This document discusses methods for selecting the order of an autoregressive (AR) model. It explains that AR models depend only on previous outputs and have poles but no zeros. Several criteria for selecting the optimal AR model order are presented, including the Akaike Information Criterion (AIC) and Finite Prediction Error (FPE) criterion. Higher order models fit the data better but can introduce spurious peaks, so the goal is to minimize criteria like AIC or FPE to find the best balance. The document concludes that while these criteria provide guidance, the optimal order depends on the specific data, and inconsistencies can exist between the different methods.