SlideShare a Scribd company logo
1 of 30
Download to read offline
2
UNIT- 1
• Introduction to FEM:
– Stiffness equations for a axial bar element in local co-ordinates
bars
using Potential Energyapproach and Virtual energyprinciple
– Finite element analysis of uniform, stepped and tapered
subjected to mechanical and thermalloads
– Assembly of Global stiffness matrix and loadvector
– Quadratic shapefunctions
– properties of stiffnessmatrix
Axially LoadedBar
Review:
Stress:
Strain:
Deformation:
Stress:
3
Strain:
Deformation:
Axially LoadedBar
4
Review:
Stress:
Strain:
Deformation:
Axially Loaded Bar – GoverningEquations
and BoundaryConditions
• Differential Equation
• BoundaryCondition Types
• prescribeddisplacement(essential BC)
•prescribedforce/derivative of displacement
(natural BC)
dx  dx
5
d EA(x)
du   f (x) 0 0  x L
6
Axially Loaded Bar –BoundaryConditions
• Examples
• fixed end
• simplesupport
• free end
Potential Energy
- Axially loadedbar
- Elasticbody
x
Stretchedbar
• Elastic Potential Energy(PE)
- Spring case
Unstretched spring
PE 0
2
1
2
kx
PE 
undeformed:
deformed:
0
7
PE 0
1 L
PE  Adx
2
2 V
PE 
1
σT
εdv
Potential Energy
• Work Potential(WE)
B
L

WP   u  fdx  Pu
0
P
f
f: distributed force over aline
P: point force
u: displacement
A B
• T
otalPotential Energy
L
0 0
1 L
  Adx  u  fdx  PuB
2
• Principle of Minimum PotentialEnergy
Forconservative systems, of all the kinematically admissible displacementfields,
those corresponding to equilibrium extremize the total potential energy. If the
extremum condition is aminimum, the equilibrium state isstable.
8
Potential Energy +Rayleigh-RitzApproach
P
f
A B
Example:
Step1: assumeadisplacement field
i
i  1 to n
u  aii x
 is shapefunction / basis function
n is the order ofapproximation
Step2: calculate total potential energy
9
Potential Energy +Rayleigh-Ritz
Approach
f
Example:
P
A B
Step3:select ai sothat the total potential energy isminimum
10
Galerkin’sMethod
P
f
A
Example:
EA(x)
du
 P
dx xL
d  du
dx 
EA(x)
dx 
 f (x)  0
ux  0 0 dx
w
V
i
 P



 d du
dx 

 

dx xL

du
~
EA(x)
u~x 0 0
f ( x)dV 0

EA(x) 
B
Seekan approximation u
~so
~
In the Galerkin’s method, the weight function is chosen to be the sameasthe shape
function.
11
Galerkin’sMethod
P
f
A B
Example:

  f ( x)dV  0
dx 
du
~ 
EA(x)
 dx 
 d 
V
wi 
0 0
 0
L L
dx 0
du~L
du~dw
EA(x) i
dx  wi fdx wi EA(x)
dx dx
1 2 3
1
2
3
12
Finite Element Method –Piecewise
Approximation
x
u
x
u
13
FEM Formulation of AxiallyLoaded
Bar – Governing Equations
• WeakForm
• Differential Equation
d  du
dx 
EA(x)
dx 
 f (x)  0 0  x L
• Weighted-Integral Formulation
0



 d  du 
w EA(x)   f (x)dx  0
dx  dx 
L
0
L
du 



0  
du  

L
dw 
0   dx
EA(x)
dx
  wf (x)dx  wEA(x)
dx

14
Approximation Methods –Finite
Element Method
Example:
Step1: Discretization
Step2: Weakform of oneelement P2
P1
x1 x2
1
1
 0




 x
x 
x
du 
2
du  
 dx
EA(x)
dx
  w(x) f (x)dx  w(x) EA(x)
dx

x2
dw 
   
1 1
2 2






 P w x P  0
dx
EA(x)  w(x) f (x) dx  w x
dx
x2
dw  du  
x1
 15
Approximation Methods –Finite
Element Method
Example(cont):
Step3: Choosingshape functions
- linear shapefunctions u  1u12u2
l
x1 x2
x 
 
1
l
2
2
l
1
x  x
x  x
;  
  2
16
2

1
; 2 
1
1 
1
1
2
l
x 
 1l
 x
 
2
x  x  1;
Approximation Methods –Finite
Element Method
Example(cont):
Step4: Forming element equation
weak formbecomes
Letw 1
, 1 1 2 1 1
1
1



l
1 u  u 
l
x2
x
x2

x
  EA 2 1
dx   f dx   P   P 0
2
1
l
EA EA
l
x
x
u1  u2  1 f dx  P
1
weak formbecomes
Letw  2
, 2 2 2 2 1
1
1
 

l
u  u 
l
x2
x
x2
1
x
EA 2 1
dx   f dx   P   P  0
1
l
EA
l
EA
x2
x
 u1  u2  2 f dx  P2
1 1 1
2
P f P
x2

     
EA  1 
1u1 
  x1
 
 P   f   P
1  u  x2
l 1
   2   2   2   2 
  fdx

x1 
1 fdx

E,Aare constant
17
Approximation Methods –Finite
Element Method
Example(cont):
Step5: Assembling to form systemequation
Approach 1:
Element1: 0 I I I
I I
u f P
E A
lI
 f I
 PI


1
 
1

  
1

1      
   

2
 
2
 
2

0  0
 0
 0 0  0
 0   0 
 0   0 
    
Element2:
1
2 2
f
uII
f II
PII
lII
 0   0 
  
0  0 
E II
AII 0 0 uII
  
II
PII

  
1
    
1

2     


 0 
 

0 

0 

0 

Element3:
1 1
III III III
III
III III III
f P
1 u f P
 0   0 
0   0 
E III
AIII 0 0   0   0   0 
 
      
     1 
0       
 1 1 0 0 uI

1 0
0 0
0 0
0 0 0
1 1
0 1 1 0
0 0 0

0 0 0
 0 0
l 0 0 1 1 u
0 1
   2   2   2 
18
Approximation Methods –Finite
Element Method
Example(cont):
Step5: Assembling to form systemequation
Assembled System:
4 4
19
0 0
0
0
I I II II
lI
l
0
l l
l
EII
AII
EII
AII
EIII
AIII
EIII
AIII
lII
0
lIII
EIII
AIII
EIII
AIII
lIII
lIII
 E I
AI
I I
 E A
 lI




 f1 
u1 

EI
AI
E I
AI

E II
AII
II II
 E A
 3  
  
lII
lIII













2 1 2 1
2 1 2 1
I I
II
II III II III
f1 P
1
f III
PIII
   
P1
 f I  PI 
u   f  P  f II 
 P 

 2    2    2     
u   f  P  
f  f P  P
3  3
 
 
 


  

u 
 
 f 
 
P 
 
4  2   2 
Approximation Methods –Finite
Element Method
Example(cont):
Step5: Assembling to form systemequation
Approach 2: Element connectivitytable Element 1 Element 2 Element 3
1 1 2 3
2 2 3 4
global node index
(I,J)
local node
(i,j)
ij
20
IJ
k e
 K
Approximation Methods –Finite
Element Method
Example(cont):
Step6: Imposing boundary conditions and forming condensesystem
Condensedsystem:
0
lI
lII
lII
lII
0
lIII
lIII
EIII
AIII
lIII
lIII
 E I
AI

E II
AII
II II
 E A 

u2   f2  0
E II
AII

E III
AIII 
E A        
III III
u3   f3  0
 f  P
 u 
 4   


 EII
AII
 

 E III
AIII
  4 
lII

 
  21
Approximation Methods –Finite
Element Method
Example(cont):
Step7: solution
Step8: post calculation
2
dx 1
dx
d2
dx
 
du
 u
d1
u
1 1 2 2
u  u   u  2
1
dx
d2
dx
  E  Eu
d1
Eu
22
Summary - Major Steps inFEM
• Discretization
• Derivation of element equation
•weak form
•constructform of approximation solution
overone element
•derive finite element model
• Assembling– putting elements together
• Imposingboundary conditions
• Solvingequations
• Postcomputation
23
Exercises – LinearElement
Example1:
E=100 GPa,A=1 cm2
24
Linear Formulation for BarElement
 
 2   2   12 22 u2 
K
K
K12 u1 
P   f 
P1

 f1 

K11

 1
1
x2

x
i
x2

x
ji i
ij  dx dx 
EA i j
dx  K , f 
where K  f dx
 d d 
x=x1 x=x2
 2
1

x
x=x1 x=x2
u1 u2
P1 P2
f(x)
L= x2-x1
u
x
25
Higher Order Formulation for BarElement
u(x) u11(x) u22 (x) u33 (x)
1 3
u1 u3
u
x
u2
2
u1 u4
u
x
u2 u3
1 2 3 4
u(x) u11( x ) u22 ( x ) u33 ( x ) u44 ( x )
u(x) u11( x ) u22 ( x ) u33 ( x ) u44 ( x )  unn ( x )
n
u1 un
u
x
u2 u3 u4
26
…
…
…
…
…
1 2 3 4 …
…
…
…
…
Natural Coordinates and InterpolationFunctions
  1
2
, 2 
  1
2
1  
Natural (or Normal)Coordinate:
x=x1 x=x2
=-1 =1
x

x  0 x  l
l /2
x  x  x1
x  x1  x2
  2
1 3
2

1
=-1
2
=1

=-1 =1
1 4
2

=-1 =1
3
2
2
3
2
1
 1
    1  1,  
 1
  ,
2
1

3 

3 16

3

16    
1 ,  
27
 1
1 1

  
9  
1  
1   

27






3

3
16
 
3
16
4
3
  
27
 1
1  1,  
9
 1
1  
1
Quadratic Formulation for BarElement
   
i i i
l
2
 f
and f   f dx  
1
1
1
x2
x 1
 d d   d d  2
 dx dx 
1
 d d l
d, i, j  1, 2, 3
where Kij   EA
i
 dx   EA
i
 d  K
j j
ji


 
2 
33  3 
13 23
23 
22
12
3  3 
 2   2 
u 
u 
K
K13 u1 
K11 K12
P   f 
P    f   K K K
K K
P1   f1 
=-1 =0 =1

x2

x1


28
Quadratic Formulation for BarElement
u1 u3
u2
f(x)
P3
P1
P2
x1
=-1
x2
=0
x3
=1
2
2
3
2
1
3 3
2 2
1 1
 1
 u  1 1u
 1
)  u  (  ) u
( ) u  (
u( )  u 
2
2
3
2
1
 1
,     1  1,  
  1
 
l l
dx l d dx l d l dx l d
d1

2 d1

2 1
, d2

2 d2
 
4,
d3

2 d3

2 1
l /2
x  x1  x2
  2 l d  dx
2
d 2

dx l
29
Exercises – Quadratic Element
30
Example2:
E=100 GPa,A1=1 cm2;A1=2cm2
Some Issues
Non-constant crosssection:
Interior loadpoint:
Mixed boundary condition:
k
31

More Related Content

Similar to UNIT I_1.pdf

06_finite_elements_basics.ppt
06_finite_elements_basics.ppt06_finite_elements_basics.ppt
06_finite_elements_basics.pptAditya765321
 
Quadratic Functions graph
Quadratic Functions graphQuadratic Functions graph
Quadratic Functions graphRefat Ullah
 
Direct method for soliton solution
Direct method for soliton solutionDirect method for soliton solution
Direct method for soliton solutionMOHANRAJ PHYSICS
 
Ch 3 math_of_thermodynamics
Ch 3 math_of_thermodynamicsCh 3 math_of_thermodynamics
Ch 3 math_of_thermodynamicsAmandaPerin1
 
differentiol equation.pptx
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptxPlanningHCEGC
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheetAjEcuacion
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheetHimadriBiswas10
 
Lecture 2.pdf
Lecture 2.pdfLecture 2.pdf
Lecture 2.pdfYesuf3
 
Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1Mahdi Damghani
 
Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)ronald sanchez
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfkeansheng
 
Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODEkishor pokar
 
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS ONE DIMENSIONAL FINITE ELEMENT ANALYSIS
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS velliyangiri1
 
Lec5 total potential_energy_method
Lec5 total potential_energy_methodLec5 total potential_energy_method
Lec5 total potential_energy_methodMahdi Damghani
 
Integrability and weak diffraction in a two-particle Bose-Hubbard model
 Integrability and weak diffraction in a two-particle Bose-Hubbard model  Integrability and weak diffraction in a two-particle Bose-Hubbard model
Integrability and weak diffraction in a two-particle Bose-Hubbard model jiang-min zhang
 

Similar to UNIT I_1.pdf (20)

exponen dan logaritma
exponen dan logaritmaexponen dan logaritma
exponen dan logaritma
 
06_finite_elements_basics.ppt
06_finite_elements_basics.ppt06_finite_elements_basics.ppt
06_finite_elements_basics.ppt
 
5994944.ppt
5994944.ppt5994944.ppt
5994944.ppt
 
Quadratic Functions graph
Quadratic Functions graphQuadratic Functions graph
Quadratic Functions graph
 
Direct method for soliton solution
Direct method for soliton solutionDirect method for soliton solution
Direct method for soliton solution
 
Ch 3 math_of_thermodynamics
Ch 3 math_of_thermodynamicsCh 3 math_of_thermodynamics
Ch 3 math_of_thermodynamics
 
differentiol equation.pptx
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptx
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheet
 
Integral calculus formula sheet
Integral calculus formula sheetIntegral calculus formula sheet
Integral calculus formula sheet
 
Integral calculus formula sheet 0
Integral calculus formula sheet 0Integral calculus formula sheet 0
Integral calculus formula sheet 0
 
Lecture 2.pdf
Lecture 2.pdfLecture 2.pdf
Lecture 2.pdf
 
Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1
 
Adaline and Madaline.ppt
Adaline and Madaline.pptAdaline and Madaline.ppt
Adaline and Madaline.ppt
 
Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdf
 
Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODE
 
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS ONE DIMENSIONAL FINITE ELEMENT ANALYSIS
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS
 
Lec5 total potential_energy_method
Lec5 total potential_energy_methodLec5 total potential_energy_method
Lec5 total potential_energy_method
 
Integrability and weak diffraction in a two-particle Bose-Hubbard model
 Integrability and weak diffraction in a two-particle Bose-Hubbard model  Integrability and weak diffraction in a two-particle Bose-Hubbard model
Integrability and weak diffraction in a two-particle Bose-Hubbard model
 
Ch02
Ch02Ch02
Ch02
 

Recently uploaded

247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 

Recently uploaded (20)

247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 

UNIT I_1.pdf

  • 1. 2 UNIT- 1 • Introduction to FEM: – Stiffness equations for a axial bar element in local co-ordinates bars using Potential Energyapproach and Virtual energyprinciple – Finite element analysis of uniform, stepped and tapered subjected to mechanical and thermalloads – Assembly of Global stiffness matrix and loadvector – Quadratic shapefunctions – properties of stiffnessmatrix
  • 4. Axially Loaded Bar – GoverningEquations and BoundaryConditions • Differential Equation • BoundaryCondition Types • prescribeddisplacement(essential BC) •prescribedforce/derivative of displacement (natural BC) dx  dx 5 d EA(x) du   f (x) 0 0  x L
  • 5. 6 Axially Loaded Bar –BoundaryConditions • Examples • fixed end • simplesupport • free end
  • 6. Potential Energy - Axially loadedbar - Elasticbody x Stretchedbar • Elastic Potential Energy(PE) - Spring case Unstretched spring PE 0 2 1 2 kx PE  undeformed: deformed: 0 7 PE 0 1 L PE  Adx 2 2 V PE  1 σT εdv
  • 7. Potential Energy • Work Potential(WE) B L  WP   u  fdx  Pu 0 P f f: distributed force over aline P: point force u: displacement A B • T otalPotential Energy L 0 0 1 L   Adx  u  fdx  PuB 2 • Principle of Minimum PotentialEnergy Forconservative systems, of all the kinematically admissible displacementfields, those corresponding to equilibrium extremize the total potential energy. If the extremum condition is aminimum, the equilibrium state isstable. 8
  • 8. Potential Energy +Rayleigh-RitzApproach P f A B Example: Step1: assumeadisplacement field i i  1 to n u  aii x  is shapefunction / basis function n is the order ofapproximation Step2: calculate total potential energy 9
  • 9. Potential Energy +Rayleigh-Ritz Approach f Example: P A B Step3:select ai sothat the total potential energy isminimum 10
  • 10. Galerkin’sMethod P f A Example: EA(x) du  P dx xL d  du dx  EA(x) dx   f (x)  0 ux  0 0 dx w V i  P     d du dx      dx xL  du ~ EA(x) u~x 0 0 f ( x)dV 0  EA(x)  B Seekan approximation u ~so ~ In the Galerkin’s method, the weight function is chosen to be the sameasthe shape function. 11
  • 11. Galerkin’sMethod P f A B Example:    f ( x)dV  0 dx  du ~  EA(x)  dx   d  V wi  0 0  0 L L dx 0 du~L du~dw EA(x) i dx  wi fdx wi EA(x) dx dx 1 2 3 1 2 3 12
  • 12. Finite Element Method –Piecewise Approximation x u x u 13
  • 13. FEM Formulation of AxiallyLoaded Bar – Governing Equations • WeakForm • Differential Equation d  du dx  EA(x) dx   f (x)  0 0  x L • Weighted-Integral Formulation 0     d  du  w EA(x)   f (x)dx  0 dx  dx  L 0 L du     0   du    L dw  0   dx EA(x) dx   wf (x)dx  wEA(x) dx  14
  • 14. Approximation Methods –Finite Element Method Example: Step1: Discretization Step2: Weakform of oneelement P2 P1 x1 x2 1 1  0      x x  x du  2 du    dx EA(x) dx   w(x) f (x)dx  w(x) EA(x) dx  x2 dw      1 1 2 2        P w x P  0 dx EA(x)  w(x) f (x) dx  w x dx x2 dw  du   x1  15
  • 15. Approximation Methods –Finite Element Method Example(cont): Step3: Choosingshape functions - linear shapefunctions u  1u12u2 l x1 x2 x    1 l 2 2 l 1 x  x x  x ;     2 16 2  1 ; 2  1 1  1 1 2 l x   1l  x   2 x  x  1;
  • 16. Approximation Methods –Finite Element Method Example(cont): Step4: Forming element equation weak formbecomes Letw 1 , 1 1 2 1 1 1 1    l 1 u  u  l x2 x x2  x   EA 2 1 dx   f dx   P   P 0 2 1 l EA EA l x x u1  u2  1 f dx  P 1 weak formbecomes Letw  2 , 2 2 2 2 1 1 1    l u  u  l x2 x x2 1 x EA 2 1 dx   f dx   P   P  0 1 l EA l EA x2 x  u1  u2  2 f dx  P2 1 1 1 2 P f P x2        EA  1  1u1    x1    P   f   P 1  u  x2 l 1    2   2   2   2    fdx  x1  1 fdx  E,Aare constant 17
  • 17. Approximation Methods –Finite Element Method Example(cont): Step5: Assembling to form systemequation Approach 1: Element1: 0 I I I I I u f P E A lI  f I  PI   1   1     1  1            2   2   2  0  0  0  0 0  0  0   0   0   0       Element2: 1 2 2 f uII f II PII lII  0   0     0  0  E II AII 0 0 uII    II PII     1      1  2         0     0   0   0   Element3: 1 1 III III III III III III III f P 1 u f P  0   0  0   0  E III AIII 0 0   0   0   0                1  0         1 1 0 0 uI  1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0  0 0 0  0 0 l 0 0 1 1 u 0 1    2   2   2  18
  • 18. Approximation Methods –Finite Element Method Example(cont): Step5: Assembling to form systemequation Assembled System: 4 4 19 0 0 0 0 I I II II lI l 0 l l l EII AII EII AII EIII AIII EIII AIII lII 0 lIII EIII AIII EIII AIII lIII lIII  E I AI I I  E A  lI      f1  u1   EI AI E I AI  E II AII II II  E A  3      lII lIII              2 1 2 1 2 1 2 1 I I II II III II III f1 P 1 f III PIII     P1  f I  PI  u   f  P  f II   P    2    2    2      u   f  P   f  f P  P 3  3             u     f    P    4  2   2 
  • 19. Approximation Methods –Finite Element Method Example(cont): Step5: Assembling to form systemequation Approach 2: Element connectivitytable Element 1 Element 2 Element 3 1 1 2 3 2 2 3 4 global node index (I,J) local node (i,j) ij 20 IJ k e  K
  • 20. Approximation Methods –Finite Element Method Example(cont): Step6: Imposing boundary conditions and forming condensesystem Condensedsystem: 0 lI lII lII lII 0 lIII lIII EIII AIII lIII lIII  E I AI  E II AII II II  E A   u2   f2  0 E II AII  E III AIII  E A         III III u3   f3  0  f  P  u   4       EII AII     E III AIII   4  lII      21
  • 21. Approximation Methods –Finite Element Method Example(cont): Step7: solution Step8: post calculation 2 dx 1 dx d2 dx   du  u d1 u 1 1 2 2 u  u   u  2 1 dx d2 dx   E  Eu d1 Eu 22
  • 22. Summary - Major Steps inFEM • Discretization • Derivation of element equation •weak form •constructform of approximation solution overone element •derive finite element model • Assembling– putting elements together • Imposingboundary conditions • Solvingequations • Postcomputation 23
  • 24. Linear Formulation for BarElement    2   2   12 22 u2  K K K12 u1  P   f  P1   f1   K11   1 1 x2  x i x2  x ji i ij  dx dx  EA i j dx  K , f  where K  f dx  d d  x=x1 x=x2  2 1  x x=x1 x=x2 u1 u2 P1 P2 f(x) L= x2-x1 u x 25
  • 25. Higher Order Formulation for BarElement u(x) u11(x) u22 (x) u33 (x) 1 3 u1 u3 u x u2 2 u1 u4 u x u2 u3 1 2 3 4 u(x) u11( x ) u22 ( x ) u33 ( x ) u44 ( x ) u(x) u11( x ) u22 ( x ) u33 ( x ) u44 ( x )  unn ( x ) n u1 un u x u2 u3 u4 26 … … … … … 1 2 3 4 … … … … …
  • 26. Natural Coordinates and InterpolationFunctions   1 2 , 2    1 2 1   Natural (or Normal)Coordinate: x=x1 x=x2 =-1 =1 x  x  0 x  l l /2 x  x  x1 x  x1  x2   2 1 3 2  1 =-1 2 =1  =-1 =1 1 4 2  =-1 =1 3 2 2 3 2 1  1     1  1,    1   , 2 1  3   3 16  3  16     1 ,   27  1 1 1     9   1   1     27       3  3 16   3 16 4 3    27  1 1  1,   9  1 1   1
  • 27. Quadratic Formulation for BarElement     i i i l 2  f and f   f dx   1 1 1 x2 x 1  d d   d d  2  dx dx  1  d d l d, i, j  1, 2, 3 where Kij   EA i  dx   EA i  d  K j j ji     2  33  3  13 23 23  22 12 3  3   2   2  u  u  K K13 u1  K11 K12 P   f  P    f   K K K K K P1   f1  =-1 =0 =1  x2  x1   28
  • 28. Quadratic Formulation for BarElement u1 u3 u2 f(x) P3 P1 P2 x1 =-1 x2 =0 x3 =1 2 2 3 2 1 3 3 2 2 1 1  1  u  1 1u  1 )  u  (  ) u ( ) u  ( u( )  u  2 2 3 2 1  1 ,     1  1,     1   l l dx l d dx l d l dx l d d1  2 d1  2 1 , d2  2 d2   4, d3  2 d3  2 1 l /2 x  x1  x2   2 l d  dx 2 d 2  dx l 29
  • 29. Exercises – Quadratic Element 30 Example2: E=100 GPa,A1=1 cm2;A1=2cm2
  • 30. Some Issues Non-constant crosssection: Interior loadpoint: Mixed boundary condition: k 31