SlideShare a Scribd company logo
1 of 36
Download to read offline
Fundamentals of Power Electronics Chapter 1: Introduction1
Fundamentals of Power Electronics
Second edition
Robert W. Erickson
Dragan Maksimovic
University of Colorado, Boulder
Fundamentals of Power Electronics Chapter 1: Introduction2
Chapter 1: Introduction
1.1. Introduction to power processing
1.2. Some applications of power electronics
1.3. Elements of power electronics
Summary of the course
Fundamentals of Power Electronics Chapter 1: Introduction3
1.1 Introduction to Power Processing
Dc-dc conversion: Change and control voltage magnitude
Ac-dc rectification: Possibly control dc voltage, ac current
Dc-ac inversion: Produce sinusoid of controllable
magnitude and frequency
Ac-ac cycloconversion: Change and control voltage magnitude
and frequency
Switching
converter
Power
input
Power
output
Control
input
Fundamentals of Power Electronics Chapter 1: Introduction4
Control is invariably required
Switching
converter
Power
input
Power
output
Control
input
Controller
reference
feedbackfeedforward
Fundamentals of Power Electronics Chapter 1: Introduction5
High efficiency is essential
High efficiency leads to low
power loss within converter
Small size and reliable operation
is then feasible
Efficiency is a good measure of
converter performance
0 0.5 1 1.5
0.2
0.4
0.6
0.8
1
Ploss / Pout
ηη =
Pout
Pin
Ploss = Pin – Pout = Pout
1
η – 1
Fundamentals of Power Electronics Chapter 1: Introduction6
A high-efficiency converter
A goal of current converter technology is to construct converters of small
size and weight, which process substantial power at high efficiency
Converter
Pin Pout
Fundamentals of Power Electronics Chapter 1: Introduction7
Devices available to the circuit designer
DTs Ts
Resistors Capacitors Magnetics Semiconductor devices
Linear-
mode
+
–
Switched-mode
Fundamentals of Power Electronics Chapter 1: Introduction8
Devices available to the circuit designer
Signal processing: avoid magnetics
DTs Ts
Resistors Capacitors Magnetics Semiconductor devices
Linear-
mode
+
–
Switched-mode
Fundamentals of Power Electronics Chapter 1: Introduction9
Devices available to the circuit designer
Power processing: avoid lossy elements
DTs Ts
Resistors Capacitors Magnetics Semiconductor devices
Linear-
mode
+
–
Switched-mode
Fundamentals of Power Electronics Chapter 1: Introduction10
Power loss in an ideal switch
Switch closed: v(t) = 0
Switch open: i(t) = 0
In either event: p(t) = v(t) i(t) = 0
Ideal switch consumes zero power
+
v(t)
–
i(t)
Fundamentals of Power Electronics Chapter 1: Introduction11
A simple dc-dc converter example
Input source: 100V
Output load: 50V, 10A, 500W
How can this converter be realized?
+
–
R
5Ω
+
V
50V
–
Vg
100V
I
10A
Dc-dc
converter
Fundamentals of Power Electronics Chapter 1: Introduction12
Dissipative realization
Resistive voltage divider
+
–
R
5Ω
+
V
50V
–
Vg
100V
I
10A
+ 50V –
Ploss = 500W
Pout = 500WPin = 1000W
Fundamentals of Power Electronics Chapter 1: Introduction13
Dissipative realization
Series pass regulator: transistor operates in
active region
+
–
R
5Ω
+
V
50V
–
Vg
100V
I
10A+ 50V –
Ploss ≈ 500W
Pout = 500WPin ≈ 1000W
+–linear amplifier
and base driver
Vref
Fundamentals of Power Electronics Chapter 1: Introduction14
Use of a SPDT switch
+
–
R
+
v(t)
50 V
–
1
2
+
vs(t)
–
Vg
100 V
I
10 A
vs(t)
Vg
DTs
(1 – D) Ts
0
t
switch
position: 1 2 1
Vs = DVg
Fundamentals of Power Electronics Chapter 1: Introduction15
The switch changes the dc voltage level
D = switch duty cycle
0 ≤ D ≤ 1
Ts = switching period
fs = switching frequency
= 1 / Ts
Vs = 1
Ts
vs(t) dt
0
Ts
= DVg
DC component of vs(t) = average value:
vs(t)
Vg
DTs
(1 – D) Ts
0
t
switch
position: 1 2 1
Vs = DVg
Fundamentals of Power Electronics Chapter 1: Introduction16
Addition of low pass filter
Addition of (ideally lossless) L-C low-pass filter, for
removal of switching harmonics:
• Choose filter cutoff frequency f0 much smaller than switching
frequency fs
• This circuit is known as the “buck converter”
+
–
R
+
v(t)
–
1
2
+
vs(t)
–
Vg
100 V
i(t)
L
C
Ploss small
Pout = 500 WPin ≈ 500 W
Fundamentals of Power Electronics Chapter 1: Introduction17
Addition of control system
for regulation of output voltage
δ(t)
TsdTs t
+
–
+
v
–
vg
Switching converterPower
input
Load
–+
Compensator
vref
Reference
input
HvPulse-width
modulator
vc
Transistor
gate driver
δ Gc(s)
H(s)
ve
Error
signal
Sensor
gain
i
Fundamentals of Power Electronics Chapter 1: Introduction18
The boost converter
+
–
L
C R
+
V
–
1
2
Vg
D
0 0.2 0.4 0.6 0.8 1
V
5Vg
4Vg
3Vg
2Vg
Vg
0
Fundamentals of Power Electronics Chapter 1: Introduction19
A single-phase inverter
1
2
+
–
load
+ v(t) –
2
1
Vg
vs(t)
+ –
t
vs(t) “H-bridge”
Modulate switch
duty cycles to
obtain sinusoidal
low-frequency
component
Fundamentals of Power Electronics Chapter 1: Introduction20
1.2 Several applications of power electronics
Power levels encountered in high-efficiency converters
• less than 1 W in battery-operated portable equipment
• tens, hundreds, or thousands of watts in power supplies for
computers or office equipment
• kW to MW in variable-speed motor drives
• 1000 MW in rectifiers and inverters for utility dc transmission
lines
Fundamentals of Power Electronics Chapter 1: Introduction21
A laptop computer power supply system
vac(t)
iac(t) Charger
PWM
Rectifier
Lithium
battery
ac line input
85–265 Vrms
Inverter
Buck
converter
Boost
converter
Display
backlighting
Microprocessor
Power
management
Disk
drive
Fundamentals of Power Electronics Chapter 1: Introduction22
Power system of an earth-orbiting spacecraft
Solar
array
+
vbus
–
Batteries
Battery
charge/discharge
controllers
Dc-dc
converter
Payload
Dc-dc
converter
Payload
Dissipative
shunt regulator
Fundamentals of Power Electronics Chapter 1: Introduction23
An electric vehicle power and drive system
3øac line
50/60 Hz
Battery
charger
battery
+
vb
–
Variable-frequency
Variable-voltage ac
Inverter
ac machine
Inverter
Inverter
ac machine
DC-DC
converter
µP
system
controller
Vehicle
electronicsLow-voltage
dc bus
control bus
ac machine ac machine
Inverter
Fundamentals of Power Electronics Chapter 1: Introduction24
1.3 Elements of power electronics
Power electronics incorporates concepts from the fields of
analog circuits
electronic devices
control systems
power systems
magnetics
electric machines
numerical simulation
Fundamentals of Power Electronics Chapter 1: Introduction25
Part I. Converters in equilibrium
iL(t)
t0 DTs
Ts
I
iL(0) Vg – V
L
iL(DTs)
∆iL
– V
L
vL(t) Vg – V
t
– V
D'TsDTs
switch
position: 1 2 1
RL
+
–Vg
D' RD
+
–
D' VDD Ron
R
+
V
–
I
D' : 1
Inductor waveforms Averaged equivalent circuit
D
η RL/R = 0.1
0.02
0.01
0.05
0.002
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
Predicted efficiency
Discontinuous conduction mode
Transformer isolation
Fundamentals of Power Electronics Chapter 1: Introduction26
Switch realization: semiconductor devices
Collector
p
n-
n n
p p
Emitter
Gate
nn
minority carrier
injection
collector
emitter
gate
The IGBT
t
iL
–Vg
0
iB(t)
vB(t)
area
–Qr
0
tr
t
iL
Vg
0
iA(t)
vA(t)
Qr
0
t
area
~QrVg
area
~iLVgtr
t0 t1 t2
transistor
waveforms
diode
waveforms
pA(t)
= vA iA
Switching loss
Fundamentals of Power Electronics Chapter 1: Introduction27
Part I. Converters in equilibrium
2. Principles of steady state converter analysis
3. Steady-state equivalent circuit modeling, losses, and efficiency
4. Switch realization
5. The discontinuous conduction mode
6. Converter circuits
Fundamentals of Power Electronics Chapter 1: Introduction28
Part II. Converter dynamics and control
+
–
+
v(t)
–
vg(t)
Switching converterPower
input
Load
–+
R
compensator
Gc(s)
vref
voltage
reference
v
feedback
connection
pulse-width
modulator
vc
transistor
gate driver
δ(t)
δ(t)
TsdTs t t
vc(t)
Controller
t
t
gate
drive
actual waveform v(t)
including ripple
averaged waveform <v(t)>Ts
with ripple neglected
+
– I d(t)vg(t)
+
–
L
Vg – V d(t)
+
v(t)
–
RCI d(t)
1 : D D' : 1
Closed-loop converter system Averaging the waveforms
Small-signal
averaged
equivalent circuit
Fundamentals of Power Electronics Chapter 1: Introduction29
Part II. Converter dynamics and control
7. Ac modeling
8. Converter transfer functions
9. Controller design
10. Input filter design
11. Ac and dc equivalent circuit modeling of the discontinuous
conduction mode
12. Current-programmed control
Fundamentals of Power Electronics Chapter 1: Introduction30
Part III. Magnetics
Φ
i
–i
3i
–2i
2i
2Φ
current
density
J
dlayer
1
layer
2
layer
3
0
0.02
0.04
0.06
0.08
0.1
Switching frequency
Bmax(T)
25kHz 50kHz 100kHz 200kHz 250kHz 400kHz 500kHz 1000kHz
Potcoresize
4226
3622
2616
2213
1811 1811
2213
2616
n1 : n2
: nk
R1 R2
Rk
i1(t) i2(t)
ik(t)
LM
iM(t)transformer
design
transformer
size vs.
switching
frequency
the
proximity
effect
Fundamentals of Power Electronics Chapter 1: Introduction31
Part III. Magnetics
13. Basic magnetics theory
14. Inductor design
15. Transformer design
Fundamentals of Power Electronics Chapter 1: Introduction32
Part IV. Modern rectifiers,
and power system harmonics
100%
91%
73%
52%
32%
19% 15% 15% 13% 9%
0%
20%
40%
60%
80%
100%
1 3 5 7 9 11 13 15 17 19
Harmonic number
Harmonicamplitude,
percentoffundamental
THD = 136%
Distortion factor = 59%
Pollution of power system by
rectifier current harmonics
Re(vcontrol)
+
–
vac(t)
iac(t)
vcontrol
v(t)
i(t)
+
–
p(t) = vac
2
/ Re
Ideal rectifier (LFR)
ac
input
dc
output
boost converter
controller
Rvac(t)
iac(t) +
vg(t)
–
ig(t)
ig(t)vg(t)
+
v(t)
–
i(t)
Q1
L
C
D1
vcontrol(t)
multiplier X
+–
vref(t)
= kx vg(t) vcontrol(t)
Rs
va(t)
Gc(s)
PWM
compensator
verr(t)
A low-harmonic rectifier system
Model of
the ideal
rectifier
Fundamentals of Power Electronics Chapter 1: Introduction33
Part IV. Modern rectifiers,
and power system harmonics
16. Power and harmonics in nonsinusoidal systems
17. Line-commutated rectifiers
18. Pulse-width modulated rectifiers
Fundamentals of Power Electronics Chapter 1: Introduction34
Part V. Resonant converters
L
+
–
Vg
CQ1
Q2
Q3
Q4
D1
D2
D3
D4
1 : n
R
+
V
–
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
M=V/Vg
F = fs / f0
Q = 20
10
5
3.5
2
1.5
1
0.75
0.5
0.35
Q = 0.2
Q = 20
10
5
3.5
2
1.5
1
0.75
0.5
0.35
Q = 0.2
The series resonant converter
Dc
characteristics
conducting
devices:
t
Vg
vds1(t)
Q1
Q4
D2
D3
turn off
Q1
, Q4
commutation
interval
X
Zero voltage
switching
Fundamentals of Power Electronics Chapter 1: Introduction35
Part V. Resonant converters
19. Resonant conversion
20. Soft switching
Fundamentals of Power Electronics Chapter 1: Introduction36
Appendices
A. RMS values of commonly-observed converter waveforms
B. Simulation of converters
C. Middlebrook’s extra element theorem
D. Magnetics design tables
2
1
3
4
5
CCM-DCM1
+
–
+
–
+
–
C2
50 µH
11 kΩ
500 µF
Vg
28 V
L
C
R
vref
5 V
+12 V
LM324
R1
R2
R3 C3
R4
85 kΩ
1.1 nF2.7 nF
47 kΩ
120 kΩ
vz
–vyvx
Epwm
VM = 4 V
value = {LIMIT(0.25 vx, 0.1, 0.9)}
+
v
–
iLOAD1 2 3
4
5678
.nodeset v(3)=15 v(5)=5 v(6)=4.144 v(8)=0.536
Xswitch
L = 50 µΗ
fs = 100 kΗz
f
|| Gvg ||
–60 dB
–80 dB
0 dB
20 dB
5 Hz 50 Hz 5 kHz 50 kHz500 Hz
R = 3 Ω
R = 25 Ω
–40 dB
–20 dB
Open loop, d(t) = constant
Closed loop

More Related Content

What's hot

Power electronics Phase Controlled Rectifiers - SCR
Power electronics   Phase Controlled Rectifiers - SCRPower electronics   Phase Controlled Rectifiers - SCR
Power electronics Phase Controlled Rectifiers - SCRBurdwan University
 
Lecture 04 transformers
Lecture 04   transformersLecture 04   transformers
Lecture 04 transformersBibek Chouhan
 
Unit-2 AC-DC converter
Unit-2 AC-DC converter Unit-2 AC-DC converter
Unit-2 AC-DC converter johny renoald
 
INVERTERS PRESENTATION
INVERTERS PRESENTATIONINVERTERS PRESENTATION
INVERTERS PRESENTATIONRajesh V
 
Chapter 2 - Isolated DC-DC Converter.pdf
Chapter 2 - Isolated DC-DC Converter.pdfChapter 2 - Isolated DC-DC Converter.pdf
Chapter 2 - Isolated DC-DC Converter.pdfbenson215
 
Line commutated converters
Line commutated convertersLine commutated converters
Line commutated convertersSrashti Vyas
 
Three phase semi converter
Three phase semi converterThree phase semi converter
Three phase semi converterArpit Raval
 
Zero Voltage Zero Current
Zero Voltage Zero CurrentZero Voltage Zero Current
Zero Voltage Zero Currentjoemon raju
 
Electrodynamometer wattmeter
Electrodynamometer wattmeterElectrodynamometer wattmeter
Electrodynamometer wattmeterT Babu SJCE - ICE
 
three phase inverter
three phase inverterthree phase inverter
three phase inverterMalik Zaid
 
Three phase ac voltage controllers
Three phase ac voltage controllersThree phase ac voltage controllers
Three phase ac voltage controllersJosin Hippolitus
 
Thyristor commutation techniques
Thyristor commutation techniquesThyristor commutation techniques
Thyristor commutation techniquesVinod Srivastava
 
dc to dc-converter
dc to dc-converterdc to dc-converter
dc to dc-converterStudent
 
Reference frame theory
Reference frame theoryReference frame theory
Reference frame theoryRamesh Babu
 
Unit- 3 DC-DC Converter
Unit- 3 DC-DC ConverterUnit- 3 DC-DC Converter
Unit- 3 DC-DC Converterjohny renoald
 
Multilevel inverter technology
Multilevel inverter technologyMultilevel inverter technology
Multilevel inverter technologygmrit
 

What's hot (20)

Power electronics Phase Controlled Rectifiers - SCR
Power electronics   Phase Controlled Rectifiers - SCRPower electronics   Phase Controlled Rectifiers - SCR
Power electronics Phase Controlled Rectifiers - SCR
 
Thyristor family
Thyristor familyThyristor family
Thyristor family
 
Lecture 04 transformers
Lecture 04   transformersLecture 04   transformers
Lecture 04 transformers
 
Boost converter
Boost converterBoost converter
Boost converter
 
Unit-2 AC-DC converter
Unit-2 AC-DC converter Unit-2 AC-DC converter
Unit-2 AC-DC converter
 
INVERTERS PRESENTATION
INVERTERS PRESENTATIONINVERTERS PRESENTATION
INVERTERS PRESENTATION
 
Chapter 2 - Isolated DC-DC Converter.pdf
Chapter 2 - Isolated DC-DC Converter.pdfChapter 2 - Isolated DC-DC Converter.pdf
Chapter 2 - Isolated DC-DC Converter.pdf
 
Line commutated converters
Line commutated convertersLine commutated converters
Line commutated converters
 
DC DC Converter
DC DC ConverterDC DC Converter
DC DC Converter
 
Three phase semi converter
Three phase semi converterThree phase semi converter
Three phase semi converter
 
Zero Voltage Zero Current
Zero Voltage Zero CurrentZero Voltage Zero Current
Zero Voltage Zero Current
 
Electrodynamometer wattmeter
Electrodynamometer wattmeterElectrodynamometer wattmeter
Electrodynamometer wattmeter
 
three phase inverter
three phase inverterthree phase inverter
three phase inverter
 
Three phase ac voltage controllers
Three phase ac voltage controllersThree phase ac voltage controllers
Three phase ac voltage controllers
 
BUCK CONVERTER
BUCK CONVERTERBUCK CONVERTER
BUCK CONVERTER
 
Thyristor commutation techniques
Thyristor commutation techniquesThyristor commutation techniques
Thyristor commutation techniques
 
dc to dc-converter
dc to dc-converterdc to dc-converter
dc to dc-converter
 
Reference frame theory
Reference frame theoryReference frame theory
Reference frame theory
 
Unit- 3 DC-DC Converter
Unit- 3 DC-DC ConverterUnit- 3 DC-DC Converter
Unit- 3 DC-DC Converter
 
Multilevel inverter technology
Multilevel inverter technologyMultilevel inverter technology
Multilevel inverter technology
 

Viewers also liked

Chapter 14
Chapter 14Chapter 14
Chapter 14Tha Mike
 
Chapter 03
Chapter 03Chapter 03
Chapter 03Tha Mike
 
Chapter 05
Chapter 05Chapter 05
Chapter 05Tha Mike
 
Chapter 16
Chapter 16Chapter 16
Chapter 16Tha Mike
 
Steady-state Analysis for Switched Electronic Systems Trough Complementarity
Steady-state Analysis for Switched Electronic Systems Trough ComplementaritySteady-state Analysis for Switched Electronic Systems Trough Complementarity
Steady-state Analysis for Switched Electronic Systems Trough ComplementarityGianluca Angelone
 
Chapter 15
Chapter 15Chapter 15
Chapter 15Tha Mike
 
Ecd302 unit 04 (analysis)
Ecd302 unit 04 (analysis)Ecd302 unit 04 (analysis)
Ecd302 unit 04 (analysis)Xi Qiu
 
Chapter 17
Chapter 17Chapter 17
Chapter 17Tha Mike
 
Chapter 20
Chapter 20Chapter 20
Chapter 20Tha Mike
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsSimen Li
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisSimen Li
 
Power electronics note
Power electronics notePower electronics note
Power electronics noteravalgautu
 

Viewers also liked (18)

Chapter 14
Chapter 14Chapter 14
Chapter 14
 
Chapter 03
Chapter 03Chapter 03
Chapter 03
 
Chapter 05
Chapter 05Chapter 05
Chapter 05
 
Chapter 16
Chapter 16Chapter 16
Chapter 16
 
Steady-state Analysis for Switched Electronic Systems Trough Complementarity
Steady-state Analysis for Switched Electronic Systems Trough ComplementaritySteady-state Analysis for Switched Electronic Systems Trough Complementarity
Steady-state Analysis for Switched Electronic Systems Trough Complementarity
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
7.7.3 Phasors
7.7.3 Phasors7.7.3 Phasors
7.7.3 Phasors
 
L18 1 ph-ac
L18 1 ph-acL18 1 ph-ac
L18 1 ph-ac
 
Ecd302 unit 04 (analysis)
Ecd302 unit 04 (analysis)Ecd302 unit 04 (analysis)
Ecd302 unit 04 (analysis)
 
Chapter 17
Chapter 17Chapter 17
Chapter 17
 
Lecture 29 ac circuits. phasors.
Lecture 29   ac circuits. phasors.Lecture 29   ac circuits. phasors.
Lecture 29 ac circuits. phasors.
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
 
Impedence
ImpedenceImpedence
Impedence
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
 
Power electronics note
Power electronics notePower electronics note
Power electronics note
 
Power Electronics
Power ElectronicsPower Electronics
Power Electronics
 
Inaugural Addresses
Inaugural AddressesInaugural Addresses
Inaugural Addresses
 

Similar to Chapter 01

Chapter 1 - PWM DC-DC Converter.pdf
Chapter 1 - PWM DC-DC Converter.pdfChapter 1 - PWM DC-DC Converter.pdf
Chapter 1 - PWM DC-DC Converter.pdfbenson215
 
01 introduction to multilevel inverters
01 introduction to multilevel inverters01 introduction to multilevel inverters
01 introduction to multilevel inverterssazuddin
 
Lecture note macine & drives (power electronic converter)
Lecture note macine & drives (power electronic converter)Lecture note macine & drives (power electronic converter)
Lecture note macine & drives (power electronic converter)Faiz Mansur
 
lecture 10 - electrical machines - dc to dc converters 1.pptx
lecture 10 - electrical machines - dc to dc converters 1.pptxlecture 10 - electrical machines - dc to dc converters 1.pptx
lecture 10 - electrical machines - dc to dc converters 1.pptxJohnkamanda3
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Ee 791 drives lab maual
Ee 791 drives lab maualEe 791 drives lab maual
Ee 791 drives lab maualDivya15121983
 
Chapter 10
Chapter 10Chapter 10
Chapter 10Tha Mike
 
IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...
IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...
IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...IRJET Journal
 
ELG4139DCtoACConverters.pdf
ELG4139DCtoACConverters.pdfELG4139DCtoACConverters.pdf
ELG4139DCtoACConverters.pdfBekirTalat
 
Fundamentals of power electronics [presentation slides] 2nd ed r. erickson ww
Fundamentals of power electronics [presentation slides] 2nd ed   r. erickson wwFundamentals of power electronics [presentation slides] 2nd ed   r. erickson ww
Fundamentals of power electronics [presentation slides] 2nd ed r. erickson wwnedjaabachir
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationscuashok07
 
Power electronics and its applications.pptx
Power electronics and its applications.pptxPower electronics and its applications.pptx
Power electronics and its applications.pptxSHIVANICHAUUHAN1
 
Chapter 18
Chapter 18Chapter 18
Chapter 18Tha Mike
 
5 kW Three-Channel CCM PFC Controller
5 kW Three-Channel CCM PFC Controller5 kW Three-Channel CCM PFC Controller
5 kW Three-Channel CCM PFC ControllerIRJET Journal
 

Similar to Chapter 01 (20)

Chapter 1 - PWM DC-DC Converter.pdf
Chapter 1 - PWM DC-DC Converter.pdfChapter 1 - PWM DC-DC Converter.pdf
Chapter 1 - PWM DC-DC Converter.pdf
 
Ch2slide (1).pdf
Ch2slide (1).pdfCh2slide (1).pdf
Ch2slide (1).pdf
 
01 introduction to multilevel inverters
01 introduction to multilevel inverters01 introduction to multilevel inverters
01 introduction to multilevel inverters
 
Lecture note macine & drives (power electronic converter)
Lecture note macine & drives (power electronic converter)Lecture note macine & drives (power electronic converter)
Lecture note macine & drives (power electronic converter)
 
lecture 10 - electrical machines - dc to dc converters 1.pptx
lecture 10 - electrical machines - dc to dc converters 1.pptxlecture 10 - electrical machines - dc to dc converters 1.pptx
lecture 10 - electrical machines - dc to dc converters 1.pptx
 
Edc unit 2
Edc unit 2Edc unit 2
Edc unit 2
 
Edcqnaunit 2
Edcqnaunit 2Edcqnaunit 2
Edcqnaunit 2
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
[IJET V2I5P8] Authors: Lakshmi K R, Kavitha Issac, Kiran Boby
[IJET V2I5P8] Authors: Lakshmi K R, Kavitha Issac, Kiran Boby[IJET V2I5P8] Authors: Lakshmi K R, Kavitha Issac, Kiran Boby
[IJET V2I5P8] Authors: Lakshmi K R, Kavitha Issac, Kiran Boby
 
Ee 791 drives lab maual
Ee 791 drives lab maualEe 791 drives lab maual
Ee 791 drives lab maual
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
PEDC- unit 4.pptx
PEDC- unit  4.pptxPEDC- unit  4.pptx
PEDC- unit 4.pptx
 
Antony2015
Antony2015Antony2015
Antony2015
 
IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...
IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...
IRJET- Design and Implementaion of DC-DC Boost Converter using Output Voltage...
 
ELG4139DCtoACConverters.pdf
ELG4139DCtoACConverters.pdfELG4139DCtoACConverters.pdf
ELG4139DCtoACConverters.pdf
 
Fundamentals of power electronics [presentation slides] 2nd ed r. erickson ww
Fundamentals of power electronics [presentation slides] 2nd ed   r. erickson wwFundamentals of power electronics [presentation slides] 2nd ed   r. erickson ww
Fundamentals of power electronics [presentation slides] 2nd ed r. erickson ww
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
 
Power electronics and its applications.pptx
Power electronics and its applications.pptxPower electronics and its applications.pptx
Power electronics and its applications.pptx
 
Chapter 18
Chapter 18Chapter 18
Chapter 18
 
5 kW Three-Channel CCM PFC Controller
5 kW Three-Channel CCM PFC Controller5 kW Three-Channel CCM PFC Controller
5 kW Three-Channel CCM PFC Controller
 

Recently uploaded

Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024BookNet Canada
 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfjimielynbastida
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024BookNet Canada
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDGMarianaLemus7
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Neo4j
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 

Recently uploaded (20)

Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdf
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort ServiceHot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDG
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 

Chapter 01

  • 1. Fundamentals of Power Electronics Chapter 1: Introduction1 Fundamentals of Power Electronics Second edition Robert W. Erickson Dragan Maksimovic University of Colorado, Boulder
  • 2. Fundamentals of Power Electronics Chapter 1: Introduction2 Chapter 1: Introduction 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course
  • 3. Fundamentals of Power Electronics Chapter 1: Introduction3 1.1 Introduction to Power Processing Dc-dc conversion: Change and control voltage magnitude Ac-dc rectification: Possibly control dc voltage, ac current Dc-ac inversion: Produce sinusoid of controllable magnitude and frequency Ac-ac cycloconversion: Change and control voltage magnitude and frequency Switching converter Power input Power output Control input
  • 4. Fundamentals of Power Electronics Chapter 1: Introduction4 Control is invariably required Switching converter Power input Power output Control input Controller reference feedbackfeedforward
  • 5. Fundamentals of Power Electronics Chapter 1: Introduction5 High efficiency is essential High efficiency leads to low power loss within converter Small size and reliable operation is then feasible Efficiency is a good measure of converter performance 0 0.5 1 1.5 0.2 0.4 0.6 0.8 1 Ploss / Pout ηη = Pout Pin Ploss = Pin – Pout = Pout 1 η – 1
  • 6. Fundamentals of Power Electronics Chapter 1: Introduction6 A high-efficiency converter A goal of current converter technology is to construct converters of small size and weight, which process substantial power at high efficiency Converter Pin Pout
  • 7. Fundamentals of Power Electronics Chapter 1: Introduction7 Devices available to the circuit designer DTs Ts Resistors Capacitors Magnetics Semiconductor devices Linear- mode + – Switched-mode
  • 8. Fundamentals of Power Electronics Chapter 1: Introduction8 Devices available to the circuit designer Signal processing: avoid magnetics DTs Ts Resistors Capacitors Magnetics Semiconductor devices Linear- mode + – Switched-mode
  • 9. Fundamentals of Power Electronics Chapter 1: Introduction9 Devices available to the circuit designer Power processing: avoid lossy elements DTs Ts Resistors Capacitors Magnetics Semiconductor devices Linear- mode + – Switched-mode
  • 10. Fundamentals of Power Electronics Chapter 1: Introduction10 Power loss in an ideal switch Switch closed: v(t) = 0 Switch open: i(t) = 0 In either event: p(t) = v(t) i(t) = 0 Ideal switch consumes zero power + v(t) – i(t)
  • 11. Fundamentals of Power Electronics Chapter 1: Introduction11 A simple dc-dc converter example Input source: 100V Output load: 50V, 10A, 500W How can this converter be realized? + – R 5Ω + V 50V – Vg 100V I 10A Dc-dc converter
  • 12. Fundamentals of Power Electronics Chapter 1: Introduction12 Dissipative realization Resistive voltage divider + – R 5Ω + V 50V – Vg 100V I 10A + 50V – Ploss = 500W Pout = 500WPin = 1000W
  • 13. Fundamentals of Power Electronics Chapter 1: Introduction13 Dissipative realization Series pass regulator: transistor operates in active region + – R 5Ω + V 50V – Vg 100V I 10A+ 50V – Ploss ≈ 500W Pout = 500WPin ≈ 1000W +–linear amplifier and base driver Vref
  • 14. Fundamentals of Power Electronics Chapter 1: Introduction14 Use of a SPDT switch + – R + v(t) 50 V – 1 2 + vs(t) – Vg 100 V I 10 A vs(t) Vg DTs (1 – D) Ts 0 t switch position: 1 2 1 Vs = DVg
  • 15. Fundamentals of Power Electronics Chapter 1: Introduction15 The switch changes the dc voltage level D = switch duty cycle 0 ≤ D ≤ 1 Ts = switching period fs = switching frequency = 1 / Ts Vs = 1 Ts vs(t) dt 0 Ts = DVg DC component of vs(t) = average value: vs(t) Vg DTs (1 – D) Ts 0 t switch position: 1 2 1 Vs = DVg
  • 16. Fundamentals of Power Electronics Chapter 1: Introduction16 Addition of low pass filter Addition of (ideally lossless) L-C low-pass filter, for removal of switching harmonics: • Choose filter cutoff frequency f0 much smaller than switching frequency fs • This circuit is known as the “buck converter” + – R + v(t) – 1 2 + vs(t) – Vg 100 V i(t) L C Ploss small Pout = 500 WPin ≈ 500 W
  • 17. Fundamentals of Power Electronics Chapter 1: Introduction17 Addition of control system for regulation of output voltage δ(t) TsdTs t + – + v – vg Switching converterPower input Load –+ Compensator vref Reference input HvPulse-width modulator vc Transistor gate driver δ Gc(s) H(s) ve Error signal Sensor gain i
  • 18. Fundamentals of Power Electronics Chapter 1: Introduction18 The boost converter + – L C R + V – 1 2 Vg D 0 0.2 0.4 0.6 0.8 1 V 5Vg 4Vg 3Vg 2Vg Vg 0
  • 19. Fundamentals of Power Electronics Chapter 1: Introduction19 A single-phase inverter 1 2 + – load + v(t) – 2 1 Vg vs(t) + – t vs(t) “H-bridge” Modulate switch duty cycles to obtain sinusoidal low-frequency component
  • 20. Fundamentals of Power Electronics Chapter 1: Introduction20 1.2 Several applications of power electronics Power levels encountered in high-efficiency converters • less than 1 W in battery-operated portable equipment • tens, hundreds, or thousands of watts in power supplies for computers or office equipment • kW to MW in variable-speed motor drives • 1000 MW in rectifiers and inverters for utility dc transmission lines
  • 21. Fundamentals of Power Electronics Chapter 1: Introduction21 A laptop computer power supply system vac(t) iac(t) Charger PWM Rectifier Lithium battery ac line input 85–265 Vrms Inverter Buck converter Boost converter Display backlighting Microprocessor Power management Disk drive
  • 22. Fundamentals of Power Electronics Chapter 1: Introduction22 Power system of an earth-orbiting spacecraft Solar array + vbus – Batteries Battery charge/discharge controllers Dc-dc converter Payload Dc-dc converter Payload Dissipative shunt regulator
  • 23. Fundamentals of Power Electronics Chapter 1: Introduction23 An electric vehicle power and drive system 3øac line 50/60 Hz Battery charger battery + vb – Variable-frequency Variable-voltage ac Inverter ac machine Inverter Inverter ac machine DC-DC converter µP system controller Vehicle electronicsLow-voltage dc bus control bus ac machine ac machine Inverter
  • 24. Fundamentals of Power Electronics Chapter 1: Introduction24 1.3 Elements of power electronics Power electronics incorporates concepts from the fields of analog circuits electronic devices control systems power systems magnetics electric machines numerical simulation
  • 25. Fundamentals of Power Electronics Chapter 1: Introduction25 Part I. Converters in equilibrium iL(t) t0 DTs Ts I iL(0) Vg – V L iL(DTs) ∆iL – V L vL(t) Vg – V t – V D'TsDTs switch position: 1 2 1 RL + –Vg D' RD + – D' VDD Ron R + V – I D' : 1 Inductor waveforms Averaged equivalent circuit D η RL/R = 0.1 0.02 0.01 0.05 0.002 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Predicted efficiency Discontinuous conduction mode Transformer isolation
  • 26. Fundamentals of Power Electronics Chapter 1: Introduction26 Switch realization: semiconductor devices Collector p n- n n p p Emitter Gate nn minority carrier injection collector emitter gate The IGBT t iL –Vg 0 iB(t) vB(t) area –Qr 0 tr t iL Vg 0 iA(t) vA(t) Qr 0 t area ~QrVg area ~iLVgtr t0 t1 t2 transistor waveforms diode waveforms pA(t) = vA iA Switching loss
  • 27. Fundamentals of Power Electronics Chapter 1: Introduction27 Part I. Converters in equilibrium 2. Principles of steady state converter analysis 3. Steady-state equivalent circuit modeling, losses, and efficiency 4. Switch realization 5. The discontinuous conduction mode 6. Converter circuits
  • 28. Fundamentals of Power Electronics Chapter 1: Introduction28 Part II. Converter dynamics and control + – + v(t) – vg(t) Switching converterPower input Load –+ R compensator Gc(s) vref voltage reference v feedback connection pulse-width modulator vc transistor gate driver δ(t) δ(t) TsdTs t t vc(t) Controller t t gate drive actual waveform v(t) including ripple averaged waveform <v(t)>Ts with ripple neglected + – I d(t)vg(t) + – L Vg – V d(t) + v(t) – RCI d(t) 1 : D D' : 1 Closed-loop converter system Averaging the waveforms Small-signal averaged equivalent circuit
  • 29. Fundamentals of Power Electronics Chapter 1: Introduction29 Part II. Converter dynamics and control 7. Ac modeling 8. Converter transfer functions 9. Controller design 10. Input filter design 11. Ac and dc equivalent circuit modeling of the discontinuous conduction mode 12. Current-programmed control
  • 30. Fundamentals of Power Electronics Chapter 1: Introduction30 Part III. Magnetics Φ i –i 3i –2i 2i 2Φ current density J dlayer 1 layer 2 layer 3 0 0.02 0.04 0.06 0.08 0.1 Switching frequency Bmax(T) 25kHz 50kHz 100kHz 200kHz 250kHz 400kHz 500kHz 1000kHz Potcoresize 4226 3622 2616 2213 1811 1811 2213 2616 n1 : n2 : nk R1 R2 Rk i1(t) i2(t) ik(t) LM iM(t)transformer design transformer size vs. switching frequency the proximity effect
  • 31. Fundamentals of Power Electronics Chapter 1: Introduction31 Part III. Magnetics 13. Basic magnetics theory 14. Inductor design 15. Transformer design
  • 32. Fundamentals of Power Electronics Chapter 1: Introduction32 Part IV. Modern rectifiers, and power system harmonics 100% 91% 73% 52% 32% 19% 15% 15% 13% 9% 0% 20% 40% 60% 80% 100% 1 3 5 7 9 11 13 15 17 19 Harmonic number Harmonicamplitude, percentoffundamental THD = 136% Distortion factor = 59% Pollution of power system by rectifier current harmonics Re(vcontrol) + – vac(t) iac(t) vcontrol v(t) i(t) + – p(t) = vac 2 / Re Ideal rectifier (LFR) ac input dc output boost converter controller Rvac(t) iac(t) + vg(t) – ig(t) ig(t)vg(t) + v(t) – i(t) Q1 L C D1 vcontrol(t) multiplier X +– vref(t) = kx vg(t) vcontrol(t) Rs va(t) Gc(s) PWM compensator verr(t) A low-harmonic rectifier system Model of the ideal rectifier
  • 33. Fundamentals of Power Electronics Chapter 1: Introduction33 Part IV. Modern rectifiers, and power system harmonics 16. Power and harmonics in nonsinusoidal systems 17. Line-commutated rectifiers 18. Pulse-width modulated rectifiers
  • 34. Fundamentals of Power Electronics Chapter 1: Introduction34 Part V. Resonant converters L + – Vg CQ1 Q2 Q3 Q4 D1 D2 D3 D4 1 : n R + V – 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 M=V/Vg F = fs / f0 Q = 20 10 5 3.5 2 1.5 1 0.75 0.5 0.35 Q = 0.2 Q = 20 10 5 3.5 2 1.5 1 0.75 0.5 0.35 Q = 0.2 The series resonant converter Dc characteristics conducting devices: t Vg vds1(t) Q1 Q4 D2 D3 turn off Q1 , Q4 commutation interval X Zero voltage switching
  • 35. Fundamentals of Power Electronics Chapter 1: Introduction35 Part V. Resonant converters 19. Resonant conversion 20. Soft switching
  • 36. Fundamentals of Power Electronics Chapter 1: Introduction36 Appendices A. RMS values of commonly-observed converter waveforms B. Simulation of converters C. Middlebrook’s extra element theorem D. Magnetics design tables 2 1 3 4 5 CCM-DCM1 + – + – + – C2 50 µH 11 kΩ 500 µF Vg 28 V L C R vref 5 V +12 V LM324 R1 R2 R3 C3 R4 85 kΩ 1.1 nF2.7 nF 47 kΩ 120 kΩ vz –vyvx Epwm VM = 4 V value = {LIMIT(0.25 vx, 0.1, 0.9)} + v – iLOAD1 2 3 4 5678 .nodeset v(3)=15 v(5)=5 v(6)=4.144 v(8)=0.536 Xswitch L = 50 µΗ fs = 100 kΗz f || Gvg || –60 dB –80 dB 0 dB 20 dB 5 Hz 50 Hz 5 kHz 50 kHz500 Hz R = 3 Ω R = 25 Ω –40 dB –20 dB Open loop, d(t) = constant Closed loop