SlideShare a Scribd company logo
1 Augmented Realities White Paper 2021
Augmented Realities 2021
A‘whitepaper’overviewbyDrMikeHobbs,Visitingresearchfellow,CEMP,BournemouthUniversity
and ProfessorDebbieHolley, CEMPandDepartmentof NursingSciences Bournemouth University
This briefing paper outlines and summarises recent developments in the context and range of
technologies for delivering Augmented Reality (AR). We share some of the uses of the products and
examples of applications in social, commercial, medical and educational applications; but make no
claim as to this being a full inventory. The work can be read as an independent document or as an
extended commentary providing more detail to support the Augmented Reality for Education article
in the Encyclopaedia of Educational Innovation (Holley, Hobbs 2020) and the Augmented Reality and
Learning Innovation presentation at Edutech 2021 (Holley 2021).
Figure 1 shows a continuum of viewing devices that support applications from simple social media
filters to sophisticated collaborative, real-time, augmented collaboration. After a brief description of
Augmented Reality this document describes the technology and applications in the following sections:
• Smart phones
• 3D viewer
• Glasses
• Headsets
• Collaboration systems
• Medical applications
• AR for learning and teaching
Figure 1: Relationships between AR viewing device technology. From (Holley, Hobbs 2020)
2 Augmented Realities White Paper 2021
1. What is Augmented Reality?
The ‘Augmented’ part of Augmented Reality has grown out of the technology used for environments
such as computer games that show interactive 2D or 3D media on display screens. Recent advances in
network capacity and processing power of mobile devices allows high quality graphics to be streamed
to devices enabling activities such as watching films and playing online games. AR utilises the real
world as a trigger, through a predetermined location or image, to play context relevant images, sounds
and media as an overlay to a scene watched through the camera of a smart phone or dedicated
headset.
Media can be trigged through scanning the real-world scene or through unique indicators, such as QR
codes, or via location sensors that can also provide notifications to indicate available media. All of
these techniques are essentially a way of generating a unique identifier, similar to a URL, that the
system can recognise. The media can be pre-loaded into a dedicated app, streamed from a server or
the AR can provide a link to a website that can be viewed in the normal way via a browser.
When played the media can overlay a small part or the whole scene, often replacing it with a matching
background image to provide context. Media can include interactive ‘hotspots’ that allow users to
make selections or provide feedback. In this respect a highly developed AR system becomes similar to
Virtual Reality (VR) where an entire 3D scene is typically modelled in detail to provide realistic
interactions in areas such as architecture, engineering and science. This technology is continually
developing with increasing capabilities in areas of collaboration, communication, and interaction as
well as improvements in the usability and quality of viewing devices.
Figure 2 shows that AR is part of a continuum that utilise different aspects of virtual technology to
provide immersive media experiences. Increasingly the boarders between these classifications are
being blurred by ‘mixed’ reality that combines features from both augmented and virtual in products
and applications. Microsoft provide a helpful explanatory article on mixed reality using their HoloLens
viewer as an example (Microsoft 2020). A good introduction to AR is provided in Hobbs and Holley
(2016), and an early educational example of the use of virtual worlds, that puts this into a pedagogic
context is provided in Hobbs and Gordon (2008). A contemporary review of teaching with AR is given
by Klimova et al. (2018).
Figure 2: Continuum of augmented and virtual environments (from Hobbs, Holley 2020)
3 Augmented Realities White Paper 2021
When assessing the attributes of augmented reality, it is important to remember the existing
technology we take for granted for recording, displaying, and manipulating media recorded from real
world events and activities. The advantages of any AR system or application need to be considered
with respect to how it extends capabilities, rather than merely duplicating common features of display
and communication. Good questions are ‘can we already do this?’ ‘why is this useful?’ ‘what can I do
with this that I could not do before’.
2. Smart Phones
Accessing AR through a smart phone has benefits of cost, simplicity, ubiquity, and accessibility. Figure
4 shows a variety of devices and applications. Social media platforms such as Snapchat
(https://lensstudio.snapchat.com/) and Instagram (https://www.instagram.com/sparkarcreators/)
Figure 4: Handheld devices used to view augmented reality. (image credits in section 11)
Figure 3: 'Real world' technology for document creation, web resources, media
capture, creation and presentation, video streaming and live communication
4 Augmented Realities White Paper 2021
provide tools to create AR artefacts in addition to the simple application of image filters. These
platforms have a large following and help to normalise AR with the potential to lead onto more
sophisticated applications such as online shopping.
Apple (https://www.apple.com/uk/augmented-reality/) and Google (https://arvr.google.com/ar/)
provide support for AR and application developers. However, for more sophisticated AR applications
there remain issues of compatibility between providers, where a choice may need to be made
between IoS or Android, and commonly the most recent features are only available on the latest
devices.
3. 3D Smart Phone Viewers
Smart phones can run applications that split the screen to provide stereo vison, (shown in figure 6)
creating a 3D image when viewed through a set of lenses. This is the basis of the simple ‘Google
Cardboard’ (https://arvr.google.com/cardboard/apps/ ) and many other viewers use the same
principle (Google cardboard and some viewers are shown in figure 5).
Figure 5: Google Cardboard devices, from Google AR & VR website: https://arvr.google.com/cardboard/
5 Augmented Realities White Paper 2021
Figure 6: Split screen on a smart phone for 3D stereo viewing
Applications are available for users to create and share their own media to enable 360 panorama
views by stitching together a sequence of continuously recorded video or images,
(https://www.goodfirms.co/blog/best-free-open-source-virtual-tour-software-solutions) . These can
be used to create virtual tours and can include hotspot links to relevant websites. While relatively
cheap and effective the quality of the screen in terms of pixel density and refresh rate are critical for
these systems and the image is held much closer to the eyes and often magnified.
Currently there are many smart glasses available that allow generic AR as well as dedicated AR
applications, such as drone controllers that allow the wearer to see the real world as well as the
projected display from the drone (https://www.dronezon.com/drone-reviews/fpv-goggles-for-
drones-to-experience-the-thrill-of-flying/) . The smart glasses range from simple audio delivery to the
fully integrated AR processing such as the ODG-R9 (https://www.osterhoutgroup.com/r-9-
smartglasses) that incorporates the same processor found on powerful smart phones.
4. Smart Glasses
Figure 7: Examples of smart glass wearable devices
Clockwise from top left:
Everysight Raptor AR smart
glasses, Website:
https://everysight.com/
Everysight Headup display from
Raptor AR smart Glasses
https://everysight.com/
Solos smart glasses,
https://www.solos-
wearables.com/
Vuzix blade upgraded
https://www.vuzix.com/products
/blade-smart-glasses-upgraded
6 Augmented Realities White Paper 2021
The original ‘Google Glass’ generated considerable interest when it was launched in 2014, resembling
a pair of spectacles with a camera / audio input and a small ‘head up’ display projector attached to
one lens. Although it was not a commercial success it did encourage other developers to create similar
‘Smart Glasses’ devices. The advantage of the Smart Glass format is that it is light, mobile, and can be
paired up with smart phones for data storage, communication and to provide an interface to mobile
apps. Data is typically presented as 2D graphics and is particularly suitable for location information,
fitness data, and simple internet search results. An example is the Solos smart glass (shown in figure
7) which is a dedicated device giving a heads-up display for cyclists and runners – provides directions,
speed, and other performance data outputs (https://www.solos-wearables.com/)
An example that demonstrates smart glass capabilities is the Vuzix Blade Upgraded, as shown in
figure 8.
A recent development combining the smart glasses camera and display with remote AI processing and
database access is mobile face recognition. A controversial application is for mobile security which has
been demonstrated using the Vuzix blade (https://techcrunch.com/2019/06/10/vuzix-smart-glasses-
get-automatic-facial-recognition-designed-for-law-enforcement/). A more benign application is the
experimental app called FaceReminder (McKelvey, et al 2019). This uses similar technology to support
users with face blindness and short-memory problems by showing the name of a person on the heads-
up glasses display.
Figure 8: Detail of wearable smart glasses, Vuzix blade upgraded https://www.vuzix.com
7 Augmented Realities White Paper 2021
5. VR Headsets
Another route to AR has been by adapting virtual reality headsets such as Oculus, HTC vive, and
Microsoft Hololens (shown in figure 9) by integrating a digital camera feed. Typically tethered to a
computer for their processing power, newer versions enable these to operate independently allowing
the full range of movement needed for AR systems.
The Microsoft Hololens uses a headset to combine real and virtual elements in a shared, augmented,
environment. Relatively expensive it provides a high-quality AR it has been used in a range of AR
applications; it has shown potential for AR based collaborative projects allowing participants from
different locations to interact with 3D models for engineering and medical projects. Microsoft are
promoting the Hololens as a platform for a broad range of mixed reality applications, providing a
dedicated development API (https://docs.microsoft.com/en-us/windows/mixed-reality/design)
The Magic Leap ( https://www.magicleap.com/) product shows an interesting development of a
possible future hybrid between a full VR headset and the smart glass concept.
6. AR Collaboration Systems
An actively developing area is the use of AR as a remote collaboration tool. A full system uses relatively
expensive and sophisticated equipment two sites and can be used for field workers to share
knowledge and guidance in real time, or via recorded information with remote experts. This allows
users to capture images and remote experts to chat, give notes, annotate video and provide overlays
of information and documents. Pointr (figure 10) provide dedicated or bespoke systems that are used
in power plants, maritime and industrial facility maintenance.
Figure 9: Composite picture showing AR headset viewers.
(top row, both images) Microsoft Hololens 2, https://www.microsoft.com/en-us/hololens/
HTC Vive : N. Lee, 2019, Endgadget, HTC Vive Cosmos hands-on: VR never looked so good
https://www.engadget.com/2019-09-12-htc-vive-cosmos-hands-on.html
Oculus Quest: Porter, J., 2020, Facebook’s Oculus Quest 2 leaks in full via official promo videos, The Verge Sept
12th
2020 .
8 Augmented Realities White Paper 2021
HelpLightning Remote Virtual Assistance (figure 11) provide a range of collaboration and
communication tools with real time AR overlays.
7. Medical Applications
A recent review of AR in Medical Education (Parsons and MacCallam 2021) concluded that AR was
more effective than other training. While mainly focused on anatomy and surgery AR is being used in
other areas, such as nursing, telemonitoring, neuroanatomy. Key affordances were stated as
visualizing the invisible, developing practical skills in a spatial context, device portability across
locations, situated learning in context and reducing negative impact. As well as educating
practitioners, AR is being used to inform and improve outcomes for patients by increasing their
understanding of procedures as well as assisting in treatments such as exercises and improving their
mental resilience (Adapa et al 2020). Often the same technology and companies provide education
Figure10: Image shows remote expert identifying correct location for
intervention (Delta Cygni Labs, https://dynamic.pointr.com/solution/
Figure 11: Image shows remote expert pointing at a component. HelpLightning Next
Generation Video Conferencing https://helplightning.com/
9 Augmented Realities White Paper 2021
services in addition to fully functioning medical AR systems. Typical services are overlay imagery for
surgery, remote and robotic surgery, visualisation of patient anatomy and context aware access to
patient data during treatment (Desselle et al 2020)
The same technology used for medical involved in producing medical systems
The Proximie system, (https://proximie.com/ ) is a dedicated medical AR system used to enable
overlays of patient and other medical information in surgery and remote expert assistance. In June
2020 a cancer operation was successfully completed remotely using a robotic arm using this system
to support the collaboration (figure 12).
8. Augmented reality for learning and teaching
AR Affordances for learning and teaching:
• Visualization – of remote, difficult or impossible to see, of concepts and events.
• Situated learning – mobile, context and location aware.
• Real time – immediacy, on demand
• User directed – Interaction directed by the user.
• 3D interaction – Enabling exploration of objects, scenes and concepts.
• Collaborative – group projects, remote presence, sharing AR as social media.
• Immersive – presence (within the scenario)
• Problem solving – by user created AR artefacts, or AR games and puzzles.
Additional affordances are provided by using AR as a creative or social media too situated within a
group project. Here is a suggested outline for developing a generic student task in any discipline:
Introduction – Get students to self-select or allocate students to groups of between three and five
members. Introduce an AR technology with supporting links and examples. Ensure each group has at
least one device that can create and view the technology. Set an initial task such as choosing a group
name and creating an AR logo for their team.
Communication– Groups can choose or be directed to communication applications for remote
working, blogging and/or project management sites for recording meetings, design, discussion and
Figure 12: Sky News, Live: Operation Broadcast In Virtual Reality
https://news.sky.com/story/live-operation-broadcast-in-virtual-reality-10242518
10 Augmented Realities White Paper 2021
progress. Groups can present their team’s name and AR logo to the class, helping to practice group
working, presentation, communication and organisation skills.
Task Allocation – Provide a theme with clearly defined criteria around the size and complexity of the
task, for example having each group member contribute one AR artefact for the group application.
Typical example topics are a virtual tour around the institution, a game, enhancing course materials,
creating AR posters or books.
Design and Creation – Students can plan script and storyboard their AR application. They can either
create their own media or use existing virtual, video and sound materials. Creating AR materials to be
combined in a single experience develops cooperation, group working, research, planning and design
skills.
Evaluation – As part of the development process groups can share their AR creations and invite
feedback from other groups. This can also include group presentations, peer review, the discussion
and agreement on evaluation criteria.
Recording and Reflection – Group or individual reports explaining the use and purpose of the
application and development process helps to develop writing and reflective skills.
From this simple outline it is possible to see how AR can be integrated into learning in almost any
curriculum to help develop research, group working, planning, design, problem solving,
communication, recording presentation, writing and reflection. Apps such as the Overly self-authoring
tool (https://overlyapp.com); Instagram and Snapchat also have settings enabling adaption of images.
9. Conclusions
This paper has outlined some of the current (as of 2021) technology and applications of AR. Although
many of the examples are prototypes or experimental the overall trend is for a greater number of AR
systems being used in a wider variety of ways. The global market for Augmented reality is estimated
at USD 17 billion in 2020 and is expected to grow at 40% from 2021 to 2028
(https://www.grandviewresearch.com/industry-analysis/augmented-reality-market). The restrictions
on meeting in ‘the real world’ during the 2020/21 pandemic has increased awareness and demand
from a broader demographic outside the typical technophile / gaming enthusiasts
(https://www.theatlantic.com/technology/archive/2020/05/augmented-reality-instagram-
zoom/611494/).
The future for AR, as with many technologies is for high level specialist experimental systems to
become more popular and mainstream. There appear to be three main avenues for development -
high-value collaborative systems on dedicated hardware, mid-range interactive systems based on VR
headsets for gaming and more popular social media and shopping applications running on
smartphones.
A report by Juniper Research predicts that largest growth will be in users of smart glasses and
smartphone applications: (https://www.juniperresearch.com/resources/infographics/augmented-
mixed-reality-market-summary-key-ta)
• 67% of Smart Glasses apps will be for Gaming or Multimedia
• 75% of Mixed Reality apps will be delivered via Smartphone
• 40% of MR apps will be for Social Media
For further information please contact Professor Debbie Holley at Bournemouth University.
11 Augmented Realities White Paper 2021
Mike Hobbs: Visiting research fellow for the Centre for Excellence in Media Practice at Bournemouth
University. Previously senior lecturer in Computer Science at Anglia Ruskin University specialising in
Virtual worlds, Augmented Reality and Artificial Intelligence.
10. References
Adapa K., Jain S., Kanwar R., et al. (2020) Augmented reality in patient education and health literacy:
a scoping review protocol. BMJ Open 10:e038416. doi: 10.1136/bmjopen-2020-038416
Desselle, M.R., Brown, R.A., James, A.R., Midwinter, M.J, Powell S.K. and Woodruff, M.A. (2020)
Augmented and Virtual Reality in Surgery, in Computing in Science & Engineering, vol. 22, no. 3,
pp. 18-26, doi: 10.1109/MCSE.2020.2972822.
Hobbs, M. & Holley, D. (2016) Using Augmented Reality to Engage STEM Students with an Authentic
Curriculum. In: Vincenti G., Bucciero A., Vaz de Carvalho C. (Eds) E-Learning, E-Education, and
Online Training, LNICST, vol. 160. Springer, Cham. doi: 10.1007/978-3-319-28883-3_14
Hobbs, M., Brown, E., & Gordon, M. (2006) Using A Virtual World For Transferable Skills in Gaming
Education, Innovation in Teaching and Learning in Information and Computer Sciences, 5:3, 1-
13, DOI: 10.11120/ital.2006.05030006
Holley D., Hobbs M. (2020) Augmented Reality for Education. In: Peters
M., Heraud R. (Eds) Encyclopedia of Educational Innovation.
Springer, Singapore https://link.springer.com/referenceworkentry/10.1007/978-981-13-2262-
4_120-1
Klimova, A., Bilyatdinova, A., & Karsakov, A. (2018). Existing Teaching Practices in Augmented
Reality. In Procedia Computer Science (Vol. 136, pp. 5–15).
https://doi.org/10.1016/j.procs.2018.08.232
McKelvey, C., Dreyer, R., Zhu, D., Wang W., & Quarles, J. (2019) Energy-Oriented Designs of an
Augmented-Reality Application on a VUZIX Blade Smart Glass, Tenth International Green and
Sustainable Computing Conference (IGSC), Alexandria, VA, USA, 2019, pp. 1-8, doi:
10.1109/IGSC48788.2019.8957173
Parsons D., MacCallum K. (2021) Current Perspectives on Augmented Reality in Medical Education:
Applications, Affordances and Limitations. Adv Med Educ Pract. 19;12:77-91. doi:
10.2147/AMEP.S249891.
Yeung AWK, Tosevska A, Klager E, Eibensteiner F, Laxar D, Stoyanov J, Glisic M, Zeiner S, Kulnik ST,
Crutzen R, Kimberger O, Kletecka-Pulker M, Atanasov AG, Willschke H. (2021) Virtual and
Augmented Reality Applications in Medicine: Analysis of the Scientific Literature, J Med Internet
Res 2021;23(2):e25499doi: 10.2196/25499
11. Image Credits
Figure 4: Handheld devices used to view augmented : Clockwise from top left –
Pavlova, S. (2020) How 6 Brands Are Using Augmented Reality (and How You Can Too)
ThreeKit. Website: https://www.threekit.com/blog/6-brands-using-augmented-reality-in-
ecommerce
Andrew Makarov, A., (2021) MobiDev 10 Augmented reality trends in 2021, Website:
https://mobidev.biz/blog/augmented-reality-future-trends-2018-2020
12 Augmented Realities White Paper 2021
Thompson, J. (2018) Is Augmented Reality Transforming The Web Design Industry? KIJO.
Website: https://kijo.co.uk/blog/augmented-reality-web-design/
Prabhu, S. (2017) by Sanket Prabhu What is Augmented Reality and How Does It Work? AR
Reverie. Website: http://www.arreverie.com/blogs/how-ar-work/
Marr., B. (2018) 9 Powerful Real-World Applications Of Augmented Reality (AR) Today,
Forbes. Bernard Marr. Website: https://www.forbes.com/sites/bernardmarr/2018/07/30/9-
powerful-real-world-applications-of-augmented-reality-ar-today/
Debbie Holley is Professor of Learning Innovation at Bournemouth University, where she leads
innovation in research, teaching and professional practice within the Faculty of Health and Social
Sciences. Her expertise lies with blending learning and innovation to motivate and engage students
with their learning inside /outside the formal classroom, at a time and place of their own
choosing. As National Teaching Fellow, she is a passionate educator, and showcases and writes
extensively about the affordances of technologies such as Augmented Reality, Virtual/ Immersive
Realities and Mobile Learning.
Mike Hobbs is a visiting research fellow for the Centre for Excellence in Media Practice at
Bournemouth University. Previously senior lecturer in Computer Science at Anglia Ruskin University
specialising in Virtual worlds, Augmented Reality and Artificial Intelligence.

More Related Content

What's hot

Virtual reality(vr) assignment
Virtual reality(vr) assignmentVirtual reality(vr) assignment
Virtual reality(vr) assignment
Захір Райхан
 
Augmented reality..
Augmented reality..Augmented reality..
Augmented reality..
vishwesh sharma
 
XR (Extended reality) Current and future trends
XR (Extended reality) Current and future trendsXR (Extended reality) Current and future trends
XR (Extended reality) Current and future trends
Keyur Bhalavat
 
Virtual reality vs. augmented reality
Virtual reality vs. augmented realityVirtual reality vs. augmented reality
Virtual reality vs. augmented reality
Pixel Crayons
 
Virtual Reality & Augmented Reality
Virtual Reality & Augmented RealityVirtual Reality & Augmented Reality
Virtual Reality & Augmented Reality
Rajesh Yadav
 
Augmented Reality
Augmented RealityAugmented Reality
Augmented Reality
Apurva Hyanki
 
Virtual and Augmented Reality in Healthcare
Virtual and Augmented Reality in HealthcareVirtual and Augmented Reality in Healthcare
Virtual and Augmented Reality in Healthcare
Gary Monk
 
Augmented reality and Virtual reality in Healthcare
Augmented reality and Virtual reality in HealthcareAugmented reality and Virtual reality in Healthcare
Augmented reality and Virtual reality in Healthcare
AryaShahi
 
PPt With animation on Mera Digital India
PPt With animation on Mera Digital IndiaPPt With animation on Mera Digital India
PPt With animation on Mera Digital India
Ash Gray
 
VIRTUAL REALITY (VR) ppt
VIRTUAL REALITY (VR) pptVIRTUAL REALITY (VR) ppt
VIRTUAL REALITY (VR) ppt
KhumanDewangan
 
Augmented reality
Augmented realityAugmented reality
Augmented reality
Narendra kumar Jha
 
Seminar report on augmented and virtual reality
Seminar report on augmented and virtual realitySeminar report on augmented and virtual reality
Seminar report on augmented and virtual reality
Dheeraj Chauhan
 
Virtual Reality: A Step into Land of Imagination
Virtual Reality: A Step into Land of ImaginationVirtual Reality: A Step into Land of Imagination
Virtual Reality: A Step into Land of Imagination
Siddharth Mishra
 
Virtual Reality in education
Virtual Reality in educationVirtual Reality in education
Virtual Reality in education
Juego Studio
 
Augmented reality and Virtual Reality in Real Estate
Augmented reality and Virtual Reality in Real EstateAugmented reality and Virtual Reality in Real Estate
Augmented reality and Virtual Reality in Real Estate
Sattva Rise
 
Augmented Reality
Augmented RealityAugmented Reality
Augmented Reality
Ashita Agrawal
 
Digital Twin: A radical new approach to IoT
Digital Twin: A radical new approach to IoTDigital Twin: A radical new approach to IoT
Digital Twin: A radical new approach to IoT
Dimitri Volkmann
 
Virtual reality
Virtual realityVirtual reality
Virtual reality
HETALPANDYA13
 
Augmented Reality & Applications
Augmented Reality & ApplicationsAugmented Reality & Applications
Augmented Reality & Applications
Jishnu Pradeep
 

What's hot (20)

Virtual reality(vr) assignment
Virtual reality(vr) assignmentVirtual reality(vr) assignment
Virtual reality(vr) assignment
 
Augmented reality..
Augmented reality..Augmented reality..
Augmented reality..
 
XR (Extended reality) Current and future trends
XR (Extended reality) Current and future trendsXR (Extended reality) Current and future trends
XR (Extended reality) Current and future trends
 
Virtual reality vs. augmented reality
Virtual reality vs. augmented realityVirtual reality vs. augmented reality
Virtual reality vs. augmented reality
 
E-business
E-businessE-business
E-business
 
Virtual Reality & Augmented Reality
Virtual Reality & Augmented RealityVirtual Reality & Augmented Reality
Virtual Reality & Augmented Reality
 
Augmented Reality
Augmented RealityAugmented Reality
Augmented Reality
 
Virtual and Augmented Reality in Healthcare
Virtual and Augmented Reality in HealthcareVirtual and Augmented Reality in Healthcare
Virtual and Augmented Reality in Healthcare
 
Augmented reality and Virtual reality in Healthcare
Augmented reality and Virtual reality in HealthcareAugmented reality and Virtual reality in Healthcare
Augmented reality and Virtual reality in Healthcare
 
PPt With animation on Mera Digital India
PPt With animation on Mera Digital IndiaPPt With animation on Mera Digital India
PPt With animation on Mera Digital India
 
VIRTUAL REALITY (VR) ppt
VIRTUAL REALITY (VR) pptVIRTUAL REALITY (VR) ppt
VIRTUAL REALITY (VR) ppt
 
Augmented reality
Augmented realityAugmented reality
Augmented reality
 
Seminar report on augmented and virtual reality
Seminar report on augmented and virtual realitySeminar report on augmented and virtual reality
Seminar report on augmented and virtual reality
 
Virtual Reality: A Step into Land of Imagination
Virtual Reality: A Step into Land of ImaginationVirtual Reality: A Step into Land of Imagination
Virtual Reality: A Step into Land of Imagination
 
Virtual Reality in education
Virtual Reality in educationVirtual Reality in education
Virtual Reality in education
 
Augmented reality and Virtual Reality in Real Estate
Augmented reality and Virtual Reality in Real EstateAugmented reality and Virtual Reality in Real Estate
Augmented reality and Virtual Reality in Real Estate
 
Augmented Reality
Augmented RealityAugmented Reality
Augmented Reality
 
Digital Twin: A radical new approach to IoT
Digital Twin: A radical new approach to IoTDigital Twin: A radical new approach to IoT
Digital Twin: A radical new approach to IoT
 
Virtual reality
Virtual realityVirtual reality
Virtual reality
 
Augmented Reality & Applications
Augmented Reality & ApplicationsAugmented Reality & Applications
Augmented Reality & Applications
 

Similar to Augmented Realities 2021

Mobile Augmented Reality Development Tools
Mobile Augmented Reality Development ToolsMobile Augmented Reality Development Tools
Mobile Augmented Reality Development Tools
Upekha Vandebona
 
Project glass ieee document
Project glass ieee documentProject glass ieee document
Project glass ieee documentbhavyakishore
 
IRJET- Data Visualization using Augmented Reality
IRJET- Data Visualization using Augmented RealityIRJET- Data Visualization using Augmented Reality
IRJET- Data Visualization using Augmented Reality
IRJET Journal
 
Augmented Reality in Medical Education
Augmented Reality in Medical EducationAugmented Reality in Medical Education
Augmented Reality in Medical Education
IRJET Journal
 
Augmented reality ppt
Augmented reality pptAugmented reality ppt
Augmented reality ppt
Sourav Rout
 
PRO-VAS: utilizing AR and VSLAM for mobile apps development in visualizing ob...
PRO-VAS: utilizing AR and VSLAM for mobile apps development in visualizing ob...PRO-VAS: utilizing AR and VSLAM for mobile apps development in visualizing ob...
PRO-VAS: utilizing AR and VSLAM for mobile apps development in visualizing ob...
TELKOMNIKA JOURNAL
 
Augmented Reality - A look before you leap
Augmented Reality - A look before you leapAugmented Reality - A look before you leap
Augmented Reality - A look before you leapGnana Sundar Rajendiran
 
Augmented Reality for Smart Profile Display Part-1
Augmented Reality for Smart Profile Display Part-1Augmented Reality for Smart Profile Display Part-1
Augmented Reality for Smart Profile Display Part-1
IRJET Journal
 
Augmented Reality for Smart Profile Display Part-1
Augmented Reality for Smart Profile Display Part-1Augmented Reality for Smart Profile Display Part-1
Augmented Reality for Smart Profile Display Part-1
IRJET Journal
 
What is Augmented Reality – Technology, Types & Usage 2019 | EvolveAR
What is Augmented Reality – Technology, Types & Usage 2019 | EvolveARWhat is Augmented Reality – Technology, Types & Usage 2019 | EvolveAR
What is Augmented Reality – Technology, Types & Usage 2019 | EvolveAR
iamwonchen
 
Augmented Reality Meets Business
Augmented Reality Meets BusinessAugmented Reality Meets Business
Augmented Reality Meets Businessniidtech
 
Google Glass: A Futuristic Fashion Failure Gadget
Google Glass: A Futuristic Fashion Failure  GadgetGoogle Glass: A Futuristic Fashion Failure  Gadget
Google Glass: A Futuristic Fashion Failure Gadget
Md. Salim Reza Jony
 
Augmented reality documentation
Augmented reality documentationAugmented reality documentation
Augmented reality documentation
Bhargav Doddala
 
Augmented Reality And Its Science
Augmented Reality And Its ScienceAugmented Reality And Its Science
Augmented Reality And Its Science
Lisa Graves
 
Augmented-Reality-ppt.pptx
Augmented-Reality-ppt.pptxAugmented-Reality-ppt.pptx
Augmented-Reality-ppt.pptx
MarvalousMohan
 
Augmented Reality.pptx
Augmented Reality.pptxAugmented Reality.pptx
Augmented Reality.pptx
Margaret Mary
 
Wearables and Google Glass
Wearables and Google GlassWearables and Google Glass
Wearables and Google Glass
Marta Rauch
 
Augmented reality ppt
Augmented reality pptAugmented reality ppt
Augmented reality ppt
Dark Side
 

Similar to Augmented Realities 2021 (20)

Mobile Augmented Reality Development Tools
Mobile Augmented Reality Development ToolsMobile Augmented Reality Development Tools
Mobile Augmented Reality Development Tools
 
Project glass ieee document
Project glass ieee documentProject glass ieee document
Project glass ieee document
 
IRJET- Data Visualization using Augmented Reality
IRJET- Data Visualization using Augmented RealityIRJET- Data Visualization using Augmented Reality
IRJET- Data Visualization using Augmented Reality
 
Augmented Reality in Medical Education
Augmented Reality in Medical EducationAugmented Reality in Medical Education
Augmented Reality in Medical Education
 
Augmented reality ppt
Augmented reality pptAugmented reality ppt
Augmented reality ppt
 
PRO-VAS: utilizing AR and VSLAM for mobile apps development in visualizing ob...
PRO-VAS: utilizing AR and VSLAM for mobile apps development in visualizing ob...PRO-VAS: utilizing AR and VSLAM for mobile apps development in visualizing ob...
PRO-VAS: utilizing AR and VSLAM for mobile apps development in visualizing ob...
 
Augmented Reality - A look before you leap
Augmented Reality - A look before you leapAugmented Reality - A look before you leap
Augmented Reality - A look before you leap
 
Augmented Reality for Smart Profile Display Part-1
Augmented Reality for Smart Profile Display Part-1Augmented Reality for Smart Profile Display Part-1
Augmented Reality for Smart Profile Display Part-1
 
Augmented Reality for Smart Profile Display Part-1
Augmented Reality for Smart Profile Display Part-1Augmented Reality for Smart Profile Display Part-1
Augmented Reality for Smart Profile Display Part-1
 
What is Augmented Reality – Technology, Types & Usage 2019 | EvolveAR
What is Augmented Reality – Technology, Types & Usage 2019 | EvolveARWhat is Augmented Reality – Technology, Types & Usage 2019 | EvolveAR
What is Augmented Reality – Technology, Types & Usage 2019 | EvolveAR
 
Augmented Reality Meets Business
Augmented Reality Meets BusinessAugmented Reality Meets Business
Augmented Reality Meets Business
 
Google Glass: A Futuristic Fashion Failure Gadget
Google Glass: A Futuristic Fashion Failure  GadgetGoogle Glass: A Futuristic Fashion Failure  Gadget
Google Glass: A Futuristic Fashion Failure Gadget
 
CMPE- 280-Research_paper
CMPE- 280-Research_paperCMPE- 280-Research_paper
CMPE- 280-Research_paper
 
Augmented reality documentation
Augmented reality documentationAugmented reality documentation
Augmented reality documentation
 
Report_Maryna Razakhatskaya
Report_Maryna RazakhatskayaReport_Maryna Razakhatskaya
Report_Maryna Razakhatskaya
 
Augmented Reality And Its Science
Augmented Reality And Its ScienceAugmented Reality And Its Science
Augmented Reality And Its Science
 
Augmented-Reality-ppt.pptx
Augmented-Reality-ppt.pptxAugmented-Reality-ppt.pptx
Augmented-Reality-ppt.pptx
 
Augmented Reality.pptx
Augmented Reality.pptxAugmented Reality.pptx
Augmented Reality.pptx
 
Wearables and Google Glass
Wearables and Google GlassWearables and Google Glass
Wearables and Google Glass
 
Augmented reality ppt
Augmented reality pptAugmented reality ppt
Augmented reality ppt
 

More from debbieholley1

Evidencing Excellence in teaching, learning and assessment
Evidencing Excellence in teaching, learning and assessmentEvidencing Excellence in teaching, learning and assessment
Evidencing Excellence in teaching, learning and assessment
debbieholley1
 
Visualisation and Simulation for teaching, learning and assessment
Visualisation and Simulation for teaching, learning and assessmentVisualisation and Simulation for teaching, learning and assessment
Visualisation and Simulation for teaching, learning and assessment
debbieholley1
 
Building digital capability across the university sector
Building digital capability across the university sectorBuilding digital capability across the university sector
Building digital capability across the university sector
debbieholley1
 
Spaghetti Symphony to Technology Harmony
Spaghetti Symphony to Technology  HarmonySpaghetti Symphony to Technology  Harmony
Spaghetti Symphony to Technology Harmony
debbieholley1
 
Student reboot 4.0: the affordances of their Brave New World
Student reboot 4.0: the affordances of their Brave New WorldStudent reboot 4.0: the affordances of their Brave New World
Student reboot 4.0: the affordances of their Brave New World
debbieholley1
 
Valuing the invisible: metrics and meaning
Valuing the invisible: metrics and meaningValuing the invisible: metrics and meaning
Valuing the invisible: metrics and meaning
debbieholley1
 
Towards a taxonomy of scale: a sustainable approach
Towards a taxonomy of scale: a sustainable approachTowards a taxonomy of scale: a sustainable approach
Towards a taxonomy of scale: a sustainable approach
debbieholley1
 
The Brave New World of the University of Bedfordshire (v4.0)
The Brave New World of the University of Bedfordshire (v4.0)  The Brave New World of the University of Bedfordshire (v4.0)
The Brave New World of the University of Bedfordshire (v4.0)
debbieholley1
 
Creating authentic learning environments: An evaluation of Godzilla (II) the...
Creating authentic learning environments: An evaluation of  Godzilla (II) the...Creating authentic learning environments: An evaluation of  Godzilla (II) the...
Creating authentic learning environments: An evaluation of Godzilla (II) the...
debbieholley1
 
Tech Chat: technology mediated learning
Tech Chat: technology mediated learning Tech Chat: technology mediated learning
Tech Chat: technology mediated learning
debbieholley1
 
Creating a culture for learning
Creating a culture for learning Creating a culture for learning
Creating a culture for learning
debbieholley1
 
Why students engage in simulation and how it prepares them for work
Why students engage in simulation and how it prepares them for workWhy students engage in simulation and how it prepares them for work
Why students engage in simulation and how it prepares them for work
debbieholley1
 
A manifesto for the metaverse: opportunities and challenges for learning deve...
A manifesto for the metaverse: opportunities and challenges for learning deve...A manifesto for the metaverse: opportunities and challenges for learning deve...
A manifesto for the metaverse: opportunities and challenges for learning deve...
debbieholley1
 
Recognition for learning developers
Recognition for learning developersRecognition for learning developers
Recognition for learning developers
debbieholley1
 
Why students engage in simulation and how it prepares them for work
Why students engage in simulation and how it prepares them for workWhy students engage in simulation and how it prepares them for work
Why students engage in simulation and how it prepares them for work
debbieholley1
 
Simulation theory briefing paper (ALDinHE Conference 2023)
Simulation theory briefing paper (ALDinHE Conference 2023) Simulation theory briefing paper (ALDinHE Conference 2023)
Simulation theory briefing paper (ALDinHE Conference 2023)
debbieholley1
 
Technostress and the student experience
Technostress and the student experienceTechnostress and the student experience
Technostress and the student experience
debbieholley1
 
Harnessing the Blend: Creating authentic learning experiences
Harnessing the Blend: Creating authentic learning experiencesHarnessing the Blend: Creating authentic learning experiences
Harnessing the Blend: Creating authentic learning experiences
debbieholley1
 
Metaphor (money) and Metaverse
Metaphor (money) and MetaverseMetaphor (money) and Metaverse
Metaphor (money) and Metaverse
debbieholley1
 
"The future is human, and the future of learning is immersive": discuss
 "The future is human, and the future of learning is immersive": discuss  "The future is human, and the future of learning is immersive": discuss
"The future is human, and the future of learning is immersive": discuss
debbieholley1
 

More from debbieholley1 (20)

Evidencing Excellence in teaching, learning and assessment
Evidencing Excellence in teaching, learning and assessmentEvidencing Excellence in teaching, learning and assessment
Evidencing Excellence in teaching, learning and assessment
 
Visualisation and Simulation for teaching, learning and assessment
Visualisation and Simulation for teaching, learning and assessmentVisualisation and Simulation for teaching, learning and assessment
Visualisation and Simulation for teaching, learning and assessment
 
Building digital capability across the university sector
Building digital capability across the university sectorBuilding digital capability across the university sector
Building digital capability across the university sector
 
Spaghetti Symphony to Technology Harmony
Spaghetti Symphony to Technology  HarmonySpaghetti Symphony to Technology  Harmony
Spaghetti Symphony to Technology Harmony
 
Student reboot 4.0: the affordances of their Brave New World
Student reboot 4.0: the affordances of their Brave New WorldStudent reboot 4.0: the affordances of their Brave New World
Student reboot 4.0: the affordances of their Brave New World
 
Valuing the invisible: metrics and meaning
Valuing the invisible: metrics and meaningValuing the invisible: metrics and meaning
Valuing the invisible: metrics and meaning
 
Towards a taxonomy of scale: a sustainable approach
Towards a taxonomy of scale: a sustainable approachTowards a taxonomy of scale: a sustainable approach
Towards a taxonomy of scale: a sustainable approach
 
The Brave New World of the University of Bedfordshire (v4.0)
The Brave New World of the University of Bedfordshire (v4.0)  The Brave New World of the University of Bedfordshire (v4.0)
The Brave New World of the University of Bedfordshire (v4.0)
 
Creating authentic learning environments: An evaluation of Godzilla (II) the...
Creating authentic learning environments: An evaluation of  Godzilla (II) the...Creating authentic learning environments: An evaluation of  Godzilla (II) the...
Creating authentic learning environments: An evaluation of Godzilla (II) the...
 
Tech Chat: technology mediated learning
Tech Chat: technology mediated learning Tech Chat: technology mediated learning
Tech Chat: technology mediated learning
 
Creating a culture for learning
Creating a culture for learning Creating a culture for learning
Creating a culture for learning
 
Why students engage in simulation and how it prepares them for work
Why students engage in simulation and how it prepares them for workWhy students engage in simulation and how it prepares them for work
Why students engage in simulation and how it prepares them for work
 
A manifesto for the metaverse: opportunities and challenges for learning deve...
A manifesto for the metaverse: opportunities and challenges for learning deve...A manifesto for the metaverse: opportunities and challenges for learning deve...
A manifesto for the metaverse: opportunities and challenges for learning deve...
 
Recognition for learning developers
Recognition for learning developersRecognition for learning developers
Recognition for learning developers
 
Why students engage in simulation and how it prepares them for work
Why students engage in simulation and how it prepares them for workWhy students engage in simulation and how it prepares them for work
Why students engage in simulation and how it prepares them for work
 
Simulation theory briefing paper (ALDinHE Conference 2023)
Simulation theory briefing paper (ALDinHE Conference 2023) Simulation theory briefing paper (ALDinHE Conference 2023)
Simulation theory briefing paper (ALDinHE Conference 2023)
 
Technostress and the student experience
Technostress and the student experienceTechnostress and the student experience
Technostress and the student experience
 
Harnessing the Blend: Creating authentic learning experiences
Harnessing the Blend: Creating authentic learning experiencesHarnessing the Blend: Creating authentic learning experiences
Harnessing the Blend: Creating authentic learning experiences
 
Metaphor (money) and Metaverse
Metaphor (money) and MetaverseMetaphor (money) and Metaverse
Metaphor (money) and Metaverse
 
"The future is human, and the future of learning is immersive": discuss
 "The future is human, and the future of learning is immersive": discuss  "The future is human, and the future of learning is immersive": discuss
"The future is human, and the future of learning is immersive": discuss
 

Recently uploaded

Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
Peter Windle
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 

Recently uploaded (20)

Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 

Augmented Realities 2021

  • 1. 1 Augmented Realities White Paper 2021 Augmented Realities 2021 A‘whitepaper’overviewbyDrMikeHobbs,Visitingresearchfellow,CEMP,BournemouthUniversity and ProfessorDebbieHolley, CEMPandDepartmentof NursingSciences Bournemouth University This briefing paper outlines and summarises recent developments in the context and range of technologies for delivering Augmented Reality (AR). We share some of the uses of the products and examples of applications in social, commercial, medical and educational applications; but make no claim as to this being a full inventory. The work can be read as an independent document or as an extended commentary providing more detail to support the Augmented Reality for Education article in the Encyclopaedia of Educational Innovation (Holley, Hobbs 2020) and the Augmented Reality and Learning Innovation presentation at Edutech 2021 (Holley 2021). Figure 1 shows a continuum of viewing devices that support applications from simple social media filters to sophisticated collaborative, real-time, augmented collaboration. After a brief description of Augmented Reality this document describes the technology and applications in the following sections: • Smart phones • 3D viewer • Glasses • Headsets • Collaboration systems • Medical applications • AR for learning and teaching Figure 1: Relationships between AR viewing device technology. From (Holley, Hobbs 2020)
  • 2. 2 Augmented Realities White Paper 2021 1. What is Augmented Reality? The ‘Augmented’ part of Augmented Reality has grown out of the technology used for environments such as computer games that show interactive 2D or 3D media on display screens. Recent advances in network capacity and processing power of mobile devices allows high quality graphics to be streamed to devices enabling activities such as watching films and playing online games. AR utilises the real world as a trigger, through a predetermined location or image, to play context relevant images, sounds and media as an overlay to a scene watched through the camera of a smart phone or dedicated headset. Media can be trigged through scanning the real-world scene or through unique indicators, such as QR codes, or via location sensors that can also provide notifications to indicate available media. All of these techniques are essentially a way of generating a unique identifier, similar to a URL, that the system can recognise. The media can be pre-loaded into a dedicated app, streamed from a server or the AR can provide a link to a website that can be viewed in the normal way via a browser. When played the media can overlay a small part or the whole scene, often replacing it with a matching background image to provide context. Media can include interactive ‘hotspots’ that allow users to make selections or provide feedback. In this respect a highly developed AR system becomes similar to Virtual Reality (VR) where an entire 3D scene is typically modelled in detail to provide realistic interactions in areas such as architecture, engineering and science. This technology is continually developing with increasing capabilities in areas of collaboration, communication, and interaction as well as improvements in the usability and quality of viewing devices. Figure 2 shows that AR is part of a continuum that utilise different aspects of virtual technology to provide immersive media experiences. Increasingly the boarders between these classifications are being blurred by ‘mixed’ reality that combines features from both augmented and virtual in products and applications. Microsoft provide a helpful explanatory article on mixed reality using their HoloLens viewer as an example (Microsoft 2020). A good introduction to AR is provided in Hobbs and Holley (2016), and an early educational example of the use of virtual worlds, that puts this into a pedagogic context is provided in Hobbs and Gordon (2008). A contemporary review of teaching with AR is given by Klimova et al. (2018). Figure 2: Continuum of augmented and virtual environments (from Hobbs, Holley 2020)
  • 3. 3 Augmented Realities White Paper 2021 When assessing the attributes of augmented reality, it is important to remember the existing technology we take for granted for recording, displaying, and manipulating media recorded from real world events and activities. The advantages of any AR system or application need to be considered with respect to how it extends capabilities, rather than merely duplicating common features of display and communication. Good questions are ‘can we already do this?’ ‘why is this useful?’ ‘what can I do with this that I could not do before’. 2. Smart Phones Accessing AR through a smart phone has benefits of cost, simplicity, ubiquity, and accessibility. Figure 4 shows a variety of devices and applications. Social media platforms such as Snapchat (https://lensstudio.snapchat.com/) and Instagram (https://www.instagram.com/sparkarcreators/) Figure 4: Handheld devices used to view augmented reality. (image credits in section 11) Figure 3: 'Real world' technology for document creation, web resources, media capture, creation and presentation, video streaming and live communication
  • 4. 4 Augmented Realities White Paper 2021 provide tools to create AR artefacts in addition to the simple application of image filters. These platforms have a large following and help to normalise AR with the potential to lead onto more sophisticated applications such as online shopping. Apple (https://www.apple.com/uk/augmented-reality/) and Google (https://arvr.google.com/ar/) provide support for AR and application developers. However, for more sophisticated AR applications there remain issues of compatibility between providers, where a choice may need to be made between IoS or Android, and commonly the most recent features are only available on the latest devices. 3. 3D Smart Phone Viewers Smart phones can run applications that split the screen to provide stereo vison, (shown in figure 6) creating a 3D image when viewed through a set of lenses. This is the basis of the simple ‘Google Cardboard’ (https://arvr.google.com/cardboard/apps/ ) and many other viewers use the same principle (Google cardboard and some viewers are shown in figure 5). Figure 5: Google Cardboard devices, from Google AR & VR website: https://arvr.google.com/cardboard/
  • 5. 5 Augmented Realities White Paper 2021 Figure 6: Split screen on a smart phone for 3D stereo viewing Applications are available for users to create and share their own media to enable 360 panorama views by stitching together a sequence of continuously recorded video or images, (https://www.goodfirms.co/blog/best-free-open-source-virtual-tour-software-solutions) . These can be used to create virtual tours and can include hotspot links to relevant websites. While relatively cheap and effective the quality of the screen in terms of pixel density and refresh rate are critical for these systems and the image is held much closer to the eyes and often magnified. Currently there are many smart glasses available that allow generic AR as well as dedicated AR applications, such as drone controllers that allow the wearer to see the real world as well as the projected display from the drone (https://www.dronezon.com/drone-reviews/fpv-goggles-for- drones-to-experience-the-thrill-of-flying/) . The smart glasses range from simple audio delivery to the fully integrated AR processing such as the ODG-R9 (https://www.osterhoutgroup.com/r-9- smartglasses) that incorporates the same processor found on powerful smart phones. 4. Smart Glasses Figure 7: Examples of smart glass wearable devices Clockwise from top left: Everysight Raptor AR smart glasses, Website: https://everysight.com/ Everysight Headup display from Raptor AR smart Glasses https://everysight.com/ Solos smart glasses, https://www.solos- wearables.com/ Vuzix blade upgraded https://www.vuzix.com/products /blade-smart-glasses-upgraded
  • 6. 6 Augmented Realities White Paper 2021 The original ‘Google Glass’ generated considerable interest when it was launched in 2014, resembling a pair of spectacles with a camera / audio input and a small ‘head up’ display projector attached to one lens. Although it was not a commercial success it did encourage other developers to create similar ‘Smart Glasses’ devices. The advantage of the Smart Glass format is that it is light, mobile, and can be paired up with smart phones for data storage, communication and to provide an interface to mobile apps. Data is typically presented as 2D graphics and is particularly suitable for location information, fitness data, and simple internet search results. An example is the Solos smart glass (shown in figure 7) which is a dedicated device giving a heads-up display for cyclists and runners – provides directions, speed, and other performance data outputs (https://www.solos-wearables.com/) An example that demonstrates smart glass capabilities is the Vuzix Blade Upgraded, as shown in figure 8. A recent development combining the smart glasses camera and display with remote AI processing and database access is mobile face recognition. A controversial application is for mobile security which has been demonstrated using the Vuzix blade (https://techcrunch.com/2019/06/10/vuzix-smart-glasses- get-automatic-facial-recognition-designed-for-law-enforcement/). A more benign application is the experimental app called FaceReminder (McKelvey, et al 2019). This uses similar technology to support users with face blindness and short-memory problems by showing the name of a person on the heads- up glasses display. Figure 8: Detail of wearable smart glasses, Vuzix blade upgraded https://www.vuzix.com
  • 7. 7 Augmented Realities White Paper 2021 5. VR Headsets Another route to AR has been by adapting virtual reality headsets such as Oculus, HTC vive, and Microsoft Hololens (shown in figure 9) by integrating a digital camera feed. Typically tethered to a computer for their processing power, newer versions enable these to operate independently allowing the full range of movement needed for AR systems. The Microsoft Hololens uses a headset to combine real and virtual elements in a shared, augmented, environment. Relatively expensive it provides a high-quality AR it has been used in a range of AR applications; it has shown potential for AR based collaborative projects allowing participants from different locations to interact with 3D models for engineering and medical projects. Microsoft are promoting the Hololens as a platform for a broad range of mixed reality applications, providing a dedicated development API (https://docs.microsoft.com/en-us/windows/mixed-reality/design) The Magic Leap ( https://www.magicleap.com/) product shows an interesting development of a possible future hybrid between a full VR headset and the smart glass concept. 6. AR Collaboration Systems An actively developing area is the use of AR as a remote collaboration tool. A full system uses relatively expensive and sophisticated equipment two sites and can be used for field workers to share knowledge and guidance in real time, or via recorded information with remote experts. This allows users to capture images and remote experts to chat, give notes, annotate video and provide overlays of information and documents. Pointr (figure 10) provide dedicated or bespoke systems that are used in power plants, maritime and industrial facility maintenance. Figure 9: Composite picture showing AR headset viewers. (top row, both images) Microsoft Hololens 2, https://www.microsoft.com/en-us/hololens/ HTC Vive : N. Lee, 2019, Endgadget, HTC Vive Cosmos hands-on: VR never looked so good https://www.engadget.com/2019-09-12-htc-vive-cosmos-hands-on.html Oculus Quest: Porter, J., 2020, Facebook’s Oculus Quest 2 leaks in full via official promo videos, The Verge Sept 12th 2020 .
  • 8. 8 Augmented Realities White Paper 2021 HelpLightning Remote Virtual Assistance (figure 11) provide a range of collaboration and communication tools with real time AR overlays. 7. Medical Applications A recent review of AR in Medical Education (Parsons and MacCallam 2021) concluded that AR was more effective than other training. While mainly focused on anatomy and surgery AR is being used in other areas, such as nursing, telemonitoring, neuroanatomy. Key affordances were stated as visualizing the invisible, developing practical skills in a spatial context, device portability across locations, situated learning in context and reducing negative impact. As well as educating practitioners, AR is being used to inform and improve outcomes for patients by increasing their understanding of procedures as well as assisting in treatments such as exercises and improving their mental resilience (Adapa et al 2020). Often the same technology and companies provide education Figure10: Image shows remote expert identifying correct location for intervention (Delta Cygni Labs, https://dynamic.pointr.com/solution/ Figure 11: Image shows remote expert pointing at a component. HelpLightning Next Generation Video Conferencing https://helplightning.com/
  • 9. 9 Augmented Realities White Paper 2021 services in addition to fully functioning medical AR systems. Typical services are overlay imagery for surgery, remote and robotic surgery, visualisation of patient anatomy and context aware access to patient data during treatment (Desselle et al 2020) The same technology used for medical involved in producing medical systems The Proximie system, (https://proximie.com/ ) is a dedicated medical AR system used to enable overlays of patient and other medical information in surgery and remote expert assistance. In June 2020 a cancer operation was successfully completed remotely using a robotic arm using this system to support the collaboration (figure 12). 8. Augmented reality for learning and teaching AR Affordances for learning and teaching: • Visualization – of remote, difficult or impossible to see, of concepts and events. • Situated learning – mobile, context and location aware. • Real time – immediacy, on demand • User directed – Interaction directed by the user. • 3D interaction – Enabling exploration of objects, scenes and concepts. • Collaborative – group projects, remote presence, sharing AR as social media. • Immersive – presence (within the scenario) • Problem solving – by user created AR artefacts, or AR games and puzzles. Additional affordances are provided by using AR as a creative or social media too situated within a group project. Here is a suggested outline for developing a generic student task in any discipline: Introduction – Get students to self-select or allocate students to groups of between three and five members. Introduce an AR technology with supporting links and examples. Ensure each group has at least one device that can create and view the technology. Set an initial task such as choosing a group name and creating an AR logo for their team. Communication– Groups can choose or be directed to communication applications for remote working, blogging and/or project management sites for recording meetings, design, discussion and Figure 12: Sky News, Live: Operation Broadcast In Virtual Reality https://news.sky.com/story/live-operation-broadcast-in-virtual-reality-10242518
  • 10. 10 Augmented Realities White Paper 2021 progress. Groups can present their team’s name and AR logo to the class, helping to practice group working, presentation, communication and organisation skills. Task Allocation – Provide a theme with clearly defined criteria around the size and complexity of the task, for example having each group member contribute one AR artefact for the group application. Typical example topics are a virtual tour around the institution, a game, enhancing course materials, creating AR posters or books. Design and Creation – Students can plan script and storyboard their AR application. They can either create their own media or use existing virtual, video and sound materials. Creating AR materials to be combined in a single experience develops cooperation, group working, research, planning and design skills. Evaluation – As part of the development process groups can share their AR creations and invite feedback from other groups. This can also include group presentations, peer review, the discussion and agreement on evaluation criteria. Recording and Reflection – Group or individual reports explaining the use and purpose of the application and development process helps to develop writing and reflective skills. From this simple outline it is possible to see how AR can be integrated into learning in almost any curriculum to help develop research, group working, planning, design, problem solving, communication, recording presentation, writing and reflection. Apps such as the Overly self-authoring tool (https://overlyapp.com); Instagram and Snapchat also have settings enabling adaption of images. 9. Conclusions This paper has outlined some of the current (as of 2021) technology and applications of AR. Although many of the examples are prototypes or experimental the overall trend is for a greater number of AR systems being used in a wider variety of ways. The global market for Augmented reality is estimated at USD 17 billion in 2020 and is expected to grow at 40% from 2021 to 2028 (https://www.grandviewresearch.com/industry-analysis/augmented-reality-market). The restrictions on meeting in ‘the real world’ during the 2020/21 pandemic has increased awareness and demand from a broader demographic outside the typical technophile / gaming enthusiasts (https://www.theatlantic.com/technology/archive/2020/05/augmented-reality-instagram- zoom/611494/). The future for AR, as with many technologies is for high level specialist experimental systems to become more popular and mainstream. There appear to be three main avenues for development - high-value collaborative systems on dedicated hardware, mid-range interactive systems based on VR headsets for gaming and more popular social media and shopping applications running on smartphones. A report by Juniper Research predicts that largest growth will be in users of smart glasses and smartphone applications: (https://www.juniperresearch.com/resources/infographics/augmented- mixed-reality-market-summary-key-ta) • 67% of Smart Glasses apps will be for Gaming or Multimedia • 75% of Mixed Reality apps will be delivered via Smartphone • 40% of MR apps will be for Social Media For further information please contact Professor Debbie Holley at Bournemouth University.
  • 11. 11 Augmented Realities White Paper 2021 Mike Hobbs: Visiting research fellow for the Centre for Excellence in Media Practice at Bournemouth University. Previously senior lecturer in Computer Science at Anglia Ruskin University specialising in Virtual worlds, Augmented Reality and Artificial Intelligence. 10. References Adapa K., Jain S., Kanwar R., et al. (2020) Augmented reality in patient education and health literacy: a scoping review protocol. BMJ Open 10:e038416. doi: 10.1136/bmjopen-2020-038416 Desselle, M.R., Brown, R.A., James, A.R., Midwinter, M.J, Powell S.K. and Woodruff, M.A. (2020) Augmented and Virtual Reality in Surgery, in Computing in Science & Engineering, vol. 22, no. 3, pp. 18-26, doi: 10.1109/MCSE.2020.2972822. Hobbs, M. & Holley, D. (2016) Using Augmented Reality to Engage STEM Students with an Authentic Curriculum. In: Vincenti G., Bucciero A., Vaz de Carvalho C. (Eds) E-Learning, E-Education, and Online Training, LNICST, vol. 160. Springer, Cham. doi: 10.1007/978-3-319-28883-3_14 Hobbs, M., Brown, E., & Gordon, M. (2006) Using A Virtual World For Transferable Skills in Gaming Education, Innovation in Teaching and Learning in Information and Computer Sciences, 5:3, 1- 13, DOI: 10.11120/ital.2006.05030006 Holley D., Hobbs M. (2020) Augmented Reality for Education. In: Peters M., Heraud R. (Eds) Encyclopedia of Educational Innovation. Springer, Singapore https://link.springer.com/referenceworkentry/10.1007/978-981-13-2262- 4_120-1 Klimova, A., Bilyatdinova, A., & Karsakov, A. (2018). Existing Teaching Practices in Augmented Reality. In Procedia Computer Science (Vol. 136, pp. 5–15). https://doi.org/10.1016/j.procs.2018.08.232 McKelvey, C., Dreyer, R., Zhu, D., Wang W., & Quarles, J. (2019) Energy-Oriented Designs of an Augmented-Reality Application on a VUZIX Blade Smart Glass, Tenth International Green and Sustainable Computing Conference (IGSC), Alexandria, VA, USA, 2019, pp. 1-8, doi: 10.1109/IGSC48788.2019.8957173 Parsons D., MacCallum K. (2021) Current Perspectives on Augmented Reality in Medical Education: Applications, Affordances and Limitations. Adv Med Educ Pract. 19;12:77-91. doi: 10.2147/AMEP.S249891. Yeung AWK, Tosevska A, Klager E, Eibensteiner F, Laxar D, Stoyanov J, Glisic M, Zeiner S, Kulnik ST, Crutzen R, Kimberger O, Kletecka-Pulker M, Atanasov AG, Willschke H. (2021) Virtual and Augmented Reality Applications in Medicine: Analysis of the Scientific Literature, J Med Internet Res 2021;23(2):e25499doi: 10.2196/25499 11. Image Credits Figure 4: Handheld devices used to view augmented : Clockwise from top left – Pavlova, S. (2020) How 6 Brands Are Using Augmented Reality (and How You Can Too) ThreeKit. Website: https://www.threekit.com/blog/6-brands-using-augmented-reality-in- ecommerce Andrew Makarov, A., (2021) MobiDev 10 Augmented reality trends in 2021, Website: https://mobidev.biz/blog/augmented-reality-future-trends-2018-2020
  • 12. 12 Augmented Realities White Paper 2021 Thompson, J. (2018) Is Augmented Reality Transforming The Web Design Industry? KIJO. Website: https://kijo.co.uk/blog/augmented-reality-web-design/ Prabhu, S. (2017) by Sanket Prabhu What is Augmented Reality and How Does It Work? AR Reverie. Website: http://www.arreverie.com/blogs/how-ar-work/ Marr., B. (2018) 9 Powerful Real-World Applications Of Augmented Reality (AR) Today, Forbes. Bernard Marr. Website: https://www.forbes.com/sites/bernardmarr/2018/07/30/9- powerful-real-world-applications-of-augmented-reality-ar-today/ Debbie Holley is Professor of Learning Innovation at Bournemouth University, where she leads innovation in research, teaching and professional practice within the Faculty of Health and Social Sciences. Her expertise lies with blending learning and innovation to motivate and engage students with their learning inside /outside the formal classroom, at a time and place of their own choosing. As National Teaching Fellow, she is a passionate educator, and showcases and writes extensively about the affordances of technologies such as Augmented Reality, Virtual/ Immersive Realities and Mobile Learning. Mike Hobbs is a visiting research fellow for the Centre for Excellence in Media Practice at Bournemouth University. Previously senior lecturer in Computer Science at Anglia Ruskin University specialising in Virtual worlds, Augmented Reality and Artificial Intelligence.