SlideShare a Scribd company logo
International Drainage
Symposium
September 1st 2022
Des Moines, Iowa
Agricultural water management with
controlled drainage and subirrigation
- results from a Nordic field in level
terrain
Minna Mäkelä1, Helena Äijö1, Markus Sikkilä5, Jyrki Nurminen4,
Heidi Salo3, Aleksi Salla3; Merja Myllys2, Harri Koivusalo3
1Finnish Field Drainage Association
2Natural Resources Institute Finland
3Aalto University, Department of Built Environment
4Field Drainage Research Association,
5Maveplan Oy
VesiHave and Vesihave2- projects
 Partners: Finnish Field Drainage Association, Natural Resources
Institute Finland, Field Drainage Research Association, Aalto
University, Sven Hallin Research Foundation sr,
 Funding: Ministry of Agriculture and Forestry of Finland, Ministry
of the Environment, Drainage Foundation sr, Maa- ja vesitekniikan
tuki ry, partners
 Total duration 2019-2022
 Results presented from 2019-2021
 To produce information to be used in agricultural water
management planning, so that nutrient loading may be
minimised, while soil structure and fertility are maintained
 Several work packages including supplementary drainage, main ditch
damming and modelling
 Experiment in Sievi: To find out the effects of controlled
drainage and subirrigation have on field productivity and
environmental load.
Objective of the project
Reseach site: Agricultural
field in Sievi, Finland
• Texture varies between loam
and sandy loam
• Endogleyic Umbrisol
according to the WRB system
• Slope less than 0.2 %
• Cultivated on a rotation of
cereal crops and grass
• Subsurface drainage installed
in 2015, before that open
ditches
• In research use since 2015, in
co-operation with FIDAS
• 2 plots
• Controlled
Conventional
• 12 drains per plot
• Separate collectors
• Controlled plot
isolated with a plastic
sheet
Drainage map
• Measurements
• Groundwater level
- by hand at 56 spots
- automatically at locations 2&6
• Drainage discharge at the
instrument well
• Soil moisture, starting in 2021
• Yield
• Drainage water quality
• Flow weighted sampling
Subirrigation
• In 2019-2020 a combustion engine
powered pump: very efficient but
labor intensive to maintain
• In 2021 a solar powered pump: less
powerful but almost free of
maintenance
 Ultrasound flow measurement
 Water quality sampling
 Aggregate sample taken relative to discharge
 Magnetic valve+logger
Measurements on drainage discharge
Contol well
Inspection
well
Instrument well
Instrument well
Logger
• Four replicates at different distance from drain:
0.2, 0.6, 2.5, 7.5 m
• By hand 2 x 28 kpl
• 2 automatic measuring stations (2 x 4)
Groundwater measurement
0
50
100
150
200
-8.0 -3.0 2.0 7.0
12.1.2020 4.2.2020 29.5.2020
13.7.2020 8.8.2020 24.11.2020
Groundwater
level
0
5
10
15
20
25
30
0
0.5
1
1.5
2
2.5
14/4/2021 14/5/2021 13/6/2021 13/7/2021 12/8/2021 11/9/2021 11/10/2021 10/11/2021 10/12/2021 9/1/2022 8/2/2022 10/3/2022 9/4/2022 9/5/2022 8/6/2022 8/7/2022 7/8/2022
Sadanta
(mm)
Pohjaveden
pinta
(m)
Sievi Groundwater Level, 0,2 m from Drain
Convention
al 0,2 m
Controlled
0,2 m
0
5
10
15
20
25
30
0
0.5
1
1.5
2
2.5
14/4/2021 14/5/2021 13/6/2021 13/7/2021 12/8/2021 11/9/2021 11/10/2021 10/11/2021 10/12/2021 9/1/2022 8/2/2022 10/3/2022 9/4/2022 9/5/2022 8/6/2022 8/7/2022 7/8/2022
Sadanta
(mm)
Pohjaveden
pinta
(m)
Sievi Groundwater Level, 0,6 m from Drain
Controlled
0,6 m
Conventiona
l 0,6 m
0
5
10
15
20
25
30
0
0.5
1
1.5
2
2.5
14/4/2021 14/5/2021 13/6/2021 13/7/2021 12/8/2021 11/9/2021 11/10/2021 10/11/2021 10/12/2021 9/1/2022 8/2/2022 10/3/2022 9/4/2022 9/5/2022 8/6/2022 8/7/2022 7/8/2022
Sadanta
(mm)
Pohjaveden
pinta
(m)
Sievi Groundwater Level, 2,5 m from Drain
Controlled
2.5 m
Convention
al 2.5 m
0
5
10
15
20
25
30
0
0.5
1
1.5
2
2.5
14/4/2021 14/5/2021 13/6/2021 13/7/2021 12/8/2021 11/9/2021 11/10/2021 10/11/2021 10/12/2021 9/1/2022 8/2/2022 10/3/2022 9/4/2022 9/5/2022 8/6/2022 8/7/2022 7/8/2022
Sademäärä
(mm)
Pohjaveden
pinta
(m)
Sievi Groundwater Level, 7,5 m from Drain
Controlled
7.5 m
Convention
al 7.5 m
Drain discharge Annual discharge, mm
Control with
irrigation
Control without
irrigation Conventional
2020 672 359 410
2021 259 233 355
0
200
400
600
800
1000
1200
0
5
10
15
20
25
30
January-19 April-19 July-19 October-19 January-20 April-20 July-20 October-20 January-21 April-21 July-21 October-21
Cumulative
(mm)
mm
d
-1
Controlled Conventional Controlled cumulative Conventional cumulative
Irrigation
Damming on
3.6.2019
Irrigation
Irrigation
Irrigation
0
200
400
600
800
1000
1200
0
5
10
15
20
25
30
January-19 April-19 July-19 October-19 January-20 April-20 July-20 October-20 January-21 April-21 July-21 October-21
Cumulative
(mm)
mm
d
-1
Controlled, irrigation removed Conventional Controlled cumulative, irrigation removed Conventional cumulative
Damming on
3.6.2019
Soil moisture
0
10
20
30
40
50
60
6/10/2021 7/10/2021 8/9/2021 9/8/2021 10/8/2021 11/7/2021
%
Sievi, maan kosteus, syvyys 15 cm Säätö_15_1 Säätö_15_2 Verrokki_15_1 Verrokki_15_2
0
10
20
30
40
50
60
6/10/2021 7/10/2021 8/9/2021 9/8/2021 10/8/2021 11/7/2021
Kosteus
%
Sievi, maan kosteus, syvyys 70 cm Säätö_70_1 Säätö_70_2 Verrokki_70_1 Verrokki_70_2
Yield
 Slightly higher with controlled
drainage (2-6 %), large variation
0
2000
4000
6000
8000
10000
12000
2019: Rye, kg/ha
Säätö Tavanomainen
0
1000
2000
3000
4000
5000
6000
2020: Barley kg/ha
Säätö Tavanomainen
0.00
10000.00
20000.00
30000.00
40000.00
50000.00
60000.00
2021: Grass biomass, kg/ha
säätö Tavanomainen
Greenhouse gas emissions
 Sampled with the static chamber method in
four replicates
 Four sampling events in 2020 and five in 2021
 No systematic differrence between plots
Annual emission Controlled Conventional
CO2 , g m
-2
a
-1
2260±280 2510±309
CH₄ , g m
-2
a
-1
0.074±0.048 -0.006±0.064
N₂O , g m
-2
a
-1
0.066±0.008 0.14±0.069
0
50
100
150
200
250
0
0.2
0.4
0.6
0.8
1
1.2
May
15,2020
Sep
14,2020
Sep
28,2020
Oct
14,2020
May
11,2021
May
27,2021
Aug
27,2021
Oct
14,2021
Nov
19,2021
Groundwater
evel,
cm
CO2,
g/m2/h
CO2 emission
Controlled Conventional Grounwater level, Controlled Groundwater level, Conventional
0
50
100
150
200
250
0
0.00002
0.00004
0.00006
0.00008
0.0001
0.00012
May
15,2020
Sep
14,2020
Sep
28,2020
Oct
14,2020
May
11,2021
May
27,2021
Aug
27,2021
Oct
14,2021
Nov
19,2021
Groundwater
evel,
cm
N2O,
g/m2/h
N2O emission
Controlled Conventional Grounwater level, Controlled Groundwater level, Conventional
Water quality, aggregate samples
 Total P concentrations vary
between 0,01-0,086 mg/l
 Higher concentrations in the
controlled plot in autumn
2020
 Total N
 Varies between <1-30 mg/l
 Lower concentrations at the
control plot
 Suspendedn solids (GF/C)
quite low
 Less than 30 mg/l
Water Quality: Nitrogen
 Total N smaller
in Controlled
drainage since
autumn 2020
0
5
10
15
20
25
30
35
mg/l
Tot-N concentration Säätö Verrokki
0
20
40
60
80
100
11/1/2019 2/9/2020 5/19/20208/27/202012/5/20203/15/20216/23/202110/1/2021
kg/ha
Sievi, Tot-N -load
Säätö Verrokki
0
20
40
60
80
100
11/1/2019 2/9/2020 5/19/2020 8/27/2020 12/5/2020 3/15/2021 6/23/2021 10/1/2021
kg/ha
Sievi, Tot-N -load, irrigation removed
Säätö Verrokki
Water Quality:Phosphorus  Total P
concentration
variable
 Higher in
controlled
drainage in
autumn 2020
0.00
0.02
0.04
0.06
0.08
0.10
mg/l
KOK-P -pitoisuus Säätö Verrokki
0.00
0.10
0.20
0.30
0.40
Oct-19 Jan-20 Apr-20 Jul-20 Nov-20 Feb-21 May-21 Aug-21
kg/ha
Sievi, Tot-P -load
Säätö Verrokki
0.00
0.05
0.10
0.15
0.20
Oct-19 Jan-20 Apr-20 Jul-20 Nov-20 Feb-21 May-21 Aug-21
kg/ha
Sievi, Tot-P -load
Säätö Verrokki
Suspended solids
0
10
20
30
40
50
60
mg/l
Suspended solids (GF/C) Säätö Verrokki
0
50
100
150
200
250
300
350
Oct-19 Jan-20 Apr-20 Jul-20 Nov-20 Feb-21 May-21 Aug-21
kg/ha
Sievi, Suspended solids
Säätö Verrokki
0
50
100
150
200
Oct-19 Jan-20 Apr-20 Jul-20 Nov-20 Feb-21 May-21 Aug-21
kg/ha
Sievi, Suspended solids
Säätö Verrokki
Conclusions
 Controlled drainage combined with subirrigation can be used to
maintain a higher groundwater level.
 Measures should be started early, before groundwater level recedes too
much.
 Irrigation should be at a low intensity, to allow water to infiltrate into the soil
and to avoid incresed discharge.
 Controlled drainage alone diminishes nutrient load and erosion, but
excessive irrigation will cause increased load.
September 1 - 0939 - Minna Mäkelä

More Related Content

Similar to September 1 - 0939 - Minna Mäkelä

Treatment wetland report
Treatment wetland reportTreatment wetland report
Treatment wetland report
Nicole Ng, EI
 
Academia: Richard Lawford, Morgan State University, 16th January UN Water Zar...
Academia: Richard Lawford, Morgan State University, 16th January UN Water Zar...Academia: Richard Lawford, Morgan State University, 16th January UN Water Zar...
Academia: Richard Lawford, Morgan State University, 16th January UN Water Zar...
water-decade
 
Web based Water Turbidity Monitoring and Automated Filtration System: IoT App...
Web based Water Turbidity Monitoring and Automated Filtration System: IoT App...Web based Water Turbidity Monitoring and Automated Filtration System: IoT App...
Web based Water Turbidity Monitoring and Automated Filtration System: IoT App...
IJECEIAES
 

Similar to September 1 - 0939 - Minna Mäkelä (20)

Overall Impact of PFES Policy in Vietnam 2010-2020 and Orientation to 2021-2030
Overall Impact of PFES Policy in Vietnam 2010-2020 and Orientation to 2021-2030Overall Impact of PFES Policy in Vietnam 2010-2020 and Orientation to 2021-2030
Overall Impact of PFES Policy in Vietnam 2010-2020 and Orientation to 2021-2030
 
SustSan workshop: Single family treatment wetlands progress in Poland by Magd...
SustSan workshop: Single family treatment wetlands progress in Poland by Magd...SustSan workshop: Single family treatment wetlands progress in Poland by Magd...
SustSan workshop: Single family treatment wetlands progress in Poland by Magd...
 
GROUNDWATER FLOW SIMULATION IN GUIMARAS ISLAND, PHILIPPINE
GROUNDWATER FLOW SIMULATION IN GUIMARAS ISLAND, PHILIPPINEGROUNDWATER FLOW SIMULATION IN GUIMARAS ISLAND, PHILIPPINE
GROUNDWATER FLOW SIMULATION IN GUIMARAS ISLAND, PHILIPPINE
 
D1.2-Demonstrator Case Study Nieuw Prinsenland
D1.2-Demonstrator Case Study Nieuw PrinsenlandD1.2-Demonstrator Case Study Nieuw Prinsenland
D1.2-Demonstrator Case Study Nieuw Prinsenland
 
Evaluation of the Wastewater Quality Improvement by The Channel Located Downs...
Evaluation of the Wastewater Quality Improvement by The Channel Located Downs...Evaluation of the Wastewater Quality Improvement by The Channel Located Downs...
Evaluation of the Wastewater Quality Improvement by The Channel Located Downs...
 
Anneli Ylimartimo
Anneli YlimartimoAnneli Ylimartimo
Anneli Ylimartimo
 
Automatic household waste separation system based on resistance value and moi...
Automatic household waste separation system based on resistance value and moi...Automatic household waste separation system based on resistance value and moi...
Automatic household waste separation system based on resistance value and moi...
 
Ragab R 1 - UEI Day 1 - Kochi Jan18
Ragab R 1 - UEI Day 1 - Kochi Jan18Ragab R 1 - UEI Day 1 - Kochi Jan18
Ragab R 1 - UEI Day 1 - Kochi Jan18
 
Sydney's water will run out by 2038 | Biocity Studio
Sydney's water will run out by 2038 | Biocity StudioSydney's water will run out by 2038 | Biocity Studio
Sydney's water will run out by 2038 | Biocity Studio
 
Potential benefits of sharing water from the yali hydropower reservoir, vietnam
Potential benefits of sharing water from the yali hydropower reservoir, vietnamPotential benefits of sharing water from the yali hydropower reservoir, vietnam
Potential benefits of sharing water from the yali hydropower reservoir, vietnam
 
Treatment wetland report
Treatment wetland reportTreatment wetland report
Treatment wetland report
 
Nepal; Eco Home For Sustainable Water Management: A Case Study In Kathmandu
Nepal;  Eco Home For Sustainable Water Management:  A Case Study In KathmanduNepal;  Eco Home For Sustainable Water Management:  A Case Study In Kathmandu
Nepal; Eco Home For Sustainable Water Management: A Case Study In Kathmandu
 
Academia: Richard Lawford, Morgan State University, 16th January UN Water Zar...
Academia: Richard Lawford, Morgan State University, 16th January UN Water Zar...Academia: Richard Lawford, Morgan State University, 16th January UN Water Zar...
Academia: Richard Lawford, Morgan State University, 16th January UN Water Zar...
 
Presentation - Workshop 2: The implementation of the Polluter Pays Principle,...
Presentation - Workshop 2: The implementation of the Polluter Pays Principle,...Presentation - Workshop 2: The implementation of the Polluter Pays Principle,...
Presentation - Workshop 2: The implementation of the Polluter Pays Principle,...
 
NextGen Gotland Sweden
NextGen Gotland SwedenNextGen Gotland Sweden
NextGen Gotland Sweden
 
Web based Water Turbidity Monitoring and Automated Filtration System: IoT App...
Web based Water Turbidity Monitoring and Automated Filtration System: IoT App...Web based Water Turbidity Monitoring and Automated Filtration System: IoT App...
Web based Water Turbidity Monitoring and Automated Filtration System: IoT App...
 
Présentation EAU 24 septembre 2009
Présentation EAU 24 septembre 2009Présentation EAU 24 septembre 2009
Présentation EAU 24 septembre 2009
 
2010 2012-groundwater-plume
2010 2012-groundwater-plume2010 2012-groundwater-plume
2010 2012-groundwater-plume
 
Food-Water-Energy Nexus in Central Asia
Food-Water-Energy Nexus in Central AsiaFood-Water-Energy Nexus in Central Asia
Food-Water-Energy Nexus in Central Asia
 
D1.2-Demonstrator Case Study Nieuw Prinsenland
D1.2-Demonstrator Case Study Nieuw PrinsenlandD1.2-Demonstrator Case Study Nieuw Prinsenland
D1.2-Demonstrator Case Study Nieuw Prinsenland
 

More from Soil and Water Conservation Society

More from Soil and Water Conservation Society (20)

September 1 - 0939 - Catherine DeLong.pptx
September 1 - 0939 - Catherine DeLong.pptxSeptember 1 - 0939 - Catherine DeLong.pptx
September 1 - 0939 - Catherine DeLong.pptx
 
September 1 - 830 - Chris Hay
September 1 - 830 - Chris HaySeptember 1 - 830 - Chris Hay
September 1 - 830 - Chris Hay
 
August 31 - 0239 - Yuchuan Fan
August 31 - 0239 - Yuchuan FanAugust 31 - 0239 - Yuchuan Fan
August 31 - 0239 - Yuchuan Fan
 
August 31 - 0216 - Babak Dialameh
August 31 - 0216 - Babak DialamehAugust 31 - 0216 - Babak Dialameh
August 31 - 0216 - Babak Dialameh
 
August 31 - 0153 - San Simon
August 31 - 0153 - San SimonAugust 31 - 0153 - San Simon
August 31 - 0153 - San Simon
 
August 31 - 0130 - Chuck Brandel
August 31 - 0130 - Chuck BrandelAugust 31 - 0130 - Chuck Brandel
August 31 - 0130 - Chuck Brandel
 
September 1 - 1139 - Ainis Lagzdins
September 1 - 1139 - Ainis LagzdinsSeptember 1 - 1139 - Ainis Lagzdins
September 1 - 1139 - Ainis Lagzdins
 
September 1 - 1116 - David Whetter
September 1 - 1116 - David WhetterSeptember 1 - 1116 - David Whetter
September 1 - 1116 - David Whetter
 
September 1 - 1053 - Matt Helmers
September 1 - 1053 - Matt HelmersSeptember 1 - 1053 - Matt Helmers
September 1 - 1053 - Matt Helmers
 
September 1 - 1030 - Chandra Madramootoo
September 1 - 1030 - Chandra MadramootooSeptember 1 - 1030 - Chandra Madramootoo
September 1 - 1030 - Chandra Madramootoo
 
August 31 - 1139 - Mitchell Watkins
August 31 - 1139 - Mitchell WatkinsAugust 31 - 1139 - Mitchell Watkins
August 31 - 1139 - Mitchell Watkins
 
August 31 - 1116 - Shiv Prasher
August 31 - 1116 - Shiv PrasherAugust 31 - 1116 - Shiv Prasher
August 31 - 1116 - Shiv Prasher
 
August 31 - 1053 - Ehsan Ghane
August 31 - 1053 - Ehsan GhaneAugust 31 - 1053 - Ehsan Ghane
August 31 - 1053 - Ehsan Ghane
 
August 31 - 1030 - Joseph A. Bubcanec
August 31 - 1030 - Joseph A. BubcanecAugust 31 - 1030 - Joseph A. Bubcanec
August 31 - 1030 - Joseph A. Bubcanec
 
September 1 - 130 - McBride
September 1 - 130 - McBrideSeptember 1 - 130 - McBride
September 1 - 130 - McBride
 
September 1 - 0216 - Jessica D'Ambrosio
September 1 - 0216 - Jessica D'AmbrosioSeptember 1 - 0216 - Jessica D'Ambrosio
September 1 - 0216 - Jessica D'Ambrosio
 
September 1 - 0153 - Mike Pniewski
September 1 - 0153 - Mike PniewskiSeptember 1 - 0153 - Mike Pniewski
September 1 - 0153 - Mike Pniewski
 
September 1 - 0130 - Johnathan Witter
September 1 - 0130 - Johnathan WitterSeptember 1 - 0130 - Johnathan Witter
September 1 - 0130 - Johnathan Witter
 
August 31 - 1139 - Melisa Luymes
August 31 - 1139 - Melisa LuymesAugust 31 - 1139 - Melisa Luymes
August 31 - 1139 - Melisa Luymes
 
August 31 - 1116 - Hassam Moursi
August 31 - 1116 - Hassam MoursiAugust 31 - 1116 - Hassam Moursi
August 31 - 1116 - Hassam Moursi
 

Recently uploaded

Genetic diversity and association analysis for different morphological traits...
Genetic diversity and association analysis for different morphological traits...Genetic diversity and association analysis for different morphological traits...
Genetic diversity and association analysis for different morphological traits...
Open Access Research Paper
 
一比一原版(Massey毕业证)梅西大学毕业证成绩单
一比一原版(Massey毕业证)梅西大学毕业证成绩单一比一原版(Massey毕业证)梅西大学毕业证成绩单
一比一原版(Massey毕业证)梅西大学毕业证成绩单
tyvaq
 
一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单
一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单
一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单
pcoow
 
Green house gases GlobalWarmingPotential.pptx
Green house gases GlobalWarmingPotential.pptxGreen house gases GlobalWarmingPotential.pptx
Green house gases GlobalWarmingPotential.pptx
ViniHema
 
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
exehay
 
一比一原版(Lincoln毕业证)新西兰林肯大学毕业证成绩单
一比一原版(Lincoln毕业证)新西兰林肯大学毕业证成绩单一比一原版(Lincoln毕业证)新西兰林肯大学毕业证成绩单
一比一原版(Lincoln毕业证)新西兰林肯大学毕业证成绩单
tyvaq
 

Recently uploaded (20)

Genetic diversity and association analysis for different morphological traits...
Genetic diversity and association analysis for different morphological traits...Genetic diversity and association analysis for different morphological traits...
Genetic diversity and association analysis for different morphological traits...
 
一比一原版(Massey毕业证)梅西大学毕业证成绩单
一比一原版(Massey毕业证)梅西大学毕业证成绩单一比一原版(Massey毕业证)梅西大学毕业证成绩单
一比一原版(Massey毕业证)梅西大学毕业证成绩单
 
一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单
一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单
一比一原版(SUT毕业证)斯威本科技大学毕业证成绩单
 
Alert-driven Community-based Forest monitoring: A case of the Peruvian Amazon
Alert-driven Community-based Forest monitoring: A case of the Peruvian AmazonAlert-driven Community-based Forest monitoring: A case of the Peruvian Amazon
Alert-driven Community-based Forest monitoring: A case of the Peruvian Amazon
 
Paper: Man and Environmental relationship
Paper: Man and Environmental relationshipPaper: Man and Environmental relationship
Paper: Man and Environmental relationship
 
The State Board for Water Pollution - The Water Act 1974 .pptx
The State Board for  Water Pollution - The Water Act 1974  .pptxThe State Board for  Water Pollution - The Water Act 1974  .pptx
The State Board for Water Pollution - The Water Act 1974 .pptx
 
International+e-Commerce+Platform-www.cfye-commerce.shop
International+e-Commerce+Platform-www.cfye-commerce.shopInternational+e-Commerce+Platform-www.cfye-commerce.shop
International+e-Commerce+Platform-www.cfye-commerce.shop
 
Natural farming @ Dr. Siddhartha S. Jena.pptx
Natural farming @ Dr. Siddhartha S. Jena.pptxNatural farming @ Dr. Siddhartha S. Jena.pptx
Natural farming @ Dr. Siddhartha S. Jena.pptx
 
Navigating the complex landscape of AI governance
Navigating the complex landscape of AI governanceNavigating the complex landscape of AI governance
Navigating the complex landscape of AI governance
 
Bhopal Gas Leak Tragedy - A Night of death
Bhopal Gas Leak Tragedy - A Night of deathBhopal Gas Leak Tragedy - A Night of death
Bhopal Gas Leak Tragedy - A Night of death
 
Green house gases GlobalWarmingPotential.pptx
Green house gases GlobalWarmingPotential.pptxGreen house gases GlobalWarmingPotential.pptx
Green house gases GlobalWarmingPotential.pptx
 
Artificial Reefs by Kuddle Life Foundation - May 2024
Artificial Reefs by Kuddle Life Foundation - May 2024Artificial Reefs by Kuddle Life Foundation - May 2024
Artificial Reefs by Kuddle Life Foundation - May 2024
 
Environmental Impact Assessment (EIA) in Nepal.pptx
Environmental Impact Assessment (EIA) in Nepal.pptxEnvironmental Impact Assessment (EIA) in Nepal.pptx
Environmental Impact Assessment (EIA) in Nepal.pptx
 
Sustainable farming practices in India .pptx
Sustainable farming  practices in India .pptxSustainable farming  practices in India .pptx
Sustainable farming practices in India .pptx
 
NRW Board Paper - DRAFT NRW Recreation Strategy
NRW Board Paper - DRAFT NRW Recreation StrategyNRW Board Paper - DRAFT NRW Recreation Strategy
NRW Board Paper - DRAFT NRW Recreation Strategy
 
ppt on beauty of the nature by Palak.pptx
ppt on  beauty of the nature by Palak.pptxppt on  beauty of the nature by Palak.pptx
ppt on beauty of the nature by Palak.pptx
 
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
一比一原版EUR毕业证鹿特丹伊拉斯姆斯大学毕业证成绩单如何办理
 
Major-Environmental-Problems and Proven Solutions.pdf
Major-Environmental-Problems and Proven Solutions.pdfMajor-Environmental-Problems and Proven Solutions.pdf
Major-Environmental-Problems and Proven Solutions.pdf
 
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...
IPCC Vice Chair Ladislaus Change Central Asia Climate Change Conference 27 Ma...
 
一比一原版(Lincoln毕业证)新西兰林肯大学毕业证成绩单
一比一原版(Lincoln毕业证)新西兰林肯大学毕业证成绩单一比一原版(Lincoln毕业证)新西兰林肯大学毕业证成绩单
一比一原版(Lincoln毕业证)新西兰林肯大学毕业证成绩单
 

September 1 - 0939 - Minna Mäkelä

  • 1. International Drainage Symposium September 1st 2022 Des Moines, Iowa Agricultural water management with controlled drainage and subirrigation - results from a Nordic field in level terrain Minna Mäkelä1, Helena Äijö1, Markus Sikkilä5, Jyrki Nurminen4, Heidi Salo3, Aleksi Salla3; Merja Myllys2, Harri Koivusalo3 1Finnish Field Drainage Association 2Natural Resources Institute Finland 3Aalto University, Department of Built Environment 4Field Drainage Research Association, 5Maveplan Oy
  • 2. VesiHave and Vesihave2- projects  Partners: Finnish Field Drainage Association, Natural Resources Institute Finland, Field Drainage Research Association, Aalto University, Sven Hallin Research Foundation sr,  Funding: Ministry of Agriculture and Forestry of Finland, Ministry of the Environment, Drainage Foundation sr, Maa- ja vesitekniikan tuki ry, partners  Total duration 2019-2022  Results presented from 2019-2021
  • 3.  To produce information to be used in agricultural water management planning, so that nutrient loading may be minimised, while soil structure and fertility are maintained  Several work packages including supplementary drainage, main ditch damming and modelling  Experiment in Sievi: To find out the effects of controlled drainage and subirrigation have on field productivity and environmental load. Objective of the project
  • 4. Reseach site: Agricultural field in Sievi, Finland • Texture varies between loam and sandy loam • Endogleyic Umbrisol according to the WRB system • Slope less than 0.2 % • Cultivated on a rotation of cereal crops and grass • Subsurface drainage installed in 2015, before that open ditches • In research use since 2015, in co-operation with FIDAS
  • 5.
  • 6. • 2 plots • Controlled Conventional • 12 drains per plot • Separate collectors • Controlled plot isolated with a plastic sheet Drainage map • Measurements • Groundwater level - by hand at 56 spots - automatically at locations 2&6 • Drainage discharge at the instrument well • Soil moisture, starting in 2021 • Yield • Drainage water quality • Flow weighted sampling Subirrigation • In 2019-2020 a combustion engine powered pump: very efficient but labor intensive to maintain • In 2021 a solar powered pump: less powerful but almost free of maintenance
  • 7.  Ultrasound flow measurement  Water quality sampling  Aggregate sample taken relative to discharge  Magnetic valve+logger Measurements on drainage discharge Contol well Inspection well Instrument well Instrument well Logger
  • 8. • Four replicates at different distance from drain: 0.2, 0.6, 2.5, 7.5 m • By hand 2 x 28 kpl • 2 automatic measuring stations (2 x 4) Groundwater measurement 0 50 100 150 200 -8.0 -3.0 2.0 7.0 12.1.2020 4.2.2020 29.5.2020 13.7.2020 8.8.2020 24.11.2020
  • 9.
  • 11. 0 5 10 15 20 25 30 0 0.5 1 1.5 2 2.5 14/4/2021 14/5/2021 13/6/2021 13/7/2021 12/8/2021 11/9/2021 11/10/2021 10/11/2021 10/12/2021 9/1/2022 8/2/2022 10/3/2022 9/4/2022 9/5/2022 8/6/2022 8/7/2022 7/8/2022 Sadanta (mm) Pohjaveden pinta (m) Sievi Groundwater Level, 0,2 m from Drain Convention al 0,2 m Controlled 0,2 m 0 5 10 15 20 25 30 0 0.5 1 1.5 2 2.5 14/4/2021 14/5/2021 13/6/2021 13/7/2021 12/8/2021 11/9/2021 11/10/2021 10/11/2021 10/12/2021 9/1/2022 8/2/2022 10/3/2022 9/4/2022 9/5/2022 8/6/2022 8/7/2022 7/8/2022 Sadanta (mm) Pohjaveden pinta (m) Sievi Groundwater Level, 0,6 m from Drain Controlled 0,6 m Conventiona l 0,6 m
  • 12. 0 5 10 15 20 25 30 0 0.5 1 1.5 2 2.5 14/4/2021 14/5/2021 13/6/2021 13/7/2021 12/8/2021 11/9/2021 11/10/2021 10/11/2021 10/12/2021 9/1/2022 8/2/2022 10/3/2022 9/4/2022 9/5/2022 8/6/2022 8/7/2022 7/8/2022 Sadanta (mm) Pohjaveden pinta (m) Sievi Groundwater Level, 2,5 m from Drain Controlled 2.5 m Convention al 2.5 m 0 5 10 15 20 25 30 0 0.5 1 1.5 2 2.5 14/4/2021 14/5/2021 13/6/2021 13/7/2021 12/8/2021 11/9/2021 11/10/2021 10/11/2021 10/12/2021 9/1/2022 8/2/2022 10/3/2022 9/4/2022 9/5/2022 8/6/2022 8/7/2022 7/8/2022 Sademäärä (mm) Pohjaveden pinta (m) Sievi Groundwater Level, 7,5 m from Drain Controlled 7.5 m Convention al 7.5 m
  • 13. Drain discharge Annual discharge, mm Control with irrigation Control without irrigation Conventional 2020 672 359 410 2021 259 233 355 0 200 400 600 800 1000 1200 0 5 10 15 20 25 30 January-19 April-19 July-19 October-19 January-20 April-20 July-20 October-20 January-21 April-21 July-21 October-21 Cumulative (mm) mm d -1 Controlled Conventional Controlled cumulative Conventional cumulative Irrigation Damming on 3.6.2019 Irrigation Irrigation Irrigation 0 200 400 600 800 1000 1200 0 5 10 15 20 25 30 January-19 April-19 July-19 October-19 January-20 April-20 July-20 October-20 January-21 April-21 July-21 October-21 Cumulative (mm) mm d -1 Controlled, irrigation removed Conventional Controlled cumulative, irrigation removed Conventional cumulative Damming on 3.6.2019
  • 14. Soil moisture 0 10 20 30 40 50 60 6/10/2021 7/10/2021 8/9/2021 9/8/2021 10/8/2021 11/7/2021 % Sievi, maan kosteus, syvyys 15 cm Säätö_15_1 Säätö_15_2 Verrokki_15_1 Verrokki_15_2 0 10 20 30 40 50 60 6/10/2021 7/10/2021 8/9/2021 9/8/2021 10/8/2021 11/7/2021 Kosteus % Sievi, maan kosteus, syvyys 70 cm Säätö_70_1 Säätö_70_2 Verrokki_70_1 Verrokki_70_2
  • 15. Yield  Slightly higher with controlled drainage (2-6 %), large variation 0 2000 4000 6000 8000 10000 12000 2019: Rye, kg/ha Säätö Tavanomainen 0 1000 2000 3000 4000 5000 6000 2020: Barley kg/ha Säätö Tavanomainen 0.00 10000.00 20000.00 30000.00 40000.00 50000.00 60000.00 2021: Grass biomass, kg/ha säätö Tavanomainen
  • 16. Greenhouse gas emissions  Sampled with the static chamber method in four replicates  Four sampling events in 2020 and five in 2021  No systematic differrence between plots Annual emission Controlled Conventional CO2 , g m -2 a -1 2260±280 2510±309 CH₄ , g m -2 a -1 0.074±0.048 -0.006±0.064 N₂O , g m -2 a -1 0.066±0.008 0.14±0.069 0 50 100 150 200 250 0 0.2 0.4 0.6 0.8 1 1.2 May 15,2020 Sep 14,2020 Sep 28,2020 Oct 14,2020 May 11,2021 May 27,2021 Aug 27,2021 Oct 14,2021 Nov 19,2021 Groundwater evel, cm CO2, g/m2/h CO2 emission Controlled Conventional Grounwater level, Controlled Groundwater level, Conventional 0 50 100 150 200 250 0 0.00002 0.00004 0.00006 0.00008 0.0001 0.00012 May 15,2020 Sep 14,2020 Sep 28,2020 Oct 14,2020 May 11,2021 May 27,2021 Aug 27,2021 Oct 14,2021 Nov 19,2021 Groundwater evel, cm N2O, g/m2/h N2O emission Controlled Conventional Grounwater level, Controlled Groundwater level, Conventional
  • 17. Water quality, aggregate samples  Total P concentrations vary between 0,01-0,086 mg/l  Higher concentrations in the controlled plot in autumn 2020  Total N  Varies between <1-30 mg/l  Lower concentrations at the control plot  Suspendedn solids (GF/C) quite low  Less than 30 mg/l
  • 18. Water Quality: Nitrogen  Total N smaller in Controlled drainage since autumn 2020 0 5 10 15 20 25 30 35 mg/l Tot-N concentration Säätö Verrokki 0 20 40 60 80 100 11/1/2019 2/9/2020 5/19/20208/27/202012/5/20203/15/20216/23/202110/1/2021 kg/ha Sievi, Tot-N -load Säätö Verrokki 0 20 40 60 80 100 11/1/2019 2/9/2020 5/19/2020 8/27/2020 12/5/2020 3/15/2021 6/23/2021 10/1/2021 kg/ha Sievi, Tot-N -load, irrigation removed Säätö Verrokki
  • 19. Water Quality:Phosphorus  Total P concentration variable  Higher in controlled drainage in autumn 2020 0.00 0.02 0.04 0.06 0.08 0.10 mg/l KOK-P -pitoisuus Säätö Verrokki 0.00 0.10 0.20 0.30 0.40 Oct-19 Jan-20 Apr-20 Jul-20 Nov-20 Feb-21 May-21 Aug-21 kg/ha Sievi, Tot-P -load Säätö Verrokki 0.00 0.05 0.10 0.15 0.20 Oct-19 Jan-20 Apr-20 Jul-20 Nov-20 Feb-21 May-21 Aug-21 kg/ha Sievi, Tot-P -load Säätö Verrokki
  • 20. Suspended solids 0 10 20 30 40 50 60 mg/l Suspended solids (GF/C) Säätö Verrokki 0 50 100 150 200 250 300 350 Oct-19 Jan-20 Apr-20 Jul-20 Nov-20 Feb-21 May-21 Aug-21 kg/ha Sievi, Suspended solids Säätö Verrokki 0 50 100 150 200 Oct-19 Jan-20 Apr-20 Jul-20 Nov-20 Feb-21 May-21 Aug-21 kg/ha Sievi, Suspended solids Säätö Verrokki
  • 21. Conclusions  Controlled drainage combined with subirrigation can be used to maintain a higher groundwater level.  Measures should be started early, before groundwater level recedes too much.  Irrigation should be at a low intensity, to allow water to infiltrate into the soil and to avoid incresed discharge.  Controlled drainage alone diminishes nutrient load and erosion, but excessive irrigation will cause increased load.