SlideShare a Scribd company logo
C Programming
45
Decision-making structures require that the programmer specifies one or more
conditions to be evaluated or tested by the program, along with a statement or
statements to be executed if the condition is determined to be true, and
optionally, other statements to be executed if the condition is determined to be
false.
Shown below is the general form of a typical decision-making structure found in
most of the programming languages:
C programming language assumes any non-zero and non-null values as true,
and if it is either zero or null, then it is assumed as false value.
C programming language provides the following types of decision-making
statements.
Statement Description
if statement An if statement consists of a boolean expression
followed by one or more statements.
if...else statement An if statement can be followed by an
optional else statement, which executes when
10. DECISION MAKING
C Programming
46
the Boolean expression is false.
nested if statements You can use one if or else if statement inside
another if or else if statement(s).
switch statement A switch statement allows a variable to be tested
for equality against a list of values.
nested switch statements You can use one switch statement inside another
switch statement(s).
ifStatement
An if statement consists of a Boolean expression followed by one or more
statements.
Syntax
The syntax of an ‘if’ statement in C programming language is:
if(boolean_expression)
{
/* statement(s) will execute if the boolean expression is true */
}
If the Boolean expression evaluates to true, then the block of code inside the ‘if’
statement will be executed. If the Boolean expression evaluates to false, then
the first set of code after the end of the ‘if’ statement (after the closing curly
brace) will be executed.
C programming language assumes any non-zero and non-null values
as true and if it is either zero or null, then it is assumed as false value.
Flow Diagram
C Programming
47
Example
#include <stdio.h>
int main ()
{
/* local variable definition */
int a = 10;
/* check the boolean condition using if statement */
if( a < 20 )
{
/* if condition is true then print the following */
printf("a is less than 20n" );
}
printf("value of a is : %dn", a);
return 0;
}
When the above code is compiled and executed, it produces the following result:
a is less than 20;
C Programming
48
value of a is : 10
if…elseStatement
An if statement can be followed by an optional else statement, which executes
when the Boolean expression is false.
Syntax
The syntax of an if...else statement in C programming language is:
if(boolean_expression)
{
/* statement(s) will execute if the boolean expression is true */
}
else
{
/* statement(s) will execute if the boolean expression is false */
}
If the Boolean expression evaluates to true, then the if block will be executed,
otherwise, the else block will be executed.
C programming language assumes any non-zero and non-null values as true,
and if it is either zero or null, then it is assumed as false value.
Flow Diagram
C Programming
49
Example
#include <stdio.h>
int main ()
{
/* local variable definition */
int a = 100;
/* check the boolean condition */
if( a < 20 )
{
/* if condition is true then print the following */
printf("a is less than 20n" );
}
else
{
/* if condition is false then print the following */
printf("a is not less than 20n" );
}
printf("value of a is : %dn", a);
return 0;
}
When the above code is compiled and executed, it produces the following result:
a is not less than 20;
value of a is : 100
if...elseif...elseStatement
An if statement can be followed by an optional else if...else statement, which is
very useful to test various conditions using single if...else if statement.
When using if…else if…else statements, there are few points to keep in mind:
 An if can have zero or one else's and it must come after any else if's.
 An if can have zero to many else if's and they must come before the else.
C Programming
50
 Once an else if succeeds, none of the remaining else if's or else's will be
tested.
Syntax
The syntax of an if...else if...else statement in C programming language is:
if(boolean_expression 1)
{
/* Executes when the boolean expression 1 is true */
}
else if( boolean_expression 2)
{
/* Executes when the boolean expression 2 is true */
}
else if( boolean_expression 3)
{
/* Executes when the boolean expression 3 is true */
}
else
{
/* executes when the none of the above condition is true */
}
Example
#include <stdio.h>
int main ()
{
/* local variable definition */
int a = 100;
/* check the boolean condition */
if( a == 10 )
{
/* if condition is true then print the following */
C Programming
51
printf("Value of a is 10n" );
}
else if( a == 20 )
{
/* if else if condition is true */
printf("Value of a is 20n" );
}
else if( a == 30 )
{
/* if else if condition is true */
printf("Value of a is 30n" );
}
else
{
/* if none of the conditions is true */
printf("None of the values is matchingn" );
}
printf("Exact value of a is: %dn", a );
return 0;
}
When the above code is compiled and executed, it produces the following result:
None of the values is matching
Exact value of a is: 100
NestedifStatements
It is always legal in C programming to nest if-else statements, which means you
can use one if or else if statement inside another if or else if statement(s).
Syntax
The syntax for a nested if statement is as follows:
if( boolean_expression 1)
{
C Programming
52
/* Executes when the boolean expression 1 is true */
if(boolean_expression 2)
{
/* Executes when the boolean expression 2 is true */
}
}
You can nest else if...else in the similar way as you have nested if statements.
Example
#include <stdio.h>
int main ()
{
/* local variable definition */
int a = 100;
int b = 200;
/* check the boolean condition */
if( a == 100 )
{
/* if condition is true then check the following */
if( b == 200 )
{
/* if condition is true then print the following */
printf("Value of a is 100 and b is 200n" );
}
}
printf("Exact value of a is : %dn", a );
printf("Exact value of b is : %dn", b );
return 0;
}
When the above code is compiled and executed, it produces the following result:
C Programming
53
Value of a is 100 and b is 200
Exact value of a is : 100
Exact value of b is : 200
switchStatement
A switch statement allows a variable to be tested for equality against a list of
values. Each value is called a case, and the variable being switched on is
checked for each switch case.
Syntax
The syntax for a switch statement in C programming language is as follows:
switch(expression){
case constant-expression :
statement(s);
break; /* optional */
case constant-expression :
statement(s);
break; /* optional */
/* you can have any number of case statements */
default : /* Optional */
statement(s);
}
The following rules apply to a switch statement:
 The expression used in a switch statement must have an integral or
enumerated type, or be of a class type in which the class has a single
conversion function to an integral or enumerated type.
 You can have any number of case statements within a switch. Each case is
followed by the value to be compared to and a colon.
 The constant-expression for a case must be the same data type as the
variable in the switch, and it must be a constant or a literal.
 When the variable being switched on is equal to a case, the statements
following that case will execute until a break statement is reached.
 When a break statement is reached, the switch terminates, and the flow
of control jumps to the next line following the switch statement.
C Programming
54
 Not every case needs to contain a break. If no break appears, the flow of
control will fall through to subsequent cases until a break is reached.
 A switch statement can have an optional default case, which must
appear at the end of the switch. The default case can be used for
performing a task when none of the cases is true. No break is needed in
the default case.
Flow Diagram
Example
#include <stdio.h>
int main ()
{
/* local variable definition */
char grade = 'B';
switch(grade)
{
case 'A' :
C Programming
55
printf("Excellent!n" );
break;
case 'B' :
case 'C' :
printf("Well donen" );
break;
case 'D' :
printf("You passedn" );
break;
case 'F' :
printf("Better try againn" );
break;
default :
printf("Invalid graden" );
}
printf("Your grade is %cn", grade );
return 0;
}
When the above code is compiled and executed, it produces the following result:
Well done
Your grade is B
NestedswitchStatements
It is possible to have a switch as a part of the statement sequence of an outer
switch. Even if the case constants of the inner and outer switch contain common
values, no conflicts will arise.
Syntax
The syntax for a nested switch statement is as follows:
switch(ch1) {
case 'A':
printf("This A is part of outer switch" );
C Programming
56
switch(ch2) {
case 'A':
printf("This A is part of inner switch" );
break;
case 'B': /* case code */
}
break;
case 'B': /* case code */
}
Example
#include <stdio.h>
int main ()
{
/* local variable definition */
int a = 100;
int b = 200;
switch(a) {
case 100:
printf("This is part of outer switchn", a );
switch(b) {
case 200:
printf("This is part of inner switchn", a );
}
}
printf("Exact value of a is : %dn", a );
printf("Exact value of b is : %dn", b );
return 0;
}
When the above code is compiled and executed, it produces the following result:
C Programming
57
This is part of outer switch
This is part of inner switch
Exact value of a is : 100
Exact value of b is : 200
The?:Operator:
We have covered conditional operator ? : in the previous chapter which can be
used to replace if...else statements. It has the following general form:
Exp1 ? Exp2 : Exp3;
Where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of
the colon.
The value of a ? expression is determined like this:
1. Exp1 is evaluated. If it is true, then Exp2 is evaluated and becomes the
value of the entire ? expression.
2. If Exp1 is false, then Exp3 is evaluated and its value becomes the value of
the expression.

More Related Content

What's hot

What's hot (20)

Loops in c++ programming language
Loops in c++ programming language Loops in c++ programming language
Loops in c++ programming language
 
If statements in c programming
If statements in c programmingIf statements in c programming
If statements in c programming
 
Loops and conditional statements
Loops and conditional statementsLoops and conditional statements
Loops and conditional statements
 
Loops in C Programming Language
Loops in C Programming LanguageLoops in C Programming Language
Loops in C Programming Language
 
Selection Statements in C Programming
Selection Statements in C ProgrammingSelection Statements in C Programming
Selection Statements in C Programming
 
Decision making statements in C programming
Decision making statements in C programmingDecision making statements in C programming
Decision making statements in C programming
 
Python Exception Handling
Python Exception HandlingPython Exception Handling
Python Exception Handling
 
Decision making and branching in c programming
Decision making and branching in c programmingDecision making and branching in c programming
Decision making and branching in c programming
 
FUNCTIONS IN C PROGRAMMING.pdf
FUNCTIONS IN C PROGRAMMING.pdfFUNCTIONS IN C PROGRAMMING.pdf
FUNCTIONS IN C PROGRAMMING.pdf
 
Conditional statement in c
Conditional statement in cConditional statement in c
Conditional statement in c
 
Loops Basics
Loops BasicsLoops Basics
Loops Basics
 
If else statement in c++
If else statement in c++If else statement in c++
If else statement in c++
 
Loops in c
Loops in cLoops in c
Loops in c
 
Control statements
Control statementsControl statements
Control statements
 
Types of loops in c language
Types of loops in c languageTypes of loops in c language
Types of loops in c language
 
Python exception handling
Python   exception handlingPython   exception handling
Python exception handling
 
Type conversion
Type conversionType conversion
Type conversion
 
Exception handling in c++
Exception handling in c++Exception handling in c++
Exception handling in c++
 
Flow of Control
Flow of ControlFlow of Control
Flow of Control
 
Python Flow Control
Python Flow ControlPython Flow Control
Python Flow Control
 

Similar to C programming decision making

Control Structures
Control StructuresControl Structures
Control Structures
Ghaffar Khan
 
C statements.ppt presentation in c language
C statements.ppt presentation in c languageC statements.ppt presentation in c language
C statements.ppt presentation in c language
chintupro9
 

Similar to C programming decision making (20)

Decision statements in c laguage
Decision statements in c laguageDecision statements in c laguage
Decision statements in c laguage
 
Decision statements in c language
Decision statements in c languageDecision statements in c language
Decision statements in c language
 
Decision Making Statements, Arrays, Strings
Decision Making Statements, Arrays, StringsDecision Making Statements, Arrays, Strings
Decision Making Statements, Arrays, Strings
 
Cse lecture-6-c control statement
Cse lecture-6-c control statementCse lecture-6-c control statement
Cse lecture-6-c control statement
 
Java Decision Control
Java Decision ControlJava Decision Control
Java Decision Control
 
Learn C# Programming - Decision Making & Loops
Learn C# Programming - Decision Making & LoopsLearn C# Programming - Decision Making & Loops
Learn C# Programming - Decision Making & Loops
 
Control Structures
Control StructuresControl Structures
Control Structures
 
C Control Statements.docx
C Control Statements.docxC Control Statements.docx
C Control Statements.docx
 
Programming in Arduino (Part 2)
Programming in Arduino  (Part 2)Programming in Arduino  (Part 2)
Programming in Arduino (Part 2)
 
Basics of Control Statement in C Languages
Basics of Control Statement in C LanguagesBasics of Control Statement in C Languages
Basics of Control Statement in C Languages
 
Controls & Loops in C
Controls & Loops in C Controls & Loops in C
Controls & Loops in C
 
C statements.ppt presentation in c language
C statements.ppt presentation in c languageC statements.ppt presentation in c language
C statements.ppt presentation in c language
 
Decision Making and Branching in C
Decision Making and Branching  in CDecision Making and Branching  in C
Decision Making and Branching in C
 
C Programming Lesson 3.pdf
C Programming Lesson 3.pdfC Programming Lesson 3.pdf
C Programming Lesson 3.pdf
 
Control Statement programming
Control Statement programmingControl Statement programming
Control Statement programming
 
Control statements-Computer programming
Control statements-Computer programmingControl statements-Computer programming
Control statements-Computer programming
 
Constructs (Programming Methodology)
Constructs (Programming Methodology)Constructs (Programming Methodology)
Constructs (Programming Methodology)
 
Flow of control C ++ By TANUJ
Flow of control C ++ By TANUJFlow of control C ++ By TANUJ
Flow of control C ++ By TANUJ
 
CH-4 (1).pptx
CH-4 (1).pptxCH-4 (1).pptx
CH-4 (1).pptx
 
Decision statements
Decision statementsDecision statements
Decision statements
 

Recently uploaded

JustNaik Solution Deck (stage bus sector)
JustNaik Solution Deck (stage bus sector)JustNaik Solution Deck (stage bus sector)
JustNaik Solution Deck (stage bus sector)
Max Lee
 
AI/ML Infra Meetup | Improve Speed and GPU Utilization for Model Training & S...
AI/ML Infra Meetup | Improve Speed and GPU Utilization for Model Training & S...AI/ML Infra Meetup | Improve Speed and GPU Utilization for Model Training & S...
AI/ML Infra Meetup | Improve Speed and GPU Utilization for Model Training & S...
Alluxio, Inc.
 

Recently uploaded (20)

Crafting the Perfect Measurement Sheet with PLM Integration
Crafting the Perfect Measurement Sheet with PLM IntegrationCrafting the Perfect Measurement Sheet with PLM Integration
Crafting the Perfect Measurement Sheet with PLM Integration
 
StrimziCon 2024 - Transition to Apache Kafka on Kubernetes with Strimzi
StrimziCon 2024 - Transition to Apache Kafka on Kubernetes with StrimziStrimziCon 2024 - Transition to Apache Kafka on Kubernetes with Strimzi
StrimziCon 2024 - Transition to Apache Kafka on Kubernetes with Strimzi
 
Paketo Buildpacks : la meilleure façon de construire des images OCI? DevopsDa...
Paketo Buildpacks : la meilleure façon de construire des images OCI? DevopsDa...Paketo Buildpacks : la meilleure façon de construire des images OCI? DevopsDa...
Paketo Buildpacks : la meilleure façon de construire des images OCI? DevopsDa...
 
JustNaik Solution Deck (stage bus sector)
JustNaik Solution Deck (stage bus sector)JustNaik Solution Deck (stage bus sector)
JustNaik Solution Deck (stage bus sector)
 
Implementing KPIs and Right Metrics for Agile Delivery Teams.pdf
Implementing KPIs and Right Metrics for Agile Delivery Teams.pdfImplementing KPIs and Right Metrics for Agile Delivery Teams.pdf
Implementing KPIs and Right Metrics for Agile Delivery Teams.pdf
 
Tree in the Forest - Managing Details in BDD Scenarios (live2test 2024)
Tree in the Forest - Managing Details in BDD Scenarios (live2test 2024)Tree in the Forest - Managing Details in BDD Scenarios (live2test 2024)
Tree in the Forest - Managing Details in BDD Scenarios (live2test 2024)
 
AI/ML Infra Meetup | ML explainability in Michelangelo
AI/ML Infra Meetup | ML explainability in MichelangeloAI/ML Infra Meetup | ML explainability in Michelangelo
AI/ML Infra Meetup | ML explainability in Michelangelo
 
AI/ML Infra Meetup | Improve Speed and GPU Utilization for Model Training & S...
AI/ML Infra Meetup | Improve Speed and GPU Utilization for Model Training & S...AI/ML Infra Meetup | Improve Speed and GPU Utilization for Model Training & S...
AI/ML Infra Meetup | Improve Speed and GPU Utilization for Model Training & S...
 
A Comprehensive Appium Guide for Hybrid App Automation Testing.pdf
A Comprehensive Appium Guide for Hybrid App Automation Testing.pdfA Comprehensive Appium Guide for Hybrid App Automation Testing.pdf
A Comprehensive Appium Guide for Hybrid App Automation Testing.pdf
 
iGaming Platform & Lottery Solutions by Skilrock
iGaming Platform & Lottery Solutions by SkilrockiGaming Platform & Lottery Solutions by Skilrock
iGaming Platform & Lottery Solutions by Skilrock
 
TROUBLESHOOTING 9 TYPES OF OUTOFMEMORYERROR
TROUBLESHOOTING 9 TYPES OF OUTOFMEMORYERRORTROUBLESHOOTING 9 TYPES OF OUTOFMEMORYERROR
TROUBLESHOOTING 9 TYPES OF OUTOFMEMORYERROR
 
How to install and activate eGrabber JobGrabber
How to install and activate eGrabber JobGrabberHow to install and activate eGrabber JobGrabber
How to install and activate eGrabber JobGrabber
 
Corporate Management | Session 3 of 3 | Tendenci AMS
Corporate Management | Session 3 of 3 | Tendenci AMSCorporate Management | Session 3 of 3 | Tendenci AMS
Corporate Management | Session 3 of 3 | Tendenci AMS
 
AI/ML Infra Meetup | Reducing Prefill for LLM Serving in RAG
AI/ML Infra Meetup | Reducing Prefill for LLM Serving in RAGAI/ML Infra Meetup | Reducing Prefill for LLM Serving in RAG
AI/ML Infra Meetup | Reducing Prefill for LLM Serving in RAG
 
Abortion ^Clinic ^%[+971588192166''] Abortion Pill Al Ain (?@?) Abortion Pill...
Abortion ^Clinic ^%[+971588192166''] Abortion Pill Al Ain (?@?) Abortion Pill...Abortion ^Clinic ^%[+971588192166''] Abortion Pill Al Ain (?@?) Abortion Pill...
Abortion ^Clinic ^%[+971588192166''] Abortion Pill Al Ain (?@?) Abortion Pill...
 
KLARNA - Language Models and Knowledge Graphs: A Systems Approach
KLARNA -  Language Models and Knowledge Graphs: A Systems ApproachKLARNA -  Language Models and Knowledge Graphs: A Systems Approach
KLARNA - Language Models and Knowledge Graphs: A Systems Approach
 
INGKA DIGITAL: Linked Metadata by Design
INGKA DIGITAL: Linked Metadata by DesignINGKA DIGITAL: Linked Metadata by Design
INGKA DIGITAL: Linked Metadata by Design
 
WSO2Con2024 - WSO2's IAM Vision: Identity-Led Digital Transformation
WSO2Con2024 - WSO2's IAM Vision: Identity-Led Digital TransformationWSO2Con2024 - WSO2's IAM Vision: Identity-Led Digital Transformation
WSO2Con2024 - WSO2's IAM Vision: Identity-Led Digital Transformation
 
top nidhi software solution freedownload
top nidhi software solution freedownloadtop nidhi software solution freedownload
top nidhi software solution freedownload
 
Using IESVE for Room Loads Analysis - Australia & New Zealand
Using IESVE for Room Loads Analysis - Australia & New ZealandUsing IESVE for Room Loads Analysis - Australia & New Zealand
Using IESVE for Room Loads Analysis - Australia & New Zealand
 

C programming decision making

  • 1. C Programming 45 Decision-making structures require that the programmer specifies one or more conditions to be evaluated or tested by the program, along with a statement or statements to be executed if the condition is determined to be true, and optionally, other statements to be executed if the condition is determined to be false. Shown below is the general form of a typical decision-making structure found in most of the programming languages: C programming language assumes any non-zero and non-null values as true, and if it is either zero or null, then it is assumed as false value. C programming language provides the following types of decision-making statements. Statement Description if statement An if statement consists of a boolean expression followed by one or more statements. if...else statement An if statement can be followed by an optional else statement, which executes when 10. DECISION MAKING
  • 2. C Programming 46 the Boolean expression is false. nested if statements You can use one if or else if statement inside another if or else if statement(s). switch statement A switch statement allows a variable to be tested for equality against a list of values. nested switch statements You can use one switch statement inside another switch statement(s). ifStatement An if statement consists of a Boolean expression followed by one or more statements. Syntax The syntax of an ‘if’ statement in C programming language is: if(boolean_expression) { /* statement(s) will execute if the boolean expression is true */ } If the Boolean expression evaluates to true, then the block of code inside the ‘if’ statement will be executed. If the Boolean expression evaluates to false, then the first set of code after the end of the ‘if’ statement (after the closing curly brace) will be executed. C programming language assumes any non-zero and non-null values as true and if it is either zero or null, then it is assumed as false value. Flow Diagram
  • 3. C Programming 47 Example #include <stdio.h> int main () { /* local variable definition */ int a = 10; /* check the boolean condition using if statement */ if( a < 20 ) { /* if condition is true then print the following */ printf("a is less than 20n" ); } printf("value of a is : %dn", a); return 0; } When the above code is compiled and executed, it produces the following result: a is less than 20;
  • 4. C Programming 48 value of a is : 10 if…elseStatement An if statement can be followed by an optional else statement, which executes when the Boolean expression is false. Syntax The syntax of an if...else statement in C programming language is: if(boolean_expression) { /* statement(s) will execute if the boolean expression is true */ } else { /* statement(s) will execute if the boolean expression is false */ } If the Boolean expression evaluates to true, then the if block will be executed, otherwise, the else block will be executed. C programming language assumes any non-zero and non-null values as true, and if it is either zero or null, then it is assumed as false value. Flow Diagram
  • 5. C Programming 49 Example #include <stdio.h> int main () { /* local variable definition */ int a = 100; /* check the boolean condition */ if( a < 20 ) { /* if condition is true then print the following */ printf("a is less than 20n" ); } else { /* if condition is false then print the following */ printf("a is not less than 20n" ); } printf("value of a is : %dn", a); return 0; } When the above code is compiled and executed, it produces the following result: a is not less than 20; value of a is : 100 if...elseif...elseStatement An if statement can be followed by an optional else if...else statement, which is very useful to test various conditions using single if...else if statement. When using if…else if…else statements, there are few points to keep in mind:  An if can have zero or one else's and it must come after any else if's.  An if can have zero to many else if's and they must come before the else.
  • 6. C Programming 50  Once an else if succeeds, none of the remaining else if's or else's will be tested. Syntax The syntax of an if...else if...else statement in C programming language is: if(boolean_expression 1) { /* Executes when the boolean expression 1 is true */ } else if( boolean_expression 2) { /* Executes when the boolean expression 2 is true */ } else if( boolean_expression 3) { /* Executes when the boolean expression 3 is true */ } else { /* executes when the none of the above condition is true */ } Example #include <stdio.h> int main () { /* local variable definition */ int a = 100; /* check the boolean condition */ if( a == 10 ) { /* if condition is true then print the following */
  • 7. C Programming 51 printf("Value of a is 10n" ); } else if( a == 20 ) { /* if else if condition is true */ printf("Value of a is 20n" ); } else if( a == 30 ) { /* if else if condition is true */ printf("Value of a is 30n" ); } else { /* if none of the conditions is true */ printf("None of the values is matchingn" ); } printf("Exact value of a is: %dn", a ); return 0; } When the above code is compiled and executed, it produces the following result: None of the values is matching Exact value of a is: 100 NestedifStatements It is always legal in C programming to nest if-else statements, which means you can use one if or else if statement inside another if or else if statement(s). Syntax The syntax for a nested if statement is as follows: if( boolean_expression 1) {
  • 8. C Programming 52 /* Executes when the boolean expression 1 is true */ if(boolean_expression 2) { /* Executes when the boolean expression 2 is true */ } } You can nest else if...else in the similar way as you have nested if statements. Example #include <stdio.h> int main () { /* local variable definition */ int a = 100; int b = 200; /* check the boolean condition */ if( a == 100 ) { /* if condition is true then check the following */ if( b == 200 ) { /* if condition is true then print the following */ printf("Value of a is 100 and b is 200n" ); } } printf("Exact value of a is : %dn", a ); printf("Exact value of b is : %dn", b ); return 0; } When the above code is compiled and executed, it produces the following result:
  • 9. C Programming 53 Value of a is 100 and b is 200 Exact value of a is : 100 Exact value of b is : 200 switchStatement A switch statement allows a variable to be tested for equality against a list of values. Each value is called a case, and the variable being switched on is checked for each switch case. Syntax The syntax for a switch statement in C programming language is as follows: switch(expression){ case constant-expression : statement(s); break; /* optional */ case constant-expression : statement(s); break; /* optional */ /* you can have any number of case statements */ default : /* Optional */ statement(s); } The following rules apply to a switch statement:  The expression used in a switch statement must have an integral or enumerated type, or be of a class type in which the class has a single conversion function to an integral or enumerated type.  You can have any number of case statements within a switch. Each case is followed by the value to be compared to and a colon.  The constant-expression for a case must be the same data type as the variable in the switch, and it must be a constant or a literal.  When the variable being switched on is equal to a case, the statements following that case will execute until a break statement is reached.  When a break statement is reached, the switch terminates, and the flow of control jumps to the next line following the switch statement.
  • 10. C Programming 54  Not every case needs to contain a break. If no break appears, the flow of control will fall through to subsequent cases until a break is reached.  A switch statement can have an optional default case, which must appear at the end of the switch. The default case can be used for performing a task when none of the cases is true. No break is needed in the default case. Flow Diagram Example #include <stdio.h> int main () { /* local variable definition */ char grade = 'B'; switch(grade) { case 'A' :
  • 11. C Programming 55 printf("Excellent!n" ); break; case 'B' : case 'C' : printf("Well donen" ); break; case 'D' : printf("You passedn" ); break; case 'F' : printf("Better try againn" ); break; default : printf("Invalid graden" ); } printf("Your grade is %cn", grade ); return 0; } When the above code is compiled and executed, it produces the following result: Well done Your grade is B NestedswitchStatements It is possible to have a switch as a part of the statement sequence of an outer switch. Even if the case constants of the inner and outer switch contain common values, no conflicts will arise. Syntax The syntax for a nested switch statement is as follows: switch(ch1) { case 'A': printf("This A is part of outer switch" );
  • 12. C Programming 56 switch(ch2) { case 'A': printf("This A is part of inner switch" ); break; case 'B': /* case code */ } break; case 'B': /* case code */ } Example #include <stdio.h> int main () { /* local variable definition */ int a = 100; int b = 200; switch(a) { case 100: printf("This is part of outer switchn", a ); switch(b) { case 200: printf("This is part of inner switchn", a ); } } printf("Exact value of a is : %dn", a ); printf("Exact value of b is : %dn", b ); return 0; } When the above code is compiled and executed, it produces the following result:
  • 13. C Programming 57 This is part of outer switch This is part of inner switch Exact value of a is : 100 Exact value of b is : 200 The?:Operator: We have covered conditional operator ? : in the previous chapter which can be used to replace if...else statements. It has the following general form: Exp1 ? Exp2 : Exp3; Where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon. The value of a ? expression is determined like this: 1. Exp1 is evaluated. If it is true, then Exp2 is evaluated and becomes the value of the entire ? expression. 2. If Exp1 is false, then Exp3 is evaluated and its value becomes the value of the expression.