solve for V:
vL(t) = D1(Vg – V) + D2( – V) + D3(0) = 0
V = Vg
D1
D1 + D2
note that D2 is unknown
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode16
Capacitor charge balance
iL(t)
t0 DTs Ts
D1Ts D2Ts D3Ts
<iL> = I
ipk
Vg – V
L – V
L
L
C R
+
v(t)
–
iC(t)
iL(t) v(t)/Rnode equation:
iL(t) = iC(t) + V / R
capacitor charge balance:
iC = 0
hence
iL = V / R
must compute dc
component of inductor
current and equate to load
current (for this buck
converter example)
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode17
Inductor current waveform
iL(t)
t0 DTs Ts
D1Ts D2Ts D3Ts
<iL> = I
ipk
Vg – V
L – V
L
peak current:
iL(D1Ts) = ipk =
Vg – V
L
D1Ts
average current:
iL = 1
Ts
iL(t) dt
0
Ts
triangle area formula:
iL(t) dt
0
Ts
= 1
2
ipk (D1 + D2)Ts
iL = (Vg – V)
D1Ts
2L
(D1 + D2)
equate dc component to dc load current:
V
R
=
D1Ts
2L
(D1 + D2) (Vg – V)
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode18
Solution for V
Two equations and two unknowns (V and D2):
V = Vg
D1
D1 + D2
V
R
=
D1Ts
2L
(D1 + D2) (Vg – V)
(from inductor volt-second balance)
(from capacitor charge balance)
Eliminate D2 , solve for V :
V
Vg
= 2
1 + 1 + 4K / D1
2
where K = 2L / RTs
valid for K < Kcrit
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode19
Buck converter M(D,K)
0.0
0.2
0.4
0.6
0.8
1.0
M(D,K)
0.0 0.2 0.4 0.6 0.8 1.0
D
K = 0.01
K = 0.1
K = 0.5
K β‰₯ 1
M =
D for K > Kcrit
2
1 + 1 + 4K / D2
for K < Kcrit
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode20
5.3. Boost converter example
+
–
Q1
L
C R
+
v(t)
–
D1
Vg
i(t)
+ vL(t) –
iD(t)
iC(t)
I > βˆ†iL for CCM
I < βˆ†iL for DCM
I =
Vg
D'2
R
βˆ†iL =
Vg
2L
DTs
Previous CCM soln:Mode boundary:
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode21
Mode boundary
Vg
D'2
R
>
DTsVg
2L
for CCM
2L
RTs
> DD'2
for CCM
0
0.05
0.1
0.15
Kcrit(D)
0 0.2 0.4 0.6 0.8 1
D
Kcrit(1
3) = 4
27
K > Kcrit(D) for CCM
K < Kcrit(D) for DCM
where K = 2L
RTs
and Kcrit(D) = DD'2
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode22
Mode boundary
0
0.05
0.1
0.15
Kcrit
(D)
0 0.2 0.4 0.6 0.8 1
D
K
K < Kcrit
DCM CCM
K > Kcrit
CCM
K > Kcrit(D) for CCM
K < Kcrit(D) for DCM
where K = 2L
RTs
and Kcrit(D) = DD'2
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode23
Conversion ratio: DCM boost
subinterval 1
subinterval 2
subinterval 3
+
–
Q1
L
C R
+
v(t)
–
D1
Vg
i(t)
+ vL(t) –
iD(t)
iC(t)
C R
+
v(t)
–
iC(t)
+
–
L
Vg
i(t)
+ vL(t) –
C R
+
v(t)
–
iC(t)
+
–
L
Vg
i(t)
+ vL(t) –
C R
+
v(t)
–
iC(t)
+
–
L
Vg
i(t)
+ vL(t) –
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode24
Subinterval 1
Small ripple approximation
for v(t) (but not for i(t)!):
C R
+
v(t)
–
iC(t)
+
–
L
Vg
i(t)
+ vL(t) –
vL(t) = Vg
iC(t) = – v(t) / R
vL(t) β‰ˆ Vg
iC(t) β‰ˆ – V / R 0 < t < D1Ts
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode25
Subinterval 2
Small ripple approximation
for v(t) but not for i(t):
D1Ts < t < (D1 +D2)Ts
C R
+
v(t)
–
iC(t)
+
–
L
Vg
i(t)
+ vL(t) –
vL(t) = Vg – v(t)
iC(t) = i(t) – v(t) / R
vL(t) β‰ˆ Vg – V
iC(t) β‰ˆ i(t) – V / R
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode26
Subinterval 3
Small ripple approximation:
(D1 +D2)Ts < t < Ts
C R
+
v(t)
–
iC(t)
+
–
L
Vg
i(t)
+ vL(t) –
vL = 0, i = 0
iC(t) = – v(t) / R
vL(t) = 0
iC(t) = – V / R
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode27
Inductor volt-second balance
Volt-second balance:
Solve for V:
note that D2 is unknown
vL(t)
0
Ts t
D1Ts D2Ts D3Ts
Vg
Vg – V
D1Vg + D2(Vg – V) + D3(0) = 0
V =
D1 + D2
D2
Vg
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode28
Capacitor charge balance
node equation:
capacitor charge balance:
iC = 0
hence
must compute dc component of diode
current and equate to load current
(for this boost converter example)
C R
+
v(t)
–
D1 iD(t)
iC(t)
iD(t) = iC(t) + v(t) / R
iD = V / R
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode29
Inductor and diode current waveforms
peak current:
average diode current:
triangle area formula:
i(t)
t0 DTs Ts
D1Ts D2Ts D3Ts
ipk
Vg – V
L
Vg
L
iD(t)
t0 DTs Ts
D1Ts D2Ts D3Ts
ipk
Vg – V
L
<iD>
ipk =
Vg
L
D1Ts
iD = 1
Ts
iD(t) dt
0
Ts
iD(t) dt
0
Ts
= 1
2
ipk D2Ts
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode30
Equate diode current to load current
iD = 1
Ts
1
2
ipk D2Ts =
VgD1D2Ts
2L
average diode current:
equate to dc load current:
VgD1D2Ts
2L
= V
R
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode31
Solution for V
Two equations and two unknowns (V and D2):
(from inductor volt-second balance)
(from capacitor charge balance)
Eliminate D2 , solve for V. From volt-sec balance eqn:
V =
D1 + D2
D2
Vg
VgD1D2Ts
2L
= V
R
D2 = D1
Vg
V – Vg
Substitute into charge balance eqn, rearrange terms:
V2
– VVg –
Vg
2
D1
2
K
= 0
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode32
Solution for V
V2
– VVg –
Vg
2
D1
2
K
= 0
Use quadratic formula:
V
Vg
=
1 Β± 1 + 4D1
2
/ K
2
Note that one root leads to positive V, while other leads to
negative V. Select positive root:
V
Vg
= M(D1,K) =
1 + 1 + 4D1
2
/ K
2
where K = 2L / RTs
valid for K < Kcrit(D)
Transistor duty cycle D = interval 1 duty cycle D1
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode33
Boost converter characteristics
M β‰ˆ 1
2
+ D
K
0
1
2
3
4
5
M(D,K)
0 0.25 0.5 0.75 1
D
K=0.01
K
=
0.05
K = 0.1
K β‰₯ 4/27
Approximate M in DCM:
M =
1
1 – D
for K > Kcrit
1 + 1 + 4D2
/ K
2
for K < Kcrit
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode34
Summary of DCM characteristics
Table 5.2. Summary of CCM-DCM characteristics for the buck, boost, and buck-boost converters
Converter Kcrit(D) DCM M(D,K) DCM D2(D,K) CCM M(D)
Buck (1 – D)
2
1 + 1 + 4K / D2
K
D
M(D,K) D
Boost D (1 – D)2 1 + 1 + 4D2
/ K
2
K
D
M(D,K) 1
1 – D
Buck-boost (1 – D)2 – D
K K – D
1 – D
with K = 2L / RTs. DCM occurs for K < Kcrit.
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode35
Summary of DCM characteristics
0
1
0 0.2 0.4 0.6 0.8 1
D
Boost
Buck
Buck-boost (Γ— –1)
DCM
M(D,K)
1
K
β€’ DCM buck and boost
characteristics are
asymptotic to M = 1 and to
the DCM buck-boost
characteristic
β€’ DCM buck-boost
characteristic is linear
β€’ CCM and DCM
characteristics intersect at
mode boundary. Actual M
follows characteristic
having larger magnitude
β€’ DCM boost characteristic is
nearly linear
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode36
Summary of key points
1. The discontinuous conduction mode occurs in converters
containing current- or voltage-unidirectional switches, when the
inductor current or capacitor voltage ripple is large enough to
cause the switch current or voltage to reverse polarity.
2. Conditions for operation in the discontinuous conduction mode
can be found by determining when the inductor current or
capacitor voltage ripples and dc components cause the switch
on-state current or off-state voltage to reverse polarity.
3. The dc conversion ratio M of converters operating in the
discontinuous conduction mode can be found by application of
the principles of inductor volt-second and capacitor charge
balance.
Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode37
Summary of key points
4. Extra care is required when applying the small-ripple
approximation. Some waveforms, such as the output voltage,
should have small ripple which can be neglected. Other
waveforms, such as one or more inductor currents, may have
large ripple that cannot be ignored.
5. The characteristics of a converter changes significantly when
the converter enters DCM. The output voltage becomes load-
dependent, resulting in an increase in the converter output
impedance.

More Related Content

What's hot

Protection & switchgear
Protection & switchgear   Protection & switchgear
Protection & switchgear johny renoald
Β 
microprocessor Questions with solution
microprocessor Questions with solutionmicroprocessor Questions with solution
microprocessor Questions with solutiondit
Β 
BUCK CONVERTER
BUCK CONVERTERBUCK CONVERTER
BUCK CONVERTERNIT MEGHALAYA
Β 
Seven segment interfacing with 8051.pdf
Seven segment interfacing with 8051.pdfSeven segment interfacing with 8051.pdf
Seven segment interfacing with 8051.pdfSrikrishna Thota
Β 
Sensor interfacing in 8051
Sensor interfacing in 8051Sensor interfacing in 8051
Sensor interfacing in 8051Irfan Ahmad
Β 
Bode Plot Notes Step by Step
Bode Plot Notes Step by StepBode Plot Notes Step by Step
Bode Plot Notes Step by StepMohammad Umar Rehman
Β 
Chapter 03
Chapter 03Chapter 03
Chapter 03Tha Mike
Β 
To designing counters using verilog code
To designing counters using verilog codeTo designing counters using verilog code
To designing counters using verilog codeBharti Airtel Ltd.
Β 
Difference among 8085,8086,80186,80286,80386 Microprocessor.pdf
Difference among 8085,8086,80186,80286,80386 Microprocessor.pdfDifference among 8085,8086,80186,80286,80386 Microprocessor.pdf
Difference among 8085,8086,80186,80286,80386 Microprocessor.pdfMahbubay Rabbani Mim
Β 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualChirag Shetty
Β 
Keypad Interfacing with 8051 Microcontroller
Keypad Interfacing with 8051 MicrocontrollerKeypad Interfacing with 8051 Microcontroller
Keypad Interfacing with 8051 MicrocontrollerSudhanshu Janwadkar
Β 
Rec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re modelRec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re modelDr Naim R Kidwai
Β 
Notes nyquist plot and stability criteria
Notes nyquist plot and stability criteriaNotes nyquist plot and stability criteria
Notes nyquist plot and stability criteriaAleksandar Micic
Β 
Timing Diagram of 8085 Instructions.pdf
Timing Diagram of 8085 Instructions.pdfTiming Diagram of 8085 Instructions.pdf
Timing Diagram of 8085 Instructions.pdfVedantSarawagi
Β 
Humidity and Temperature Measurement Using Arduino
Humidity and Temperature Measurement Using ArduinoHumidity and Temperature Measurement Using Arduino
Humidity and Temperature Measurement Using Arduinodollonhaider
Β 
Microprocessor 8085 complete
Microprocessor 8085 completeMicroprocessor 8085 complete
Microprocessor 8085 completeShubham Singh
Β 

What's hot (20)

Protection & switchgear
Protection & switchgear   Protection & switchgear
Protection & switchgear
Β 
LCD Interacing with 8051
LCD Interacing with 8051LCD Interacing with 8051
LCD Interacing with 8051
Β 
microprocessor Questions with solution
microprocessor Questions with solutionmicroprocessor Questions with solution
microprocessor Questions with solution
Β 
BUCK CONVERTER
BUCK CONVERTERBUCK CONVERTER
BUCK CONVERTER
Β 
Seven segment interfacing with 8051.pdf
Seven segment interfacing with 8051.pdfSeven segment interfacing with 8051.pdf
Seven segment interfacing with 8051.pdf
Β 
Sensor interfacing in 8051
Sensor interfacing in 8051Sensor interfacing in 8051
Sensor interfacing in 8051
Β 
Bode Plot Notes Step by Step
Bode Plot Notes Step by StepBode Plot Notes Step by Step
Bode Plot Notes Step by Step
Β 
Chapter 03
Chapter 03Chapter 03
Chapter 03
Β 
To designing counters using verilog code
To designing counters using verilog codeTo designing counters using verilog code
To designing counters using verilog code
Β 
Difference among 8085,8086,80186,80286,80386 Microprocessor.pdf
Difference among 8085,8086,80186,80286,80386 Microprocessor.pdfDifference among 8085,8086,80186,80286,80386 Microprocessor.pdf
Difference among 8085,8086,80186,80286,80386 Microprocessor.pdf
Β 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
Β 
Power BJT
Power BJTPower BJT
Power BJT
Β 
Lcd & keypad
Lcd & keypadLcd & keypad
Lcd & keypad
Β 
Keypad Interfacing with 8051 Microcontroller
Keypad Interfacing with 8051 MicrocontrollerKeypad Interfacing with 8051 Microcontroller
Keypad Interfacing with 8051 Microcontroller
Β 
Memory interfacing
Memory interfacingMemory interfacing
Memory interfacing
Β 
Rec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re modelRec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re model
Β 
Notes nyquist plot and stability criteria
Notes nyquist plot and stability criteriaNotes nyquist plot and stability criteria
Notes nyquist plot and stability criteria
Β 
Timing Diagram of 8085 Instructions.pdf
Timing Diagram of 8085 Instructions.pdfTiming Diagram of 8085 Instructions.pdf
Timing Diagram of 8085 Instructions.pdf
Β 
Humidity and Temperature Measurement Using Arduino
Humidity and Temperature Measurement Using ArduinoHumidity and Temperature Measurement Using Arduino
Humidity and Temperature Measurement Using Arduino
Β 
Microprocessor 8085 complete
Microprocessor 8085 completeMicroprocessor 8085 complete
Microprocessor 8085 complete
Β 

Similar to Chapter 05

Ch2slide (1).pdf
Ch2slide (1).pdfCh2slide (1).pdf
Ch2slide (1).pdfTahirNIAZIKHAN
Β 
Chapter 02
Chapter 02Chapter 02
Chapter 02Tha Mike
Β 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)Claudia Sin
Β 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)Claudia Sin
Β 
Chapter 20
Chapter 20Chapter 20
Chapter 20Tha Mike
Β 
Chapter 1 - PWM DC-DC Converter.pdf
Chapter 1 - PWM DC-DC Converter.pdfChapter 1 - PWM DC-DC Converter.pdf
Chapter 1 - PWM DC-DC Converter.pdfbenson215
Β 
Chapter 01
Chapter 01Chapter 01
Chapter 01Tha Mike
Β 
Three State Switching Boost Converter ppt
Three State Switching Boost Converter pptThree State Switching Boost Converter ppt
Three State Switching Boost Converter pptMamta Bagoria
Β 
Chapter 18
Chapter 18Chapter 18
Chapter 18Tha Mike
Β 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.pptShivamChaturvedi67
Β 
IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)Claudia Sin
Β 
chapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxchapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxLiewChiaPing
Β 
Low Power Design - PPT 1
Low Power Design - PPT 1 Low Power Design - PPT 1
Low Power Design - PPT 1 Varun Bansal
Β 
Anu Mehra ppt - 2
Anu Mehra ppt - 2Anu Mehra ppt - 2
Anu Mehra ppt - 2Varun Bansal
Β 
Chapter 10
Chapter 10Chapter 10
Chapter 10Tha Mike
Β 
Chapter 04a
Chapter 04aChapter 04a
Chapter 04aTha Mike
Β 

Similar to Chapter 05 (20)

Ch2slide (1).pdf
Ch2slide (1).pdfCh2slide (1).pdf
Ch2slide (1).pdf
Β 
Chapter 02
Chapter 02Chapter 02
Chapter 02
Β 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)
Β 
IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)IC Design of Power Management Circuits (I)
IC Design of Power Management Circuits (I)
Β 
Chapter 20
Chapter 20Chapter 20
Chapter 20
Β 
Chapter 1 - PWM DC-DC Converter.pdf
Chapter 1 - PWM DC-DC Converter.pdfChapter 1 - PWM DC-DC Converter.pdf
Chapter 1 - PWM DC-DC Converter.pdf
Β 
Chapter 01
Chapter 01Chapter 01
Chapter 01
Β 
Three State Switching Boost Converter ppt
Three State Switching Boost Converter pptThree State Switching Boost Converter ppt
Three State Switching Boost Converter ppt
Β 
Chapter 18
Chapter 18Chapter 18
Chapter 18
Β 
CC1.ppt
CC1.pptCC1.ppt
CC1.ppt
Β 
abc.ppt
abc.pptabc.ppt
abc.ppt
Β 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.ppt
Β 
IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)IC Design of Power Management Circuits (II)
IC Design of Power Management Circuits (II)
Β 
Transformer
TransformerTransformer
Transformer
Β 
chapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptxchapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptx
Β 
Low Power Design - PPT 1
Low Power Design - PPT 1 Low Power Design - PPT 1
Low Power Design - PPT 1
Β 
Anu Mehra ppt - 2
Anu Mehra ppt - 2Anu Mehra ppt - 2
Anu Mehra ppt - 2
Β 
Power
PowerPower
Power
Β 
Chapter 10
Chapter 10Chapter 10
Chapter 10
Β 
Chapter 04a
Chapter 04aChapter 04a
Chapter 04a
Β 

More from Tha Mike

Chapter 17
Chapter 17Chapter 17
Chapter 17Tha Mike
Β 
Chapter 16
Chapter 16Chapter 16
Chapter 16Tha Mike
Β 
Chapter 15
Chapter 15Chapter 15
Chapter 15Tha Mike
Β 
Chapter 14
Chapter 14Chapter 14
Chapter 14Tha Mike
Β 
Chapter 13
Chapter 13Chapter 13
Chapter 13Tha Mike
Β 
Chapter 12a
Chapter 12aChapter 12a
Chapter 12aTha Mike
Β 
Chapter 09
Chapter 09Chapter 09
Chapter 09Tha Mike
Β 
Chapter 08
Chapter 08Chapter 08
Chapter 08Tha Mike
Β 

More from Tha Mike (8)

Chapter 17
Chapter 17Chapter 17
Chapter 17
Β 
Chapter 16
Chapter 16Chapter 16
Chapter 16
Β 
Chapter 15
Chapter 15Chapter 15
Chapter 15
Β 
Chapter 14
Chapter 14Chapter 14
Chapter 14
Β 
Chapter 13
Chapter 13Chapter 13
Chapter 13
Β 
Chapter 12a
Chapter 12aChapter 12a
Chapter 12a
Β 
Chapter 09
Chapter 09Chapter 09
Chapter 09
Β 
Chapter 08
Chapter 08Chapter 08
Chapter 08
Β 

Recently uploaded

MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MIND CTI
Β 
WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...
WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...
WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...WSO2
Β 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
Β 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Orbitshub
Β 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vΓ‘zquez
Β 
Introduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMIntroduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMKumar Satyam
Β 
JohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptxJohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptxJohnPollard37
Β 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
Β 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdfSandro Moreira
Β 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfOrbitshub
Β 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
Β 
Mcleodganj Call Girls πŸ₯° 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls πŸ₯° 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls πŸ₯° 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls πŸ₯° 8617370543 Service Offer VIP Hot ModelDeepika Singh
Β 
Navigating Identity and Access Management in the Modern Enterprise
Navigating Identity and Access Management in the Modern EnterpriseNavigating Identity and Access Management in the Modern Enterprise
Navigating Identity and Access Management in the Modern EnterpriseWSO2
Β 
Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..Christopher Logan Kennedy
Β 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
Β 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
Β 
AI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAnitaRaj43
Β 
Decarbonising Commercial Real Estate: The Role of Operational Performance
Decarbonising Commercial Real Estate: The Role of Operational PerformanceDecarbonising Commercial Real Estate: The Role of Operational Performance
Decarbonising Commercial Real Estate: The Role of Operational PerformanceIES VE
Β 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
Β 

Recently uploaded (20)

MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
Β 
WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...
WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...
WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...
Β 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
Β 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Β 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Β 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Β 
Introduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDMIntroduction to use of FHIR Documents in ABDM
Introduction to use of FHIR Documents in ABDM
Β 
JohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptxJohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptx
Β 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Β 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
Β 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Β 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
Β 
Mcleodganj Call Girls πŸ₯° 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls πŸ₯° 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls πŸ₯° 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls πŸ₯° 8617370543 Service Offer VIP Hot Model
Β 
Navigating Identity and Access Management in the Modern Enterprise
Navigating Identity and Access Management in the Modern EnterpriseNavigating Identity and Access Management in the Modern Enterprise
Navigating Identity and Access Management in the Modern Enterprise
Β 
Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..
Β 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
Β 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
Β 
AI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by Anitaraj
Β 
Decarbonising Commercial Real Estate: The Role of Operational Performance
Decarbonising Commercial Real Estate: The Role of Operational PerformanceDecarbonising Commercial Real Estate: The Role of Operational Performance
Decarbonising Commercial Real Estate: The Role of Operational Performance
Β 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Β 

Chapter 05

  • 1. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode1 Chapter 5. The Discontinuous Conduction Mode 5.1. Origin of the discontinuous conduction mode, and mode boundary 5.2. Analysis of the conversion ratio M(D,K) 5.3. Boost converter example 5.4. Summary of results and key points
  • 2. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode2 Introduction to Discontinuous Conduction Mode (DCM) q Occurs because switching ripple in inductor current or capacitor voltage causes polarity of applied switch current or voltage to reverse, such that the current- or voltage-unidirectional assumptions made in realizing the switch are violated. q Commonly occurs in dc-dc converters and rectifiers, having single- quadrant switches. May also occur in converters having two-quadrant switches. q Typical example: dc-dc converter operating at light load (small load current). Sometimes, dc-dc converters and rectifiers are purposely designed to operate in DCM at all loads. q Properties of converters change radically when DCM is entered: M becomes load-dependent Output impedance is increased Dynamics are altered Control of output voltage may be lost when load is removed
  • 3. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode3 5.1. Origin of the discontinuous conduction mode, and mode boundary Buck converter example, with single-quadrant switches + – Q1 L C R + V – D1Vg iL(t) iD(t) iL(t) t βˆ†iL I 0 DTs Ts conducting devices: Q1 D1 Q1 iD(t) t0 DTs Ts βˆ†iL Iβˆ†iL = (Vg – V) 2L DTs = Vg DD'Ts 2L continuous conduction mode (CCM) Minimum diode current is (I – βˆ†iL) Dc component I = V/R Current ripple is Note that I depends on load, but βˆ†iL does not.
  • 4. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode4 Reduction of load current Increase R, until I = βˆ†iL + – Q1 L C R + V – D1Vg iL(t) iD(t) βˆ†iL = (Vg – V) 2L DTs = Vg DD'Ts 2L CCM-DCM boundary Minimum diode current is (I – βˆ†iL) Dc component I = V/R Current ripple is Note that I depends on load, but βˆ†iL does not. iL(t) t0 DTs Ts conducting devices: Q1 D1 Q1 βˆ†iL I iD(t) t0 DTs Ts I βˆ†iL
  • 5. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode5 Further reduce load current Increase R some more, such that I < βˆ†iL + – Q1 L C R + V – D1Vg iL(t) iD(t) βˆ†iL = (Vg – V) 2L DTs = Vg DD'Ts 2L Discontinuous conduction mode Minimum diode current is (I – βˆ†iL) Dc component I = V/R Current ripple is Note that I depends on load, but βˆ†iL does not. The load current continues to be positive and non-zero. iL(t) t0 DTs Ts conducting devices: Q1 D1 Q1 I X D1Ts D2Ts D3Ts iD(t) t0 DTs Ts D2Ts
  • 6. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode6 Mode boundary I > βˆ†iL for CCM I < βˆ†iL for DCM Insert buck converter expressions for I and βˆ†iL : DVg R < DD'TsVg 2L 2L RTs < D' Simplify: This expression is of the form K < Kcrit(D) for DCM where K = 2L RTs and Kcrit(D) = D'
  • 7. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode7 K and Kcrit vs. D Kcrit(D) = 1 – D 0 D1 0 1 2 K = 2L/RTs K < Kcrit: DCM K > Kcrit: CCM Kcrit(D) = 1 – D 0 D1 0 1 2 K = 2L/RTs K > Kcrit: CCM for K < 1: for K > 1:
  • 8. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode8 Critical load resistance Rcrit R < Rcrit(D) for CCM R > Rcrit(D) for DCM where Rcrit(D) = 2L D'Ts Solve Kcrit equation for load resistance R:
  • 9. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode9 Summary: mode boundary K > Kcrit(D) or R < Rcrit(D) for CCM K < Kcrit(D) or R > Rcrit(D) for DCM Table 5.1. CCM-DCM mode boundaries for the buck, boost, and buck-boost converters Converter Kcrit(D) max 0 ≀ D ≀ 1 ( Kcrit ) Rcrit(D) min 0 ≀ D ≀ 1 ( Rcrit ) Buck (1 – D) 1 2L (1 – D)T s 2 L Ts Boost D (1 – D)2 4 27 2L D (1 – D)2 T s 27 2 L Ts Buck-boost (1 – D)2 1 2L (1 – D)2 T s 2 L Ts
  • 10. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode10 5.2. Analysis of the conversion ratio M(D,K) Inductor volt-second balance Analysis techniques for the discontinuous conduction mode: vL = 1 Ts vL(t) dt 0 Ts = 0 Capacitor charge balance iC = 1 Ts iC(t) dt 0 Ts = 0 Small ripple approximation sometimes applies: v(t) β‰ˆ V because βˆ†v << V i(t) β‰ˆ I is a poor approximation when βˆ†i > I Converter steady-state equations obtained via charge balance on each capacitor and volt-second balance on each inductor. Use care in applying small ripple approximation.
  • 11. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode11 Example: Analysis of DCM buck converter M(D,K) + – Q1 L C R + V – D1Vg iL(t) iD(t) + – Vg L C R + v(t) – iC(t)+ vL(t) – iL(t) + – Vg L C R + v(t) – iC(t)+ vL(t) – iL(t) + – Vg L C R + v(t) – iC(t)+ vL(t) – iL(t) subinterval 1 subinterval 2 subinterval 3
  • 12. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode12 Subinterval 1 + – Vg L C R + v(t) – iC(t)+ vL(t) – iL(t) vL(t) = Vg – v(t) iC(t) = iL(t) – v(t) / R vL(t) β‰ˆ Vg – V iC(t) β‰ˆ iL(t) – V / R Small ripple approximation for v(t) (but not for i(t)!):
  • 13. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode13 Subinterval 2 Small ripple approximation for v(t) but not for i(t): + – Vg L C R + v(t) – iC(t)+ vL(t) – iL(t) vL(t) = – v(t) iC(t) = iL(t) – v(t) / R vL(t) β‰ˆ – V iC(t) β‰ˆ iL(t) – V / R
  • 14. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode14 Subinterval 3 + – Vg L C R + v(t) – iC(t)+ vL(t) – iL(t) vL = 0, iL = 0 iC(t) = iL(t) – v(t) / R Small ripple approximation: vL(t) = 0 iC(t) = – V / R
  • 15. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode15 Inductor volt-second balance vL(t) 0 Ts t D1Ts D2Ts D3Ts Vg – V – V Volt-second balance: Solve for V: vL(t) = D1(Vg – V) + D2( – V) + D3(0) = 0 V = Vg D1 D1 + D2 note that D2 is unknown
  • 16. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode16 Capacitor charge balance iL(t) t0 DTs Ts D1Ts D2Ts D3Ts <iL> = I ipk Vg – V L – V L L C R + v(t) – iC(t) iL(t) v(t)/Rnode equation: iL(t) = iC(t) + V / R capacitor charge balance: iC = 0 hence iL = V / R must compute dc component of inductor current and equate to load current (for this buck converter example)
  • 17. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode17 Inductor current waveform iL(t) t0 DTs Ts D1Ts D2Ts D3Ts <iL> = I ipk Vg – V L – V L peak current: iL(D1Ts) = ipk = Vg – V L D1Ts average current: iL = 1 Ts iL(t) dt 0 Ts triangle area formula: iL(t) dt 0 Ts = 1 2 ipk (D1 + D2)Ts iL = (Vg – V) D1Ts 2L (D1 + D2) equate dc component to dc load current: V R = D1Ts 2L (D1 + D2) (Vg – V)
  • 18. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode18 Solution for V Two equations and two unknowns (V and D2): V = Vg D1 D1 + D2 V R = D1Ts 2L (D1 + D2) (Vg – V) (from inductor volt-second balance) (from capacitor charge balance) Eliminate D2 , solve for V : V Vg = 2 1 + 1 + 4K / D1 2 where K = 2L / RTs valid for K < Kcrit
  • 19. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode19 Buck converter M(D,K) 0.0 0.2 0.4 0.6 0.8 1.0 M(D,K) 0.0 0.2 0.4 0.6 0.8 1.0 D K = 0.01 K = 0.1 K = 0.5 K β‰₯ 1 M = D for K > Kcrit 2 1 + 1 + 4K / D2 for K < Kcrit
  • 20. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode20 5.3. Boost converter example + – Q1 L C R + v(t) – D1 Vg i(t) + vL(t) – iD(t) iC(t) I > βˆ†iL for CCM I < βˆ†iL for DCM I = Vg D'2 R βˆ†iL = Vg 2L DTs Previous CCM soln:Mode boundary:
  • 21. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode21 Mode boundary Vg D'2 R > DTsVg 2L for CCM 2L RTs > DD'2 for CCM 0 0.05 0.1 0.15 Kcrit(D) 0 0.2 0.4 0.6 0.8 1 D Kcrit(1 3) = 4 27 K > Kcrit(D) for CCM K < Kcrit(D) for DCM where K = 2L RTs and Kcrit(D) = DD'2
  • 22. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode22 Mode boundary 0 0.05 0.1 0.15 Kcrit (D) 0 0.2 0.4 0.6 0.8 1 D K K < Kcrit DCM CCM K > Kcrit CCM K > Kcrit(D) for CCM K < Kcrit(D) for DCM where K = 2L RTs and Kcrit(D) = DD'2
  • 23. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode23 Conversion ratio: DCM boost subinterval 1 subinterval 2 subinterval 3 + – Q1 L C R + v(t) – D1 Vg i(t) + vL(t) – iD(t) iC(t) C R + v(t) – iC(t) + – L Vg i(t) + vL(t) – C R + v(t) – iC(t) + – L Vg i(t) + vL(t) – C R + v(t) – iC(t) + – L Vg i(t) + vL(t) –
  • 24. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode24 Subinterval 1 Small ripple approximation for v(t) (but not for i(t)!): C R + v(t) – iC(t) + – L Vg i(t) + vL(t) – vL(t) = Vg iC(t) = – v(t) / R vL(t) β‰ˆ Vg iC(t) β‰ˆ – V / R 0 < t < D1Ts
  • 25. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode25 Subinterval 2 Small ripple approximation for v(t) but not for i(t): D1Ts < t < (D1 +D2)Ts C R + v(t) – iC(t) + – L Vg i(t) + vL(t) – vL(t) = Vg – v(t) iC(t) = i(t) – v(t) / R vL(t) β‰ˆ Vg – V iC(t) β‰ˆ i(t) – V / R
  • 26. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode26 Subinterval 3 Small ripple approximation: (D1 +D2)Ts < t < Ts C R + v(t) – iC(t) + – L Vg i(t) + vL(t) – vL = 0, i = 0 iC(t) = – v(t) / R vL(t) = 0 iC(t) = – V / R
  • 27. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode27 Inductor volt-second balance Volt-second balance: Solve for V: note that D2 is unknown vL(t) 0 Ts t D1Ts D2Ts D3Ts Vg Vg – V D1Vg + D2(Vg – V) + D3(0) = 0 V = D1 + D2 D2 Vg
  • 28. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode28 Capacitor charge balance node equation: capacitor charge balance: iC = 0 hence must compute dc component of diode current and equate to load current (for this boost converter example) C R + v(t) – D1 iD(t) iC(t) iD(t) = iC(t) + v(t) / R iD = V / R
  • 29. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode29 Inductor and diode current waveforms peak current: average diode current: triangle area formula: i(t) t0 DTs Ts D1Ts D2Ts D3Ts ipk Vg – V L Vg L iD(t) t0 DTs Ts D1Ts D2Ts D3Ts ipk Vg – V L <iD> ipk = Vg L D1Ts iD = 1 Ts iD(t) dt 0 Ts iD(t) dt 0 Ts = 1 2 ipk D2Ts
  • 30. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode30 Equate diode current to load current iD = 1 Ts 1 2 ipk D2Ts = VgD1D2Ts 2L average diode current: equate to dc load current: VgD1D2Ts 2L = V R
  • 31. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode31 Solution for V Two equations and two unknowns (V and D2): (from inductor volt-second balance) (from capacitor charge balance) Eliminate D2 , solve for V. From volt-sec balance eqn: V = D1 + D2 D2 Vg VgD1D2Ts 2L = V R D2 = D1 Vg V – Vg Substitute into charge balance eqn, rearrange terms: V2 – VVg – Vg 2 D1 2 K = 0
  • 32. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode32 Solution for V V2 – VVg – Vg 2 D1 2 K = 0 Use quadratic formula: V Vg = 1 Β± 1 + 4D1 2 / K 2 Note that one root leads to positive V, while other leads to negative V. Select positive root: V Vg = M(D1,K) = 1 + 1 + 4D1 2 / K 2 where K = 2L / RTs valid for K < Kcrit(D) Transistor duty cycle D = interval 1 duty cycle D1
  • 33. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode33 Boost converter characteristics M β‰ˆ 1 2 + D K 0 1 2 3 4 5 M(D,K) 0 0.25 0.5 0.75 1 D K=0.01 K = 0.05 K = 0.1 K β‰₯ 4/27 Approximate M in DCM: M = 1 1 – D for K > Kcrit 1 + 1 + 4D2 / K 2 for K < Kcrit
  • 34. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode34 Summary of DCM characteristics Table 5.2. Summary of CCM-DCM characteristics for the buck, boost, and buck-boost converters Converter Kcrit(D) DCM M(D,K) DCM D2(D,K) CCM M(D) Buck (1 – D) 2 1 + 1 + 4K / D2 K D M(D,K) D Boost D (1 – D)2 1 + 1 + 4D2 / K 2 K D M(D,K) 1 1 – D Buck-boost (1 – D)2 – D K K – D 1 – D with K = 2L / RTs. DCM occurs for K < Kcrit.
  • 35. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode35 Summary of DCM characteristics 0 1 0 0.2 0.4 0.6 0.8 1 D Boost Buck Buck-boost (Γ— –1) DCM M(D,K) 1 K β€’ DCM buck and boost characteristics are asymptotic to M = 1 and to the DCM buck-boost characteristic β€’ DCM buck-boost characteristic is linear β€’ CCM and DCM characteristics intersect at mode boundary. Actual M follows characteristic having larger magnitude β€’ DCM boost characteristic is nearly linear
  • 36. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode36 Summary of key points 1. The discontinuous conduction mode occurs in converters containing current- or voltage-unidirectional switches, when the inductor current or capacitor voltage ripple is large enough to cause the switch current or voltage to reverse polarity. 2. Conditions for operation in the discontinuous conduction mode can be found by determining when the inductor current or capacitor voltage ripples and dc components cause the switch on-state current or off-state voltage to reverse polarity. 3. The dc conversion ratio M of converters operating in the discontinuous conduction mode can be found by application of the principles of inductor volt-second and capacitor charge balance.
  • 37. Fundamentals of Power Electronics Chapter 5: Discontinuous conduction mode37 Summary of key points 4. Extra care is required when applying the small-ripple approximation. Some waveforms, such as the output voltage, should have small ripple which can be neglected. Other waveforms, such as one or more inductor currents, may have large ripple that cannot be ignored. 5. The characteristics of a converter changes significantly when the converter enters DCM. The output voltage becomes load- dependent, resulting in an increase in the converter output impedance.