Brief survey on Three-Dimensional Displays:
        from Our Eyes to Electronic Hologram*



                                                  Taufiq Widjanarko




*Presented at ECPE 4144 Optical Information Processing, Project Term Paper, Virginia Tech, Fall 2001. Last modified 19 March 2013
Outline
•   Depth Cues
•   Examples of Three-Dimensional Displays
•   Wavefront Reconstruction
•   Examples of Hologram
              – Off-axis Hologram
              – Reflection Hologram
•   Information Content in Hologram
•   Method to reduce profuse information content
              – Rainbow Hologram
              – Multiplex Hologram
•   Computer Generated Hologram
•   Electronic Hologram
              – Optical Scanning Holography
              – Holographic Video
Depth Cues
• Visual depth sense is often taken for granted until we
  encounter the problem that can be solved if depth cues
  are present
• Depth Cues can be grouped into two major categories [1]:

  1.Psychological (Pictorial) Depth Cues: depth cues
  influenced by the mental and prior knowledge of the
  observer

  2.Physiological Depth Cues: depth cues related to the
  physiology of our eyes
Psychological Depth Cues

• Retinal Image Size:
  different image size
  appearance on
  retina
• Aerial Perspective
• Linear Perspective
                         Figure taken from Ref.[1]
Psychological Depth Cues(Cont’d)
• Occlusion




• Shading




                            Figures taken from Ref.[1]
Psychological Depth Cues(Cont’d)

• Texture Gradient




                           Figure taken from Ref.[1]
Physiological Depth Cues
• Accommodation:
  Change of eye
  muscular tension to
  adjust the focal length
• Convergence: eyes
  ability to fixate a point
  on the object
        dα PO
            = 2
        da a
      P0 = two pupil separation
      a = object distance

                                  Figure taken from Ref.[1]
Physiological Depth Cues (Cont’d)
• Binocular Disparity/Stereospsis



              Dαθ
                2
         ∆D ≅
               PO



                                               Figure taken from Ref.[1]



• Motion Parallax: different angular velocity of
  object at different depths the observer
Example of Three-Dimensional Displays
• Integral Photography: using lenslet array to sample
  the object




                                                Figures taken from Refs.[1,8]
Example of Three-Dimensional Displays(Cont’d)
• Lenticular Sheet




                                   x      Figures taken from Ref.[1,2]

                                θ=
                                   f
Example of Three-Dimensional Displays(Cont’d)
• Parallax Barrier




                                              Figures taken from Refs.[1,2]




  viewing distance = .25 m, p < .08 mm → for slit width
  1/10 of pitch = 8 µm or only 15 x λvisible
Three mechanisms of eyes in responding
         the incoming wavefront [12,26]
1. Modifies and the focus the wavefront to retina
→Accommodation

2. Sample the wavefront from two slightly different positions and
interpreted as different position in two visual field
→Convergence and Stereopsis

3. Moving observer samples the wavefront from different
positions and object’s position in visual field changes as the
result of observer’s motion
→Motion Parallax

To present all 4 physiological depth cues
 Provide or reconstruct the original object’s wavefront
Wavefront Reconstruction
                                                                                                 1
            1
                                                                                                0.9

          0.8                                                                                   0.8

                                                                                                0.7
          0.6
                                                                                                0.6

                                                                                                0.5
          0.4
                                                                                                0.4

          0.2                                                                                   0.3

                                                                                                0.2
            0
                                                                                                0.1

          -0.2                                                                                   0

            -10    -8   -6    -4    -2        0       2       4       6       8       10         -10        -8    -6    -4    -2    0   2   4      6        8        10

                                                                                                Intensity reconstruction (waveform shape disappears)
                              Original waveform
                                                                                                  1.6
                                                                                                                                            inten. of raised ampl.
           1.2
                                                                                                                                            orig. wavefront
                                                                                                  1.4

             1
                                                                                                  1.2


           0.8                                                                                        1

                                                                                                  0.8
           0.6
                                                                                                  0.6

           0.4                                                                                    0.4

                                                                                                  0.2
           0.2

                                                                                                      0
             0
                                                                                                 -0.2
             -10   -8    -6    -4        -2       0       2       4       6       8        10         -10    -8    -6    -4    -2   0   2   4       6       8        10

  Original waveform + reference wave (flatline below the waveform)                              Intensity reconstruction of Original waveform + reference wave

                   Intensity reconstruction of Original waveform + reference wave maintains the original shape of the waveform


Holography is basically a technique to reconstruct the original wavefront
                        through phase recording
Examples of Hologram

• Transmission Hologram




• Reflection hologram




                                    Figures taken from Refs.[6,8]
Information Content in a Hologram [23,28]
•   Grating equation                                      λf h = sin θ
     – fh highest frequency comp. of object

•   Required sampling freq                                             sin θ
                                                       fs = 2 fh = 2
     – fs = sampling frequency                                           λ

•   N= Number of sampling (in horizontal direction)                      2d sin θ
                                                            N = df s =
     – d = width of hologram in horizontal direction                           λ

•   Nt= Total number of sample in both horizontal and vertical direction
     – w=width of hologram in vertical direction                   4dw sin θ
                                                            Nt =
                                                                             λ2
•   100 x 100 mm2, 30° view angle →2.5x1010 samples/frame
•   Real time hologram of 60 frames per second requires
     →1.2x1012 bit/sec (fastest conventional display rate 2 Gbits/s) [23,28]
Holographic Information Reduction Method

• Rainbow Hologram




horizontal slit is to remove vertical parallax
→reduce information content                      Figures taken from Ref.[8]
Holographic Information Reduction Method (Cont’d)
• Multiplex Hologram (Holographic Stereogram)
   – Proposed by De Bitteto




                                        Figures taken from Ref.[8]
Holographic Stereogram (Cont’d)
• Cross Hologram




                                              Figures taken from Ref.[3,4,6]


→both hologram exhibit no vertical parallax
Computer Generated Hologram
• Binary Detour Phase Method: to create Fourier
  Hologram
   – Final image must be in the form of
                         N X −1 N Y −1                            2π
                                                                     ( up∆x + vq∆y )
                         ∑ ∑a
                                                              j
                                                  jφ pq           λf
        U f ( u, v ) =                   pq   e           e
                          p=0 q =0


  – Cell aperture transmittance
                               x − x0   y − y0 
         t A ( x , y ) = rect                  
                               w X   wY 

  – Inclined plane wave illumination
                                                                                       Figures taken from Ref.[4]


          U p = e − j 2παx
Computer Generated Hologram (Cont’d)
• After illumination
                             − j 2 παx         x − x0   y − y0 
           U t ( x, y) = e               rect 
                                               wx  
                                                        w     
                                                              y 

• At Fourier Plane
                                                                                   2π
                    w w         w ( u + λfα )         w v  j [ ( u + fλα ) x0 + vy0 ]
       U f (u, v ) = X Y sin c  X              sin c  Y e λf
                     λf              λf               λf 

• After some assumptions, simplifications and
  setting the offset ( x ) = p∆x & ( y ) = q∆y    0 pq                            0 pq



                        N X −1 N Y −1                                         2π
                                                                                 ( up∆x + vq∆y )
                         ∑ ∑ (w
                                                                          j
       U f ( u, v ) =                      X   ) pq ( wY ) pq e j 2πp e       λf

                         p=0 q =0
Computer Generated Hologram (Cont’d)
• Shifting the aperture center ( x )                                                  0 pq            = p∆x + (δx ) pq
                                                                                  ( δx ) pq           2π
                           N X −1 N Y −1
                                                                           j 2π                               (
                                                                                                         up∆x + u ( δx ) pq + vq∆y   )
                           ∑      ∑ ( wX ) pq ( wY ) pq e
                                                                                                  j
                                                                                                      λf
          U f ( u, v ) =                                                            ∆x
                                                                                              e
                            p=0 q =0

• With several assumption, the above expression
  can be simplified as                   δ    π
                      N X −1 N Y −1             ( )                             ( x ) pq              2
                                                                                                                  up∆x + vq∆y
                                       π
        U ( u, v ) = ∑ ∑ ( w ) ( w ) e
                                                                           j2                     j
                                             λ                                      ∆x                    f
          f                                e
                                           X    pq       Y    pq
                       p=0 q =0


• Compared with the desired form
                                π
                             N X −1 N Y −1                         2
                                  ( )                                       up∆x + vq∆y
        U ( u, v ) = ∑ ∑ a e e
                                                               j
                            φ  λ                     j   pq            f
              f                                 pq
                              p=0 q =0


• Phase and amplitude relation to the cell aperture
                                   2π (δx ) pq
                      φ pq = −                       & ( wY ) pq ∝ a pq
                                           ∆x
Computer Generated Hologram (Cont’d)




                           Figures taken from Ref.[4]
Electronic Holography
• Using dynamic electronically-controlled optical modulator
1. Optical Scanning Holography: scanning TDFZP to obtain the
   scanned holographic pattern of the object




  Application in fluorescence microscopy: for image region 2 x 2
  mm2, the system can reveal lateral and axial resolution of 7.7
  and 200 µm, respectively
                                                        Figures taken from Ref.[5,16]
Electronic Holography (Cont’d)
– Holographic video (Media Lab MIT)
   • inspired by binary detour phase, holographic
     stereogram and rainbow hologram
   • using AOM to diffract light into desired point in
     volume space
   • fringe calculation is similar to computer
     graphics




                                               Figures taken from Ref.[29]
Electronic Holography (Cont’d)
• A single hologram lines is decomposed into pre-
  computed ‘basis fringe’ → orthogonal basis function
  decomposition
• First generation: full color 25x25x25 mm3, 15°viewing
  angle, 20 frames/second
• Second generation: 80x140x150 mm3, 2.5
  frames/second




                                Figure taken from http://www.media.mit.edu/spi/HVmark2.htm
Electronic Holography (Cont’d)
Application: Haptic (Force Feedback) hologram




                                Figures taken from http://www.media.mit.edu/spi/HHlathe.htm
Electronic Holography (Cont’d)




– Potential application: telesurgery,
  telemanufacturing, etc


                             Figure taken from http://www.media.mit.edu/spi/HHlathe.htm
Conclusion
•   Depth Cues:
     – Psychological or Pictorial cues (based on mental and prior
        knowledge of observer): retinal image size, aerial and linear
        perspective, occlusion, shading and texture gradient
     – Physiological depth cues: accommodation, binocular disparity,
        convergence and motion parallax
     – 3-D displays prior to hologram can only provide the last three
        physiological cues
     – Hologram can naturally provide all physiological & psychological
        depth cues due to its nature to reconstruct object wavefront
•   Off axis hologram can solve initial Gabor’s hologram problem
•   Information content in a hologram is tremendously profuse→ 100 x 100
    mm2, 30° view angle requires 2.5x1010 samples/frame
•   Some proposed method to reduce information content are rainbow
    hologram and multiplex hologram (holographic stereogram)
    →sacrificing vertical parallax to reduce information content
Conclusion (Cont’d)
• The earliest Computer Generated Hologram method: the Binary
  Detour Phase Hologram uses aperture within a cell to encode
  the amplitude (from aperture area) and phase (from center of
  aperture shift). Plotted pattern quality is determined by
  resolution of the writing device

• Recent Electronic Holograms use dynamic optical modulator,
  such as AOM, LCD as a light diffracting component.AOM are
  used in optical scanning holography and holographic video
Full paper available at

http://www.academia.edu/1158381/Brief_Survey_on_Three-Dimensional_Displays_2001_
References

1. T. Okoshi, “Three-Dimensional Imaging Techniques”, Academic Press, New York (1976)
2. M. McKenna & D. Zeltzer, Presence (1)4, 421 (1992)
3. P. Hariharan, “Optical Holography: Principles, Techniques and Applications”, 2nd ed, Cambridge University Press, Cambridge (1996)
4. J. W. Goodman, “Introduction to Fourier Optics”, McGraw-Hill, NY (1996)
5. T-C. Poon and P. P. Banerjee, “Contemporary Optical Information Processing With Matlab®”, Elsevier, Oxford (2001)
6. F. Unterseher, J. Hansen and R. Schlesinger, “Holography Handbook: Making Holograms the Easy Way”, Ross Book, Berkeley, CA (1982)
7. E. N. Leith, “White-Light Holograms”, Sci. Am.
8. G. Saxby, “Practical Holography”, Prentice-Hall International, Hertfordshire (1988)
9. S. A. Benton, “Holography: The Second Decade”, Opt. News, Optical Society of America, pp. 16-21 (Summer 1977)
10. L. Huff & R. L. Fusek, Opt. Eng. (9)5,691 (1980)
11. S.A. Benton, Proc. SPIE vol 532, pp 8-13 (1985)
12. M. W. Halle, Proc. SPIE vol 2176, 73(1994)
13. A. W. Lohmann and D. P. Paris, App. Opt.(6), 1739 (1967)
14. W. J. Dallas, “Computer Generated Hologram”, in The Computer in Optical Research, Topics in Applied Physics, B. R. Frieden ed., Springer-
Verlag, Berlin, pp 291-366 (1980)
15. T-C. Poon and A. Korpel, Opt. Lett.(10) 317 (1979)
16. T-C. Poon, M. H. Wu, K. Shinoda and Y. Suzuki, Proc. IEEE vol. 84, 5 (1996)
17. T-C. Poon, JOSA.A (2)4,521 (1985)
18. M. Lucente, P. St-Hillaire, S. A. Benton, D. L. Arias and J. A. Watlington, Proc. SPIE vol 1732, 377(1992)
19. P. St-Hillaire, S. A. Benton, M. Lucente, J. D. Sutter and W. J. Plesniak, Proc. SPIE vol 1914, 188 (1993)
20. R. Pappu and W. J. Plesniak, “Haptic Interaction with Holographic Video Images”, Practical Holography XII, Proc. SPIE (1998)
21. S. A. Benton, private communication (2001)
22. M. W. Halle, Proc SPIE 2176, 75 (1994)
23. P. St-Hillaire, “Scalable Optical Architectures for Electronic Holography”, Dissertation, Massachusetts Institute of Technology (1994).
24. H. J. Caulfield and S. Lu, “Application of Holography”, Wiley-Interscience, NY (1970)
25. M. W. Halle, “The Generalized Holographic Stereogram”, Master Thesis, Massachusetts Institute of Technology (1991)
26. M. W. Halle, “Multiple Viewpoint Rendering for Three-Dimensional Displays”, Dissertation, Massachusetts Institute of Technology (1997)
27. B.W. Schilling, T-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki and M. H. Wu, Optics Letters (22)19 (1997)
28. M. Lucente, “ Diffraction-Specific Fringe Calculation for Electro-Holography”. Dissertation, Massachusetts Institute of Technology (1994)
29. R. Haralick, L.Shapiro,”Computer and Robot Vision”,Addison Wesley (1992)

Brief survey on Three-Dimensional Displays

  • 1.
    Brief survey onThree-Dimensional Displays: from Our Eyes to Electronic Hologram* Taufiq Widjanarko *Presented at ECPE 4144 Optical Information Processing, Project Term Paper, Virginia Tech, Fall 2001. Last modified 19 March 2013
  • 2.
    Outline • Depth Cues • Examples of Three-Dimensional Displays • Wavefront Reconstruction • Examples of Hologram – Off-axis Hologram – Reflection Hologram • Information Content in Hologram • Method to reduce profuse information content – Rainbow Hologram – Multiplex Hologram • Computer Generated Hologram • Electronic Hologram – Optical Scanning Holography – Holographic Video
  • 3.
    Depth Cues • Visualdepth sense is often taken for granted until we encounter the problem that can be solved if depth cues are present • Depth Cues can be grouped into two major categories [1]: 1.Psychological (Pictorial) Depth Cues: depth cues influenced by the mental and prior knowledge of the observer 2.Physiological Depth Cues: depth cues related to the physiology of our eyes
  • 4.
    Psychological Depth Cues •Retinal Image Size: different image size appearance on retina • Aerial Perspective • Linear Perspective Figure taken from Ref.[1]
  • 5.
    Psychological Depth Cues(Cont’d) •Occlusion • Shading Figures taken from Ref.[1]
  • 6.
    Psychological Depth Cues(Cont’d) •Texture Gradient Figure taken from Ref.[1]
  • 7.
    Physiological Depth Cues •Accommodation: Change of eye muscular tension to adjust the focal length • Convergence: eyes ability to fixate a point on the object dα PO = 2 da a P0 = two pupil separation a = object distance Figure taken from Ref.[1]
  • 8.
    Physiological Depth Cues(Cont’d) • Binocular Disparity/Stereospsis Dαθ 2 ∆D ≅ PO Figure taken from Ref.[1] • Motion Parallax: different angular velocity of object at different depths the observer
  • 9.
    Example of Three-DimensionalDisplays • Integral Photography: using lenslet array to sample the object Figures taken from Refs.[1,8]
  • 10.
    Example of Three-DimensionalDisplays(Cont’d) • Lenticular Sheet x Figures taken from Ref.[1,2] θ= f
  • 11.
    Example of Three-DimensionalDisplays(Cont’d) • Parallax Barrier Figures taken from Refs.[1,2] viewing distance = .25 m, p < .08 mm → for slit width 1/10 of pitch = 8 µm or only 15 x λvisible
  • 12.
    Three mechanisms ofeyes in responding the incoming wavefront [12,26] 1. Modifies and the focus the wavefront to retina →Accommodation 2. Sample the wavefront from two slightly different positions and interpreted as different position in two visual field →Convergence and Stereopsis 3. Moving observer samples the wavefront from different positions and object’s position in visual field changes as the result of observer’s motion →Motion Parallax To present all 4 physiological depth cues  Provide or reconstruct the original object’s wavefront
  • 13.
    Wavefront Reconstruction 1 1 0.9 0.8 0.8 0.7 0.6 0.6 0.5 0.4 0.4 0.2 0.3 0.2 0 0.1 -0.2 0 -10 -8 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 0 2 4 6 8 10 Intensity reconstruction (waveform shape disappears) Original waveform 1.6 inten. of raised ampl. 1.2 orig. wavefront 1.4 1 1.2 0.8 1 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.2 -10 -8 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 0 2 4 6 8 10 Original waveform + reference wave (flatline below the waveform) Intensity reconstruction of Original waveform + reference wave Intensity reconstruction of Original waveform + reference wave maintains the original shape of the waveform Holography is basically a technique to reconstruct the original wavefront through phase recording
  • 14.
    Examples of Hologram •Transmission Hologram • Reflection hologram Figures taken from Refs.[6,8]
  • 15.
    Information Content ina Hologram [23,28] • Grating equation λf h = sin θ – fh highest frequency comp. of object • Required sampling freq sin θ fs = 2 fh = 2 – fs = sampling frequency λ • N= Number of sampling (in horizontal direction) 2d sin θ N = df s = – d = width of hologram in horizontal direction λ • Nt= Total number of sample in both horizontal and vertical direction – w=width of hologram in vertical direction 4dw sin θ Nt = λ2 • 100 x 100 mm2, 30° view angle →2.5x1010 samples/frame • Real time hologram of 60 frames per second requires →1.2x1012 bit/sec (fastest conventional display rate 2 Gbits/s) [23,28]
  • 16.
    Holographic Information ReductionMethod • Rainbow Hologram horizontal slit is to remove vertical parallax →reduce information content Figures taken from Ref.[8]
  • 17.
    Holographic Information ReductionMethod (Cont’d) • Multiplex Hologram (Holographic Stereogram) – Proposed by De Bitteto Figures taken from Ref.[8]
  • 18.
    Holographic Stereogram (Cont’d) •Cross Hologram Figures taken from Ref.[3,4,6] →both hologram exhibit no vertical parallax
  • 19.
    Computer Generated Hologram •Binary Detour Phase Method: to create Fourier Hologram – Final image must be in the form of N X −1 N Y −1 2π ( up∆x + vq∆y ) ∑ ∑a j jφ pq λf U f ( u, v ) = pq e e p=0 q =0 – Cell aperture transmittance  x − x0   y − y0  t A ( x , y ) = rect     w X   wY  – Inclined plane wave illumination Figures taken from Ref.[4] U p = e − j 2παx
  • 20.
    Computer Generated Hologram(Cont’d) • After illumination − j 2 παx  x − x0   y − y0  U t ( x, y) = e rect   wx    w   y  • At Fourier Plane 2π w w  w ( u + λfα )   w v  j [ ( u + fλα ) x0 + vy0 ] U f (u, v ) = X Y sin c  X  sin c  Y e λf λf  λf   λf  • After some assumptions, simplifications and setting the offset ( x ) = p∆x & ( y ) = q∆y 0 pq 0 pq N X −1 N Y −1 2π ( up∆x + vq∆y ) ∑ ∑ (w j U f ( u, v ) = X ) pq ( wY ) pq e j 2πp e λf p=0 q =0
  • 21.
    Computer Generated Hologram(Cont’d) • Shifting the aperture center ( x ) 0 pq = p∆x + (δx ) pq ( δx ) pq 2π N X −1 N Y −1 j 2π ( up∆x + u ( δx ) pq + vq∆y ) ∑ ∑ ( wX ) pq ( wY ) pq e j λf U f ( u, v ) = ∆x e p=0 q =0 • With several assumption, the above expression can be simplified as δ π N X −1 N Y −1 ( ) ( x ) pq 2 up∆x + vq∆y π U ( u, v ) = ∑ ∑ ( w ) ( w ) e j2 j λ ∆x f f e X pq Y pq p=0 q =0 • Compared with the desired form π N X −1 N Y −1 2 ( ) up∆x + vq∆y U ( u, v ) = ∑ ∑ a e e j φ λ j pq f f pq p=0 q =0 • Phase and amplitude relation to the cell aperture 2π (δx ) pq φ pq = − & ( wY ) pq ∝ a pq ∆x
  • 22.
    Computer Generated Hologram(Cont’d) Figures taken from Ref.[4]
  • 23.
    Electronic Holography • Usingdynamic electronically-controlled optical modulator 1. Optical Scanning Holography: scanning TDFZP to obtain the scanned holographic pattern of the object Application in fluorescence microscopy: for image region 2 x 2 mm2, the system can reveal lateral and axial resolution of 7.7 and 200 µm, respectively Figures taken from Ref.[5,16]
  • 24.
    Electronic Holography (Cont’d) –Holographic video (Media Lab MIT) • inspired by binary detour phase, holographic stereogram and rainbow hologram • using AOM to diffract light into desired point in volume space • fringe calculation is similar to computer graphics Figures taken from Ref.[29]
  • 25.
    Electronic Holography (Cont’d) •A single hologram lines is decomposed into pre- computed ‘basis fringe’ → orthogonal basis function decomposition • First generation: full color 25x25x25 mm3, 15°viewing angle, 20 frames/second • Second generation: 80x140x150 mm3, 2.5 frames/second Figure taken from http://www.media.mit.edu/spi/HVmark2.htm
  • 26.
    Electronic Holography (Cont’d) Application:Haptic (Force Feedback) hologram Figures taken from http://www.media.mit.edu/spi/HHlathe.htm
  • 27.
    Electronic Holography (Cont’d) –Potential application: telesurgery, telemanufacturing, etc Figure taken from http://www.media.mit.edu/spi/HHlathe.htm
  • 28.
    Conclusion • Depth Cues: – Psychological or Pictorial cues (based on mental and prior knowledge of observer): retinal image size, aerial and linear perspective, occlusion, shading and texture gradient – Physiological depth cues: accommodation, binocular disparity, convergence and motion parallax – 3-D displays prior to hologram can only provide the last three physiological cues – Hologram can naturally provide all physiological & psychological depth cues due to its nature to reconstruct object wavefront • Off axis hologram can solve initial Gabor’s hologram problem • Information content in a hologram is tremendously profuse→ 100 x 100 mm2, 30° view angle requires 2.5x1010 samples/frame • Some proposed method to reduce information content are rainbow hologram and multiplex hologram (holographic stereogram) →sacrificing vertical parallax to reduce information content
  • 29.
    Conclusion (Cont’d) • Theearliest Computer Generated Hologram method: the Binary Detour Phase Hologram uses aperture within a cell to encode the amplitude (from aperture area) and phase (from center of aperture shift). Plotted pattern quality is determined by resolution of the writing device • Recent Electronic Holograms use dynamic optical modulator, such as AOM, LCD as a light diffracting component.AOM are used in optical scanning holography and holographic video
  • 30.
    Full paper availableat http://www.academia.edu/1158381/Brief_Survey_on_Three-Dimensional_Displays_2001_
  • 31.
    References 1. T. Okoshi,“Three-Dimensional Imaging Techniques”, Academic Press, New York (1976) 2. M. McKenna & D. Zeltzer, Presence (1)4, 421 (1992) 3. P. Hariharan, “Optical Holography: Principles, Techniques and Applications”, 2nd ed, Cambridge University Press, Cambridge (1996) 4. J. W. Goodman, “Introduction to Fourier Optics”, McGraw-Hill, NY (1996) 5. T-C. Poon and P. P. Banerjee, “Contemporary Optical Information Processing With Matlab®”, Elsevier, Oxford (2001) 6. F. Unterseher, J. Hansen and R. Schlesinger, “Holography Handbook: Making Holograms the Easy Way”, Ross Book, Berkeley, CA (1982) 7. E. N. Leith, “White-Light Holograms”, Sci. Am. 8. G. Saxby, “Practical Holography”, Prentice-Hall International, Hertfordshire (1988) 9. S. A. Benton, “Holography: The Second Decade”, Opt. News, Optical Society of America, pp. 16-21 (Summer 1977) 10. L. Huff & R. L. Fusek, Opt. Eng. (9)5,691 (1980) 11. S.A. Benton, Proc. SPIE vol 532, pp 8-13 (1985) 12. M. W. Halle, Proc. SPIE vol 2176, 73(1994) 13. A. W. Lohmann and D. P. Paris, App. Opt.(6), 1739 (1967) 14. W. J. Dallas, “Computer Generated Hologram”, in The Computer in Optical Research, Topics in Applied Physics, B. R. Frieden ed., Springer- Verlag, Berlin, pp 291-366 (1980) 15. T-C. Poon and A. Korpel, Opt. Lett.(10) 317 (1979) 16. T-C. Poon, M. H. Wu, K. Shinoda and Y. Suzuki, Proc. IEEE vol. 84, 5 (1996) 17. T-C. Poon, JOSA.A (2)4,521 (1985) 18. M. Lucente, P. St-Hillaire, S. A. Benton, D. L. Arias and J. A. Watlington, Proc. SPIE vol 1732, 377(1992) 19. P. St-Hillaire, S. A. Benton, M. Lucente, J. D. Sutter and W. J. Plesniak, Proc. SPIE vol 1914, 188 (1993) 20. R. Pappu and W. J. Plesniak, “Haptic Interaction with Holographic Video Images”, Practical Holography XII, Proc. SPIE (1998) 21. S. A. Benton, private communication (2001) 22. M. W. Halle, Proc SPIE 2176, 75 (1994) 23. P. St-Hillaire, “Scalable Optical Architectures for Electronic Holography”, Dissertation, Massachusetts Institute of Technology (1994). 24. H. J. Caulfield and S. Lu, “Application of Holography”, Wiley-Interscience, NY (1970) 25. M. W. Halle, “The Generalized Holographic Stereogram”, Master Thesis, Massachusetts Institute of Technology (1991) 26. M. W. Halle, “Multiple Viewpoint Rendering for Three-Dimensional Displays”, Dissertation, Massachusetts Institute of Technology (1997) 27. B.W. Schilling, T-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki and M. H. Wu, Optics Letters (22)19 (1997) 28. M. Lucente, “ Diffraction-Specific Fringe Calculation for Electro-Holography”. Dissertation, Massachusetts Institute of Technology (1994) 29. R. Haralick, L.Shapiro,”Computer and Robot Vision”,Addison Wesley (1992)