SlideShare a Scribd company logo
Performance of Saturated
Riparian Buffers in Iowa Across
Sixteen Site Years
Gabe Johnson
Iowa State University
Co-Authors: Tom Isenhart and Dan Jaynes
International Drainage Symposium | August 31, 2022
Water Quality and Drainage – Saturated Buffers and Hybrid Projects
NRCS/SWCS photo by Lynn Betts
Background • Extensive subsurface drainage in U.S. Midwest
NRCS/SWCS Lynn Betts
2
Background • Extensive subsurface drainage in U.S. Midwest
• Nitrate-nitrogen (NO3-N) transported directly
from field to stream
• Eutrophication, hypoxia, drinking water
contamination
3
Drainage benefits:
Field access
Soil warming
Yield increases
Drainage drawbacks:
Nutrients transported
directly to streams
Bypass natural areas for
nitrate removal
• e.g., stream buffers,
natural wetlands
Edge of Field
Practices
Capture and treat drainage water before discharging into stream
4
Iowa Learning Farms
Wetlands Denitrifying Bioreactors Saturated Buffers
Saturated Buffers
Divert subsurface drainage from
crop fields through a vegetated
stream buffer
Removal of nitrate nitrogen
(NO3-N) via denitrification and
plant uptake
5
Objectives
• Analyze nitrate removal performance of four saturated buffers from
2018-2021
• Compare results with prior studies and earlier years of data at these
sites
• Prior Work: Jaynes and
Isenhart, 2019
6
Study Sites BC-1 BC-2
IA-1 SH
BC-1 IA-1 BC-2 SH
Installation
Date
Oct.
2010
June
2013
Oct.
2015
May
2016
Drainage
Area (ha)
(estimated)
5.9 4.7 40.5 3.4
Buffer Width
(m)
21 24 22 19
Distribution
Pipe Length
(m)
335 308 168 266
Jaynes and Isenhart, 2019: Data from installation through 2017 7
Methods
• Flow monitored in control structures using v-notch weirs and
pressure transducers
• Approximately bi-weekly sampling for nitrate
• Control structure
• Monitoring wells
• Creek
• Nitrate mass loads determined by multiplying concentrations by
flow volumes
• Nitrate load removed determined from difference in
concentration of field tile and wells nearest stream
8
Results:
Flow and
Precipitation
9
Flow Totals
Site Year
Annual
Precipitation
Days with
tile flow
Total tile flow
Tile flow diverted to
buffer
Fraction of tile flow
diverted to buffer
Fraction of total
precipitation
drained
mm mm yr-1 %
BC-1 2018 1208.4 194 367 195 53% 30%
BC-1 2019 1007.1 240 215 63 29% 21%
BC-1 2020 788.6 138 140 41 29% 18%
BC-1 2021 707.3 45 28.5 21.6 76% 4%
BC-2 2018 1208.4 356 551 201 36% 46%
BC-2 2019 1007.1 320 242 44.9 19% 24%
BC-2 2020 788.6 205 101 15.9 16% 13%
BC-2 2021 707.3 182 113 45 40% 16%
IA-1 2018 1208.4 191 412 399 97% 34%
IA-1 2019 1007.1 228 480 420 88% 48%
IA-1 2020 788.6 79 87.9 58.6 67% 11%
IA-1 2021 707.3 5 0.16 0.16 100% 0.023%
SH 2018 1401.6 310 1388 593 43% 99%
SH 2019 999.6 288 601 264 44% 60%
SH 2020 645.3 190 224 148 66% 35%
SH 2021 740.8 163 160 138 86% 22%
10
Results: Nitrate Removal
Site Year
Total NO3 in field
tile
Total NO3
diverted to
buffer
Total NO3
removed in
buffer
Nitrate removal rate
Nitrate removal per
area drained
Fraction of total
NO3 load removed
kg g m-1 d-1 kg ha-1 %
BC-1 2018 219 117 108 1.66 18.3 49
BC-1 2019 260 78.3 75.3 0.94 12.8 29
BC-1 2020 94.5 26.5 26.2 0.57 4.4 28
BC-1 2021 18.0 13.8 12.8 0.85 2.2 71
BC-2 2018 1560 601 503 8.40 12.4 32
BC-2 2019 1230 178 155 2.88 3.8 13
BC-2 2020 410 63.6 45.7 1.33 1.1 11
BC-2 2021 383 171 159 5.22 3.9 42
IA-1 2018 150 145 138 2.35 29.4 92
IA-1 2019 116 98.8 87.9 1.25 18.7 76
IA-1 2020 47.5 31.5 28.0 1.15 6.0 59
IA-1 2021 ND ND ND ND ND ND
SH 2018 499 207 137 1.66 40.3 27
SH 2019 165 70.1 41.5 0.54 12.2 25
SH 2020 72 47.9 31.1 0.62 9.1 43
SH 2021 44.3 38.2 35.5 0.82 10.4 80
Average 351 126 106 2.02 12.3 45
Green: Wet Year
Red: Dry Year
11
Results: Nitrate Removal
12
Results: Nitrate Removal
13
Nitrate Removal Summary
Site
NO3 removal
rate
NO3 removal per
drainage area
Fraction of total
NO3 load removed
Number of Site
Years
g m-1 d-1 kg ha-1 %
BC-1 1.73 11.4 42 11
IA-1 1.41 14.0 81 8
BC-2 3.84 4.52 19 6
SH 0.74 14.2 35 6
Average 1.88 11.2 45 Total
Standard
Deviation
1.66 8.30 26 31
14
All site years from 2011 to 2021
Data from 2011 to 2017 from Jaynes and Isenhart, 2019
Conclusions
• 16 new site years of data showed
continued consistent nitrate removal
• Fraction of total NO3 load removal
highest in sites with large buffer
lengths relative to drainage areas
• Despite high bypass flows, total NO3
mass removal highest in site treating
most flow (BC-2)
15
Future Work
• Statistically significant differences in
site performance?
• Summary metrics – is kg/ha (mass
load per drainage area) adequate?
• Add additional site-years and
analyze long term trends
• Improved design guidelines to
optimize performance
16
Acknowledgements
USDA-ARS National Lab for Agriculture and the Environment
Kent Heikens
Natalia Rogovska
Dan Jaynes, retired
USDA NRCS Conservation Innovation Grant NR213A750013G038
Questions?
Contact: gjohnson@iastate.edu
17
Rainfall graphs
18
Load removed vs % of total load removed
19
y = -0.0757x + 12.032
R² = 0.0067
0.00
5.00
10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
0 5 10 15 20 25 30 35
NO
3
-N
Load
Removal
per
drainge
area
(kg/ha)
Fraction of Total NO3-N Load Removed (%)

More Related Content

Similar to August 31 - 1053 - Gabriel Johnson

Climate Change Impact on Water & Water Use Sectors in Asian River Basins
Climate Change Impact on Water & Water Use Sectors in Asian River BasinsClimate Change Impact on Water & Water Use Sectors in Asian River Basins
Climate Change Impact on Water & Water Use Sectors in Asian River Basins
ipcc-media
 
Stormwater Asset Management Using Gis V5
Stormwater Asset Management Using Gis V5Stormwater Asset Management Using Gis V5
Stormwater Asset Management Using Gis V5
Vithal Deshpande
 
1 márquez-garcía, f remedia 2014
1 márquez-garcía, f remedia 20141 márquez-garcía, f remedia 2014
1 márquez-garcía, f remedia 2014
REMEDIAnetwork
 

Similar to August 31 - 1053 - Gabriel Johnson (20)

Region K Water Plan Overview: What Role Does Water Conservation Play?
Region K Water Plan Overview: What Role Does Water Conservation Play?Region K Water Plan Overview: What Role Does Water Conservation Play?
Region K Water Plan Overview: What Role Does Water Conservation Play?
 
August 31 - 0439 - Ingrid Wesstrom and Abraham Joel
August 31 - 0439 - Ingrid Wesstrom and Abraham JoelAugust 31 - 0439 - Ingrid Wesstrom and Abraham Joel
August 31 - 0439 - Ingrid Wesstrom and Abraham Joel
 
La gestió i l'eficiència dels aiguamolls artificials del Delta de l'Ebre
La gestió i l'eficiència dels aiguamolls artificials del Delta de l'EbreLa gestió i l'eficiència dels aiguamolls artificials del Delta de l'Ebre
La gestió i l'eficiència dels aiguamolls artificials del Delta de l'Ebre
 
Climate Change Impact on Water & Water Use Sectors in Asian River Basins
Climate Change Impact on Water & Water Use Sectors in Asian River BasinsClimate Change Impact on Water & Water Use Sectors in Asian River Basins
Climate Change Impact on Water & Water Use Sectors in Asian River Basins
 
Barind nw bangladesh drought gw and adaptation
Barind nw bangladesh drought gw and adaptationBarind nw bangladesh drought gw and adaptation
Barind nw bangladesh drought gw and adaptation
 
September 1 - 0916 - Ziwei Li and Zhiming Qi
September 1 - 0916 - Ziwei Li and Zhiming QiSeptember 1 - 0916 - Ziwei Li and Zhiming Qi
September 1 - 0916 - Ziwei Li and Zhiming Qi
 
Stormwater Asset Management Using Gis V5
Stormwater Asset Management Using Gis V5Stormwater Asset Management Using Gis V5
Stormwater Asset Management Using Gis V5
 
Merem 7533
Merem 7533Merem 7533
Merem 7533
 
August 31 - 1116 - Hassam Moursi
August 31 - 1116 - Hassam MoursiAugust 31 - 1116 - Hassam Moursi
August 31 - 1116 - Hassam Moursi
 
1 márquez-garcía, f remedia 2014
1 márquez-garcía, f remedia 20141 márquez-garcía, f remedia 2014
1 márquez-garcía, f remedia 2014
 
September 1 - 0939 - Minna Mäkelä
September 1 - 0939 - Minna MäkeläSeptember 1 - 0939 - Minna Mäkelä
September 1 - 0939 - Minna Mäkelä
 
NDGISUC2017 - Impact of Wetlands Loss
NDGISUC2017 - Impact of Wetlands LossNDGISUC2017 - Impact of Wetlands Loss
NDGISUC2017 - Impact of Wetlands Loss
 
Xenakis, Georgios: Impact of the 2018 drought on carbon, water and energy exc...
Xenakis, Georgios: Impact of the 2018 drought on carbon, water and energy exc...Xenakis, Georgios: Impact of the 2018 drought on carbon, water and energy exc...
Xenakis, Georgios: Impact of the 2018 drought on carbon, water and energy exc...
 
Stormwater and GIS
Stormwater and GISStormwater and GIS
Stormwater and GIS
 
City of Huntsville: Deferring Capitol Costs through Outdoor Irrigation Restri...
City of Huntsville: Deferring Capitol Costs through Outdoor Irrigation Restri...City of Huntsville: Deferring Capitol Costs through Outdoor Irrigation Restri...
City of Huntsville: Deferring Capitol Costs through Outdoor Irrigation Restri...
 
Exploration of Water Controlling Structure and Community Participation in Wat...
Exploration of Water Controlling Structure and Community Participation in Wat...Exploration of Water Controlling Structure and Community Participation in Wat...
Exploration of Water Controlling Structure and Community Participation in Wat...
 
Regional-Scale Assessment of N2O Emissions within the US Corn Belt: The Impac...
Regional-Scale Assessment of N2O Emissions within the US Corn Belt: The Impac...Regional-Scale Assessment of N2O Emissions within the US Corn Belt: The Impac...
Regional-Scale Assessment of N2O Emissions within the US Corn Belt: The Impac...
 
Presentation1
Presentation1Presentation1
Presentation1
 
Sardinia 2015: Impact of municipal solid waste landfill leachate loading on t...
Sardinia 2015: Impact of municipal solid waste landfill leachate loading on t...Sardinia 2015: Impact of municipal solid waste landfill leachate loading on t...
Sardinia 2015: Impact of municipal solid waste landfill leachate loading on t...
 
ENVIRONMENTAL IMPACT ASSESSMENT ON DAL LAKE SRINAGAR KASHMIR
ENVIRONMENTAL IMPACT ASSESSMENT ON DAL LAKE SRINAGAR KASHMIRENVIRONMENTAL IMPACT ASSESSMENT ON DAL LAKE SRINAGAR KASHMIR
ENVIRONMENTAL IMPACT ASSESSMENT ON DAL LAKE SRINAGAR KASHMIR
 

More from Soil and Water Conservation Society

More from Soil and Water Conservation Society (20)

September 1 - 0939 - Catherine DeLong.pptx
September 1 - 0939 - Catherine DeLong.pptxSeptember 1 - 0939 - Catherine DeLong.pptx
September 1 - 0939 - Catherine DeLong.pptx
 
September 1 - 830 - Chris Hay
September 1 - 830 - Chris HaySeptember 1 - 830 - Chris Hay
September 1 - 830 - Chris Hay
 
August 31 - 0239 - Yuchuan Fan
August 31 - 0239 - Yuchuan FanAugust 31 - 0239 - Yuchuan Fan
August 31 - 0239 - Yuchuan Fan
 
August 31 - 0216 - Babak Dialameh
August 31 - 0216 - Babak DialamehAugust 31 - 0216 - Babak Dialameh
August 31 - 0216 - Babak Dialameh
 
August 31 - 0153 - San Simon
August 31 - 0153 - San SimonAugust 31 - 0153 - San Simon
August 31 - 0153 - San Simon
 
August 31 - 0130 - Chuck Brandel
August 31 - 0130 - Chuck BrandelAugust 31 - 0130 - Chuck Brandel
August 31 - 0130 - Chuck Brandel
 
September 1 - 1139 - Ainis Lagzdins
September 1 - 1139 - Ainis LagzdinsSeptember 1 - 1139 - Ainis Lagzdins
September 1 - 1139 - Ainis Lagzdins
 
September 1 - 1116 - David Whetter
September 1 - 1116 - David WhetterSeptember 1 - 1116 - David Whetter
September 1 - 1116 - David Whetter
 
September 1 - 1053 - Matt Helmers
September 1 - 1053 - Matt HelmersSeptember 1 - 1053 - Matt Helmers
September 1 - 1053 - Matt Helmers
 
September 1 - 1030 - Chandra Madramootoo
September 1 - 1030 - Chandra MadramootooSeptember 1 - 1030 - Chandra Madramootoo
September 1 - 1030 - Chandra Madramootoo
 
August 31 - 1139 - Mitchell Watkins
August 31 - 1139 - Mitchell WatkinsAugust 31 - 1139 - Mitchell Watkins
August 31 - 1139 - Mitchell Watkins
 
August 31 - 1116 - Shiv Prasher
August 31 - 1116 - Shiv PrasherAugust 31 - 1116 - Shiv Prasher
August 31 - 1116 - Shiv Prasher
 
August 31 - 1053 - Ehsan Ghane
August 31 - 1053 - Ehsan GhaneAugust 31 - 1053 - Ehsan Ghane
August 31 - 1053 - Ehsan Ghane
 
August 31 - 1030 - Joseph A. Bubcanec
August 31 - 1030 - Joseph A. BubcanecAugust 31 - 1030 - Joseph A. Bubcanec
August 31 - 1030 - Joseph A. Bubcanec
 
September 1 - 130 - McBride
September 1 - 130 - McBrideSeptember 1 - 130 - McBride
September 1 - 130 - McBride
 
September 1 - 0216 - Jessica D'Ambrosio
September 1 - 0216 - Jessica D'AmbrosioSeptember 1 - 0216 - Jessica D'Ambrosio
September 1 - 0216 - Jessica D'Ambrosio
 
September 1 - 0153 - Mike Pniewski
September 1 - 0153 - Mike PniewskiSeptember 1 - 0153 - Mike Pniewski
September 1 - 0153 - Mike Pniewski
 
September 1 - 0130 - Johnathan Witter
September 1 - 0130 - Johnathan WitterSeptember 1 - 0130 - Johnathan Witter
September 1 - 0130 - Johnathan Witter
 
August 31 - 1139 - Melisa Luymes
August 31 - 1139 - Melisa LuymesAugust 31 - 1139 - Melisa Luymes
August 31 - 1139 - Melisa Luymes
 
August 31 - 1053 - Xinhua Jia
August 31 - 1053 - Xinhua JiaAugust 31 - 1053 - Xinhua Jia
August 31 - 1053 - Xinhua Jia
 

Recently uploaded

Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
Open Access Research Paper
 
一比一原版(Massey毕业证)梅西大学毕业证成绩单
一比一原版(Massey毕业证)梅西大学毕业证成绩单一比一原版(Massey毕业证)梅西大学毕业证成绩单
一比一原版(Massey毕业证)梅西大学毕业证成绩单
tyvaq
 
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
exehay
 
一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单
一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单
一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单
pcoow
 
一比一原版(Southern Cross毕业证)南十字星大学毕业证成绩单
一比一原版(Southern Cross毕业证)南十字星大学毕业证成绩单一比一原版(Southern Cross毕业证)南十字星大学毕业证成绩单
一比一原版(Southern Cross毕业证)南十字星大学毕业证成绩单
yegohah
 
Green house gases GlobalWarmingPotential.pptx
Green house gases GlobalWarmingPotential.pptxGreen house gases GlobalWarmingPotential.pptx
Green house gases GlobalWarmingPotential.pptx
ViniHema
 
一比一原版(Monash毕业证)莫纳什大学毕业证成绩单
一比一原版(Monash毕业证)莫纳什大学毕业证成绩单一比一原版(Monash毕业证)莫纳什大学毕业证成绩单
一比一原版(Monash毕业证)莫纳什大学毕业证成绩单
pcoow
 

Recently uploaded (20)

Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
Micro RNA genes and their likely influence in rice (Oryza sativa L.) dynamic ...
 
一比一原版(Massey毕业证)梅西大学毕业证成绩单
一比一原版(Massey毕业证)梅西大学毕业证成绩单一比一原版(Massey毕业证)梅西大学毕业证成绩单
一比一原版(Massey毕业证)梅西大学毕业证成绩单
 
Powers and Functions of CPCB - The Water Act 1974.pdf
Powers and Functions of CPCB - The Water Act 1974.pdfPowers and Functions of CPCB - The Water Act 1974.pdf
Powers and Functions of CPCB - The Water Act 1974.pdf
 
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
 
ppt on beauty of the nature by Palak.pptx
ppt on  beauty of the nature by Palak.pptxppt on  beauty of the nature by Palak.pptx
ppt on beauty of the nature by Palak.pptx
 
International+e-Commerce+Platform-www.cfye-commerce.shop
International+e-Commerce+Platform-www.cfye-commerce.shopInternational+e-Commerce+Platform-www.cfye-commerce.shop
International+e-Commerce+Platform-www.cfye-commerce.shop
 
一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单
一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单
一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单
 
Prevention and Control of Water Pollution
Prevention and Control of Water PollutionPrevention and Control of Water Pollution
Prevention and Control of Water Pollution
 
The State Board for Water Pollution - The Water Act 1974 .pptx
The State Board for  Water Pollution - The Water Act 1974  .pptxThe State Board for  Water Pollution - The Water Act 1974  .pptx
The State Board for Water Pollution - The Water Act 1974 .pptx
 
NRW Board Paper - DRAFT NRW Recreation Strategy
NRW Board Paper - DRAFT NRW Recreation StrategyNRW Board Paper - DRAFT NRW Recreation Strategy
NRW Board Paper - DRAFT NRW Recreation Strategy
 
Major-Environmental-Problems and Proven Solutions.pdf
Major-Environmental-Problems and Proven Solutions.pdfMajor-Environmental-Problems and Proven Solutions.pdf
Major-Environmental-Problems and Proven Solutions.pdf
 
Artificial Reefs by Kuddle Life Foundation - May 2024
Artificial Reefs by Kuddle Life Foundation - May 2024Artificial Reefs by Kuddle Life Foundation - May 2024
Artificial Reefs by Kuddle Life Foundation - May 2024
 
Presentación Giulio Quaggiotto-Diálogo improbable .pptx.pdf
Presentación Giulio Quaggiotto-Diálogo improbable .pptx.pdfPresentación Giulio Quaggiotto-Diálogo improbable .pptx.pdf
Presentación Giulio Quaggiotto-Diálogo improbable .pptx.pdf
 
DRAFT NRW Recreation Strategy - People and Nature thriving together
DRAFT NRW Recreation Strategy - People and Nature thriving togetherDRAFT NRW Recreation Strategy - People and Nature thriving together
DRAFT NRW Recreation Strategy - People and Nature thriving together
 
一比一原版(Southern Cross毕业证)南十字星大学毕业证成绩单
一比一原版(Southern Cross毕业证)南十字星大学毕业证成绩单一比一原版(Southern Cross毕业证)南十字星大学毕业证成绩单
一比一原版(Southern Cross毕业证)南十字星大学毕业证成绩单
 
Green house gases GlobalWarmingPotential.pptx
Green house gases GlobalWarmingPotential.pptxGreen house gases GlobalWarmingPotential.pptx
Green house gases GlobalWarmingPotential.pptx
 
Environmental Science Book By Dr. Y.K. Singh
Environmental Science Book By Dr. Y.K. SinghEnvironmental Science Book By Dr. Y.K. Singh
Environmental Science Book By Dr. Y.K. Singh
 
Bhopal Gas Leak Tragedy - A Night of death
Bhopal Gas Leak Tragedy - A Night of deathBhopal Gas Leak Tragedy - A Night of death
Bhopal Gas Leak Tragedy - A Night of death
 
一比一原版(Monash毕业证)莫纳什大学毕业证成绩单
一比一原版(Monash毕业证)莫纳什大学毕业证成绩单一比一原版(Monash毕业证)莫纳什大学毕业证成绩单
一比一原版(Monash毕业证)莫纳什大学毕业证成绩单
 
Paper: Man and Environmental relationship
Paper: Man and Environmental relationshipPaper: Man and Environmental relationship
Paper: Man and Environmental relationship
 

August 31 - 1053 - Gabriel Johnson

  • 1. Performance of Saturated Riparian Buffers in Iowa Across Sixteen Site Years Gabe Johnson Iowa State University Co-Authors: Tom Isenhart and Dan Jaynes International Drainage Symposium | August 31, 2022 Water Quality and Drainage – Saturated Buffers and Hybrid Projects NRCS/SWCS photo by Lynn Betts
  • 2. Background • Extensive subsurface drainage in U.S. Midwest NRCS/SWCS Lynn Betts 2
  • 3. Background • Extensive subsurface drainage in U.S. Midwest • Nitrate-nitrogen (NO3-N) transported directly from field to stream • Eutrophication, hypoxia, drinking water contamination 3 Drainage benefits: Field access Soil warming Yield increases Drainage drawbacks: Nutrients transported directly to streams Bypass natural areas for nitrate removal • e.g., stream buffers, natural wetlands
  • 4. Edge of Field Practices Capture and treat drainage water before discharging into stream 4 Iowa Learning Farms Wetlands Denitrifying Bioreactors Saturated Buffers
  • 5. Saturated Buffers Divert subsurface drainage from crop fields through a vegetated stream buffer Removal of nitrate nitrogen (NO3-N) via denitrification and plant uptake 5
  • 6. Objectives • Analyze nitrate removal performance of four saturated buffers from 2018-2021 • Compare results with prior studies and earlier years of data at these sites • Prior Work: Jaynes and Isenhart, 2019 6
  • 7. Study Sites BC-1 BC-2 IA-1 SH BC-1 IA-1 BC-2 SH Installation Date Oct. 2010 June 2013 Oct. 2015 May 2016 Drainage Area (ha) (estimated) 5.9 4.7 40.5 3.4 Buffer Width (m) 21 24 22 19 Distribution Pipe Length (m) 335 308 168 266 Jaynes and Isenhart, 2019: Data from installation through 2017 7
  • 8. Methods • Flow monitored in control structures using v-notch weirs and pressure transducers • Approximately bi-weekly sampling for nitrate • Control structure • Monitoring wells • Creek • Nitrate mass loads determined by multiplying concentrations by flow volumes • Nitrate load removed determined from difference in concentration of field tile and wells nearest stream 8
  • 10. Flow Totals Site Year Annual Precipitation Days with tile flow Total tile flow Tile flow diverted to buffer Fraction of tile flow diverted to buffer Fraction of total precipitation drained mm mm yr-1 % BC-1 2018 1208.4 194 367 195 53% 30% BC-1 2019 1007.1 240 215 63 29% 21% BC-1 2020 788.6 138 140 41 29% 18% BC-1 2021 707.3 45 28.5 21.6 76% 4% BC-2 2018 1208.4 356 551 201 36% 46% BC-2 2019 1007.1 320 242 44.9 19% 24% BC-2 2020 788.6 205 101 15.9 16% 13% BC-2 2021 707.3 182 113 45 40% 16% IA-1 2018 1208.4 191 412 399 97% 34% IA-1 2019 1007.1 228 480 420 88% 48% IA-1 2020 788.6 79 87.9 58.6 67% 11% IA-1 2021 707.3 5 0.16 0.16 100% 0.023% SH 2018 1401.6 310 1388 593 43% 99% SH 2019 999.6 288 601 264 44% 60% SH 2020 645.3 190 224 148 66% 35% SH 2021 740.8 163 160 138 86% 22% 10
  • 11. Results: Nitrate Removal Site Year Total NO3 in field tile Total NO3 diverted to buffer Total NO3 removed in buffer Nitrate removal rate Nitrate removal per area drained Fraction of total NO3 load removed kg g m-1 d-1 kg ha-1 % BC-1 2018 219 117 108 1.66 18.3 49 BC-1 2019 260 78.3 75.3 0.94 12.8 29 BC-1 2020 94.5 26.5 26.2 0.57 4.4 28 BC-1 2021 18.0 13.8 12.8 0.85 2.2 71 BC-2 2018 1560 601 503 8.40 12.4 32 BC-2 2019 1230 178 155 2.88 3.8 13 BC-2 2020 410 63.6 45.7 1.33 1.1 11 BC-2 2021 383 171 159 5.22 3.9 42 IA-1 2018 150 145 138 2.35 29.4 92 IA-1 2019 116 98.8 87.9 1.25 18.7 76 IA-1 2020 47.5 31.5 28.0 1.15 6.0 59 IA-1 2021 ND ND ND ND ND ND SH 2018 499 207 137 1.66 40.3 27 SH 2019 165 70.1 41.5 0.54 12.2 25 SH 2020 72 47.9 31.1 0.62 9.1 43 SH 2021 44.3 38.2 35.5 0.82 10.4 80 Average 351 126 106 2.02 12.3 45 Green: Wet Year Red: Dry Year 11
  • 14. Nitrate Removal Summary Site NO3 removal rate NO3 removal per drainage area Fraction of total NO3 load removed Number of Site Years g m-1 d-1 kg ha-1 % BC-1 1.73 11.4 42 11 IA-1 1.41 14.0 81 8 BC-2 3.84 4.52 19 6 SH 0.74 14.2 35 6 Average 1.88 11.2 45 Total Standard Deviation 1.66 8.30 26 31 14 All site years from 2011 to 2021 Data from 2011 to 2017 from Jaynes and Isenhart, 2019
  • 15. Conclusions • 16 new site years of data showed continued consistent nitrate removal • Fraction of total NO3 load removal highest in sites with large buffer lengths relative to drainage areas • Despite high bypass flows, total NO3 mass removal highest in site treating most flow (BC-2) 15
  • 16. Future Work • Statistically significant differences in site performance? • Summary metrics – is kg/ha (mass load per drainage area) adequate? • Add additional site-years and analyze long term trends • Improved design guidelines to optimize performance 16
  • 17. Acknowledgements USDA-ARS National Lab for Agriculture and the Environment Kent Heikens Natalia Rogovska Dan Jaynes, retired USDA NRCS Conservation Innovation Grant NR213A750013G038 Questions? Contact: gjohnson@iastate.edu 17
  • 19. Load removed vs % of total load removed 19 y = -0.0757x + 12.032 R² = 0.0067 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 0 5 10 15 20 25 30 35 NO 3 -N Load Removal per drainge area (kg/ha) Fraction of Total NO3-N Load Removed (%)

Editor's Notes

  1. 4 study sites that have been previously monitored Hamilton and Boone counties, IA BC1 18 Wells IA 1 16 wells BC2 9 wells SH 6 wells BC2 is outlier with much larger drainage area relative to buffer length IA-1 has small drainage area relative to buffer length Coland soils at most sites, some more well drained clarion soils at SH
  2. FLOW TO BUFFER 2018 and 2019 wetter than average 2020 and 2021 drier than average 2018 had higher summer rains, lower spring rains 2019 had higher spring rains and lower summer rains Both 2018 and 2019 had higher fall rains than spring rains 2020: higher spring rains than summer and fall 2021: higher summer rains, then fall, then spring
  3. 2018 had higher summer rains, lower spring rains 2019 had higher spring rains and lower summer rains Both 2018 and 2019 had higher fall rains than spring rains 2020: higher spring rains than summer and fall 2021: higher summer rains, then fall, then spring
  4. Timing, intensity, duration of precip events meant than even in wet years there could still be relatively similar removal based on flow diverted
  5. Consistent performance at sites with similar ratio of drainage area to buffer length (BC-1, IA-1, SH) Higher removal rate per length of buffer at BC-2 due to high loads diverted to buffer, even though on average it removed a lower fraction of the total load Design considerations: ensuring adequate buffer length for the expected flow volumes (drainage area) We’re working on updating our estimates of drainage area How can we improve design to optimize performance?
  6. Design considerations: ensuring adequate buffer length for the expected flow volumes (drainage area) We’re working on updating our estimates of drainage area How can we improve design to optimize performance?
  7. Design considerations: ensuring adequate buffer length for the expected flow volumes (drainage area) We’re working on updating our estimates of drainage area How can we improve design to optimize performance?