SlideShare a Scribd company logo
Phase-1
Submerged Arc Welding Experiments
By
Dr. Bikram Jit Singh
Professor
MMDU Mullana
Runs Settings
Slag % (in
Flux)
Tensile Strength
(MPa)
Impact Strength (J) Hardness (HRC) Elongation (%)
1 0 540 106 12.5 29
2 0 547 157 16.0 10
3 0 560 144 20.0 9
4 0 548 50 18.0 25
5 0 545 75 11.0 32
6 0 555 100 9.0 50
7 0 552 107 14.0 35
8 0 540 125 8.0 45
9 0 547 110 9.0 40
10 0 546 100 7.0 30
11 20 502 125 14.0 39
12 20 445 101 17.5 10
13 20 494 111 22.0 25
14 20 501 78 25.1 9
15 20 496 88 20.2 32
16 20 493 99 12.1 22
17 20 485 98 10.2 20
18 20 491 60 5.9 45
19 20 520 101 12.1 32
20 20 525 121 10.2 55
21 40 442 88 16.0 25
22 40 440 70 19.0 21
23 40 460 85 32.0 22
24 40 455 110 22.1 25
25 40 430 105 20.6 35
26 40 435 99 12.3 31
27 40 456 89 11.8 30
28 40 450 88 10.6 25
29 40 445 75 8.9 23
30 40 450 95 12.5 25
31 60 465 110 18.0 33
32 60 460 95 22.0 25
33 60 489 96 16.2 23
34 60 463 94 17.5 31
35 60 445 92 21.0 30
36 60 410 82 19.5 30
37 60 440 88 19.0 29
38 60 475 99 17.0 32
39 60 498 101 17.5 17
40 60 461 108 17.2 22
41 80 440 92 15.0 23
42 80 385 55 19.0 5
43 80 429 65 5.0 15
44 80 458 99 12.5 19
45 80 445 125 18.0 30
46 80 439 101 10.0 44
47 80 440 135 20.2 41
48 80 449 80 18.2 28
49 80 425 78 18.2 25
50 80 422 81 15.0 22
51 100 402 68 11.5 20
52 100 412 45 15.0 4
53 100 425 78 3.5 18
54 100 370 65 5.1 38
55 100 385 112 10.2 32
56 100 392 110 10.0 21
57 100 401 99 15.3 18
58 100 400 100 14.2 11
59 100 398 55 13.3 15
60 100 401 50 12.5 14
6
Experimental Runs of SAW
1
2
3
4
5
Phase-2
Statistical Analysis
Quantitative Tool: One Way-ANOVA
Sr. No. Response Under
Analysis
Hypothification
1 Tensile Strength H0 = µ1 = µ2 = µ3 = µ4 = µ5 = µ6
Ha = µ1 ≠ µ2 ≠ µ3 ≠ µ4 ≠ µ5 ≠ µ6
2 Impact Strength H0 = µ1 = µ2 = µ3 = µ4 = µ5 = µ6
Ha = µ1 ≠ µ2 ≠ µ3 ≠ µ4 ≠ µ5 ≠ µ6
3 Hardness H0 = µ1 = µ2 = µ3 = µ4 = µ5 = µ6
Ha = µ1 ≠ µ2 ≠ µ3 ≠ µ4 ≠ µ5 ≠ µ6
4 Elongation H0 = µ1 = µ2 = µ3 = µ4 = µ5 = µ6
Ha = µ1 ≠ µ2 ≠ µ3 ≠ µ4 ≠ µ5 ≠ µ6
One-way ANOVA: Tensile Strength (MPa) versus Slag % (in Flux)
Source DF SS MS F P
Slag % (in Flux) 5 135794 27159 87.82 0.000
Error 54 16700 309
Total 59 152494
S = 17.59 R-Sq = 89.05% R-Sq(adj) = 88.03%
Individual 95% CIs For Mean Based on
Pooled StDev
Level N Mean StDev ---+---------+---------+---------+------
0 10 548.00 6.25 (--*-)
20 10 495.20 21.68 (-*-)
40 10 446.30 9.65 (-*-)
60 10 460.60 25.09 (-*-)
80 10 433.20 20.18 (--*-)
100 10 398.60 14.71 (--*-)
---+---------+---------+---------+------
400 450 500 550
Pooled StDev = 17.59
1. Inferences for Tensile Strength
100806040200
550
500
450
400
350
Slag % (in Flux)
TensileStrength(MPa)
398.6
433.2
460.6
446.3
495.2
548
Individual Value Plot of Tensile Strength (MPa) vs Slag % (in Flux)
100806040200
550
500
450
400
350
Slag % (in Flux)
TensileStrength(MPa)
400.5
439.5
462
447.5
495
547
398.6
433.2
460.6
446.3
495.2
548
Boxplot of Tensile Strength (MPa)
at most a 60% chance of detecting a difference of 12.074.
least a 90% chance of detecting a difference of 47.438, and
Based on your samples and alpha level (0.05), you have at
100%
47.438
90%
12.074
60%< 40%
12.074 9.7 - 60.0
33.856 60.0 - 100.0
37.489 70.0 - 100.0
41.713 80.0 - 100.0
47.438 90.0 - 100.0
Difference Power
with your sample sizes?
What difference can you detect
0 10 548 6.2539 (543.53, 552.47)
20 10 495.2 21.684 (479.69, 510.71)
40 10 446.3 9.6500 (439.40, 453.20)
60 10 460.6 25.092 (442.65, 478.55)
80 10 433.2 20.176 (418.77, 447.63)
100 10 398.6 14.714 (388.07, 409.13)
Slag % (in Flux) Size
Sample
Mean Deviation
Standard
95% CI for Mean
Individual
Statistics
41.713, consider increasing the sample sizes.
Power is a function of the sample sizes and the standard deviations. To detect differences smaller than
One-Way ANOVA for Tensile Stre by Slag % (in F
Power Report
Power
What is the chance of detecting a difference?
One-way ANOVA: Impact Strength (J) versus Slag % (in Flux)
Source DF SS MS F P
Slag % (in Flux) 5 4737 947 2.01 0.091
Error 54 25397 470
Total 59 30134
S = 21.69 R-Sq = 15.72% R-Sq(adj) = 7.91%
Individual 95% CIs For Mean Based on
Pooled StDev
Level N Mean StDev -------+---------+---------+---------+-
-
0 10 107.40 30.86 (---------*--------)
20 10 98.20 19.41 (--------*---------)
40 10 90.40 12.42 (--------*--------)
60 10 96.50 8.51 (--------*--------)
80 10 91.10 24.99 (--------*--------)
100 10 78.20 25.33 (--------*--------)
-------+---------+---------+---------+-
-
75 90 105 120
Pooled St Dev = 21.69
2. Inferences for Impact Strength
100806040200
150
125
100
75
50
Slag % (in Flux)
ImpactStrength(J)
78.2
91.1
96.5
90.4
98.2
107.4
Individual Value Plot of Impact Strength (J) vs Slag % (in Flux)
100806040200
150
125
100
75
50
Slag % (in Flux)
ImpactStrength(J)
73
86.5
95.5
88.5
100
106.5
78.2
91.1
96.5
90.498.2
107.4
Boxplot of Impact Strength (J)
at most a 60% chance of detecting a difference of 15.786.
least a 90% chance of detecting a difference of 57.112, and
Based on your samples and alpha level (0.05), you have at
100%
57.112
90%
15.786
60%< 40%
15.786 10.9 - 60.0
40.768 60.0 - 100.0
45.146 70.0 - 100.0
50.233 80.0 - 100.0
57.112 90.0 - 100.0
Difference Power
with your sample sizes?
What difference can you detect
0 10 107.4 30.862 (85.322, 129.48)
20 10 98.2 19.407 (84.317, 112.08)
40 10 90.4 12.420 (81.515, 99.285)
60 10 96.5 8.5147 (90.409, 102.59)
80 10 91.1 24.986 (73.226, 108.97)
100 10 78.2 25.332 (60.078, 96.322)
Slag % (in Flux) Size
Sample
Mean Deviation
Standard
95% CI for Mean
Individual
Statistics
50.233, consider increasing the sample sizes.
Power is a function of the sample sizes and the standard deviations. To detect differences smaller than
One-Way ANOVA for Impact Stren by Slag % (in F
Power Report
Power
What is the chance of detecting a difference?
One-way ANOVA: Hardness (HRC) versus Slag % (in Flux)
Source DF SS MS F P
Slag % (in Flux) 5 364.0 72.8 2.95 0.020
Error 54 1332.4 24.7
Total 59 1696.4
S = 4.967 R-Sq = 21.46% R-Sq(adj) = 14.19%
Individual 95% CIs For Mean Based on
Pooled StDev
Level N Mean StDev -------+---------+---------+---------+--
0 10 12.450 4.450 (--------*--------)
20 10 14.930 6.064 (--------*--------)
40 10 16.580 7.017 (--------*--------)
60 10 18.490 1.863 (--------*--------)
80 10 15.110 4.757 (--------*--------)
100 10 11.060 4.016 (--------*--------)
-------+---------+---------+---------+--
10.5 14.0 17.5 21.0
Pooled StDev = 4.967
3. Inferences for Hardness
100806040200
35
30
25
20
15
10
5
0
Slag % (in Flux)
Hardness(HRC) 11.06
15.11
18.49
16.58
14.93
12.45
Individual Value Plot of Hardness (HRC) vs Slag % (in Flux)
100806040200
35
30
25
20
15
10
5
0
Slag % (in Flux)
Hardness(HRC)
12
16.517.75
14.25
13.05
11.75 11.06
15.11
18.49
16.58
14.93
12.45
Boxplot of Hardness (HRC)
at most a 60% chance of detecting a difference of 4.6358.
least a 90% chance of detecting a difference of 13.279, and
Based on your samples and alpha level (0.05), you have at
100%
13.279
90%
4.6358
60%< 40%
4.6358 15.7 - 60.0
9.4807 60.0 - 100.0
10.497 70.0 - 100.0
11.678 80.0 - 100.0
13.279 90.0 - 100.0
Difference Power
with your sample sizes?
What difference can you detect
0 10 12.45 4.4500 (9.2666, 15.633)
20 10 14.93 6.0641 (10.592, 19.268)
40 10 16.58 7.0171 (11.560, 21.600)
60 10 18.49 1.8628 (17.157, 19.823)
80 10 15.11 4.7569 (11.707, 18.513)
100 10 11.06 4.0164 (8.1868, 13.933)
Slag % (in Flux) Size
Sample
Mean Deviation
Standard
95% CI for Mean
Individual
Statistics
11.678, consider increasing the sample sizes.
Power is a function of the sample sizes and the standard deviations. To detect differences smaller than
One-Way ANOVA for Hardness (HR by Slag % (in F
Power Report
Power
What is the chance of detecting a difference?
One-way ANOVA: Elongation (%) versus Slag % (in Flux)
Source DF SS MS F P
Slag % (in Flux) 5 782 156 1.39 0.241
Error 54 6061 112
Total 59 6843
S = 10.59 R-Sq = 11.43% R-Sq(adj) = 3.22%
Individual 95% CIs For Mean Based on
Pooled StDev
Level N Mean StDev --+---------+---------+---------+-------
0 10 30.50 13.41 (---------*--------)
20 10 28.90 14.75 (--------*---------)
40 10 26.20 4.42 (--------*---------)
60 10 27.20 5.20 (---------*--------)
80 10 25.20 11.55 (---------*---------)
100 10 19.10 9.81 (--------*---------)
--+---------+---------+---------+-------
14.0 21.0 28.0 35.0
Pooled StDev = 10.59
4. Inferences for Elongation
100806040200
60
50
40
30
20
10
0
Slag % (in Flux)
Elongation(%)
19.1
25.2
27.226.2
28.9
30.5
Individual Value Plot of Elongation (%) vs Slag % (in Flux)
100806040200
60
50
40
30
20
10
0
Slag % (in Flux)
Elongation(%)
18
24
29.5
25
28.5
31
19.1
25.227.226.2
28.9
30.5
Boxplot of Elongation (%)
at most a 60% chance of detecting a difference of 7.1553.
least a 90% chance of detecting a difference of 28.477, and
Based on your samples and alpha level (0.05), you have at
100%
28.477
90%
7.1553
60%< 40%
7.1553 9.6 - 60.0
20.317 60.0 - 100.0
22.498 70.0 - 100.0
25.035 80.0 - 100.0
28.477 90.0 - 100.0
Difference Power
with your sample sizes?
What difference can you detect
0 10 30.5 13.410 (20.907, 40.093)
20 10 28.9 14.746 (18.352, 39.448)
40 10 26.2 4.4171 (23.040, 29.360)
60 10 27.2 5.2026 (23.478, 30.922)
80 10 25.2 11.545 (16.941, 33.459)
100 10 19.1 9.8144 (12.079, 26.121)
Slag % (in Flux) Size
Sample
Mean Deviation
Standard
95% CI for Mean
Individual
Statistics
25.035, consider increasing the sample sizes.
Power is a function of the sample sizes and the standard deviations. To detect differences smaller than
One-Way ANOVA for Elongation ( by Slag % (in F
Power Report
Power
What is the chance of detecting a difference?
Phase-3
Regression Modeling
(for critical responses only)
General Regression Analysis: Tensile Strength (MPa) versus Slag % (in
Flux)
Regression Equation
Tensile Strength (MPa) = 550.09 - 4.45063 Slag % (in Flux) + 0.0721726 Slag %
(in Flux)*Slag % (in Flux) - 0.000428472 Slag % (in
Flux)*Slag % (in Flux)*Slag % (in Flux)
Coefficients
Term Coef SE Coef T
Constant 550.090 5.94031 92.6031
Slag % (in Flux) -4.451 0.57693 -7.7144
Slag % (in Flux)*Slag % (in Flux) 0.072 0.01434 5.0345
Slag % (in Flux)*Slag % (in Flux)*Slag % (in Flux) -0.000 0.00009 -4.5520
Term P
Constant 0.000
Slag % (in Flux) 0.000
Slag % (in Flux)*Slag % (in Flux) 0.000
Slag % (in Flux)*Slag % (in Flux)*Slag % (in Flux) 0.000
Summary of Model
S = 19.1691 R-Sq = 86.51% R-Sq(adj) = 85.78%
PRESS = 23149.0 R-Sq(pred) = 84.82%
Statistics
R-squared (adjusted)
P-value, model
P-value, linear term
P-value, quadratic term
P-value, cubic term
Residual standard deviation
85.78%
0.000*
0.000*
0.000*
0.000*
19.169
Cubic
Selected Model
78.71% 80.86%
0.000* 0.000*
0.000* 0.000*
- 0.008*
- -
23.460 22.239
Linear Quadratic
Alternative Models
100806040200
550
500
450
400
350
Slag % (in Flux)
TensileStrength(MPa)
Large residual
Y: Tensile Strength (MPa)
X: Slag % (in Flux)
* Statistically significant (p < 0.05)
Regression for Tensile Strength (MPa) vs Slag % (in Flux)
Model Selection Report
Fitted Line Plot for Cubic Model
Y = 550.1 - 4.451 X + 0.07217 X**2 - 0.000428 X**3
Slag % (in Flux) is statistically significant (p < 0.05).
The relationship between Tensile Strength (MPa) and
> 0.50.10.050
NoYes
P = 0.000
be accounted for by the regression model.
85.78% of the variation in Tensile Strength (MPa) can
100%0%
R-sq (adj) = 85.78%
1007550250
550
500
450
400
Slag % (in Flux)
TensileStrength(MPa)
causes Y.
A statistically significant relationship does not imply that X
Tensile Strength (MPa).
correspond to a desired value or range of values for
Flux), or find the settings for Slag % (in Flux) that
to predict Tensile Strength (MPa) for a value of Slag % (in
If the model fits the data well, this equation can be used
Y = 550.1 - 4.451 X + 0.07217 X**2 - 0.000428 X**3
relationship between Y and X is:
The fitted equation for the cubic model that describes the
Y: Tensile Strength (MPa)
X: Slag % (in Flux)
Is there a relationship between Y and X?
Fitted Line Plot for Cubic Model
Y = 550.1 - 4.451 X + 0.07217 X**2 - 0.000428 X**3
Comments
Regression for Tensile Strength (MPa) vs Slag % (in Flux)
Summary Report
% of variation accounted for by model
General Regression Analysis: Hardness (HRC) versus Slag % (in Flux)
Regression Equation
Hardness (HRC) = 11.9504 + 0.229152 Slag % (in Flux) - 0.0023558 Slag % (in
Flux)*Slag % (in Flux)
Coefficients
Term Coef SE Coef T P
Constant 11.9504 1.40101 8.52984 0.000
Slag % (in Flux) 0.2292 0.06589 3.47772 0.001
Slag % (in Flux)*Slag % (in Flux) -0.0024 0.00063 -3.72471 0.000
Summary of Model
S = 4.88827 R-Sq = 19.71% R-Sq(adj) = 16.90%
PRESS = 1496.83 R-Sq(pred) = 11.77%
Statistics
R-squared (adjusted)
P-value, model
P-value, linear term
P-value, quadratic term
P-value, cubic term
Residual standard deviation
16.90%
0.002*
0.001*
0.000*
-
4.888
Quadratic
Selected Model
0.00% 16.28%
0.754 0.005*
0.754 0.387
- 0.914
- 0.450
5.404 4.906
Linear Cubic
Alternative Models
100806040200
30
25
20
15
10
5
Slag % (in Flux)
Hardness(HRC)
Large residual
Y: Hardness (HRC)
X: Slag % (in Flux)
* Statistically significant (p < 0.05)
Regression for Hardness (HRC) vs Slag % (in Flux)
Model Selection Report
Fitted Line Plot for Quadratic Model
Y = 11.95 + 0.2292 X - 0.002356 X**2
(in Flux) is statistically significant (p < 0.05).
The relationship between Hardness (HRC) and Slag %
> 0.50.10.050
NoYes
P = 0.002
accounted for by the regression model.
16.90% of the variation in Hardness (HRC) can be
100%0%
R-sq (adj) = 16.90%
1007550250
30
20
10
0
Slag % (in Flux)
Hardness(HRC)
causes Y.
A statistically significant relationship does not imply that X
a desired value or range of values for Hardness (HRC).
or find the settings for Slag % (in Flux) that correspond to
to predict Hardness (HRC) for a value of Slag % (in Flux),
If the model fits the data well, this equation can be used
Y = 11.95 + 0.2292 X - 0.002356 X**2
the relationship between Y and X is:
The fitted equation for the quadratic model that describes
Y: Hardness (HRC)
X: Slag % (in Flux)
Is there a relationship between Y and X?
Fitted Line Plot for Quadratic Model
Y = 11.95 + 0.2292 X - 0.002356 X**2
Comments
Regression for Hardness (HRC) vs Slag % (in Flux)
Summary Report
% of variation accounted for by model
Phase-4
Micro-Structure Validation
Mean Table (showing validation of structure)
Slag %
(in Flux)
Tensile Strength
(MPa)
Impact Strength
(J)
Hardness
(HRC)
Elongation (%)
0 548 107.4 12.5 30.5
20 495.2 98.2 14.9 28.9
40 446.7 90.4 16.6 26.2
60 460.6 96.5 18.5 27.2
80 433.2 91.1 15.1 25.2
100 398.6 78.2 11.1 19.1
Micro structure for each settings
Phase-5
Optimization of Slag Content
0.500.250.00-0.25-0.50
560
540
520
500
480
460
440
420
400
deviation from reference blend in proportion
FittedTensileStrength
Flux % 0.5000
Slag % 0.5000
Comp:RefBlend
Cox Response Trace Plot
0.500.250.00-0.25-0.50
18
17
16
15
14
13
12
11
deviation from reference blend in proportion
FittedHardness
Flux % 0.5000
Slag % 0.5000
Comp:RefBlend
Cox Response Trace Plot
Response Optimization
Parameters
Goal Lower Target Upper Weight Import
Tensile Stre Target 420 425 430 1 1
Hardness Target 12 14 16 1 1
Starting Point
Components
Flux % = 1
Slag % = 0
Local Solution
Components
Flux % = 0.236307
Slag % = 0.763693
Predicted Responses
Tensile Stre = 424.743 , desirability = 0.948502
Hardness = 15.431 , desirability = 0.284495
Composite Desirability = 0.519465
Cur
High
Low0.51946
D
Optimal
d = 0.94850
Targ: 425.0
Tensile
y = 424.7425
d = 0.28449
Targ: 14.0
Hardness
y = 15.4310
0.51946
Desirability
Composite
0.0
1.0
0.0
1.0
[ ]:Slag %[ ]:Flux %
[0.2363] [0.7637]
Phase-6
Actual Trend Achieved at
Optimized Settings
Runs Tensile Strength (At 76% Slag) Hardness (At 76% Slag)
1 423.4 15
2 424.3 14
3 425 12.8
4 422.5 15.8
5 422 13
6 425 13.4
7 422 13.5
8 425 14
9 421 15.2
10 422.5 12.9
11 425.9 15.1
12 422.8 15.2
13 422 15
14 426.7 14
15 421.3 14.2
16 422.9 14
17 424.1 14.2
18 424.3 13.5
19 425.8 12.9
20 425.3 14.2
21 421.5 13.2
22 425.8 14.2
23 425 14
24 422.5 14.2
25 423.54 14.1
26 421.5 13.5
27 424 13.8
28 422.9 15.1
29 426.1 15.2
30 425.3 13.3
Total N 30
Subgroup size 1
Mean 423.73
StDev (overall) 1.6522
StDev (within) 1.9436
Process Characterization
Cp 0.86
Cpk 0.64
Z.Bench 1.91
% Out of spec (expected) 2.81
PPM (DPMO) (expected) 28072
Actual (overall)
Pp 1.01
Ppk 0.75
Z.Bench 2.26
% Out of spec (observed) 0.00
% Out of spec (expected) 1.20
PPM (DPMO) (observed) 0
PPM (DPMO) (expected) 12036
Potential (within)
Capability Statistics
429.0427.5426.0424.5423.0421.5420.0
LSL Target USL
Capability Histogram
Are the data inside the limits and close to the target?
Actual (overall) capability is what the customer experiences.
shifts and drifts were eliminated.
Potential (within) capability is what could be achieved if process
Capability Analysis for Tensile Stre
Process Performance Report
Total N 30
Subgroup size 1
Mean 14.083
StDev (overall) 0.81201
StDev (within) 0.79176
Process Characterization
Cp 0.84
Cpk 0.81
Z.Bench 2.26
% Out of spec (expected) 1.20
PPM (DPMO) (expected) 11997
Actual (overall)
Pp 0.82
Ppk 0.79
Z.Bench 2.19
% Out of spec (observed) 0.00
% Out of spec (expected) 1.43
PPM (DPMO) (observed) 0
PPM (DPMO) (expected) 14277
Potential (within)
Capability Statistics
1615141312
LSL Target USL
Capability Histogram
Are the data inside the limits and close to the target?
Actual (overall) capability is what the customer experiences.
shifts and drifts were eliminated.
Potential (within) capability is what could be achieved if process
Capability Analysis for Hardness (At
Process Performance Report
An optimistic approach to blend recycled slag with flux during SAW
An optimistic approach to blend recycled slag with flux during SAW

More Related Content

What's hot

Depositiondata
DepositiondataDepositiondata
Depositiondata
Hoang Nguyen
 
KOMATSU WA250-3 AVANCE WHEEL LOADER Service Repair Manual SN:50001 and up
KOMATSU WA250-3 AVANCE WHEEL LOADER Service Repair Manual SN:50001 and upKOMATSU WA250-3 AVANCE WHEEL LOADER Service Repair Manual SN:50001 and up
KOMATSU WA250-3 AVANCE WHEEL LOADER Service Repair Manual SN:50001 and up
jkndhjsnhd
 
Thomson 400 series_profile_rail_catalog
Thomson 400 series_profile_rail_catalogThomson 400 series_profile_rail_catalog
Thomson 400 series_profile_rail_catalog
Electromate
 
Optimization of micro machining processes
Optimization of micro machining processesOptimization of micro machining processes
Optimization of micro machining processes
kulk0003
 
DRE Linear Guide
DRE Linear GuideDRE Linear Guide
DRE Linear Guide
Fiona he
 
ASI Technical Reference Guide
ASI Technical Reference GuideASI Technical Reference Guide
ASI Technical Reference Guide
cshebesta
 
BW Fittings Brochure
BW Fittings BrochureBW Fittings Brochure
BW Fittings Brochure
Dawn McKendry
 
Lintech 250series specsheet
Lintech 250series specsheetLintech 250series specsheet
Lintech 250series specsheet
Electromate
 
Junction table
Junction tableJunction table
Junction table
gustavo555555
 
Budynas sm ch20
Budynas sm ch20Budynas sm ch20
Budynas sm ch20
luisorellano125
 
New solar pv introduction & solar panel data sheets of new tuv
New  solar pv  introduction & solar panel data sheets of new tuvNew  solar pv  introduction & solar panel data sheets of new tuv
New solar pv introduction & solar panel data sheets of new tuv
Jussi Han
 
H.w. #7
H.w. #7H.w. #7
Capítulo 11 mancais de contato rolante
Capítulo 11   mancais de contato rolanteCapítulo 11   mancais de contato rolante
Capítulo 11 mancais de contato rolante
Jhayson Carvalho
 
Capstone Experience
Capstone ExperienceCapstone Experience
Capstone Experience
Seth Popo
 
Mc cormick (2011 ) - rs43 - 6450 isr-ism-vrm tractor service repair manual
Mc cormick (2011  ) - rs43 - 6450 isr-ism-vrm tractor service repair manualMc cormick (2011  ) - rs43 - 6450 isr-ism-vrm tractor service repair manual
Mc cormick (2011 ) - rs43 - 6450 isr-ism-vrm tractor service repair manual
fudjjjskeskmmd
 

What's hot (15)

Depositiondata
DepositiondataDepositiondata
Depositiondata
 
KOMATSU WA250-3 AVANCE WHEEL LOADER Service Repair Manual SN:50001 and up
KOMATSU WA250-3 AVANCE WHEEL LOADER Service Repair Manual SN:50001 and upKOMATSU WA250-3 AVANCE WHEEL LOADER Service Repair Manual SN:50001 and up
KOMATSU WA250-3 AVANCE WHEEL LOADER Service Repair Manual SN:50001 and up
 
Thomson 400 series_profile_rail_catalog
Thomson 400 series_profile_rail_catalogThomson 400 series_profile_rail_catalog
Thomson 400 series_profile_rail_catalog
 
Optimization of micro machining processes
Optimization of micro machining processesOptimization of micro machining processes
Optimization of micro machining processes
 
DRE Linear Guide
DRE Linear GuideDRE Linear Guide
DRE Linear Guide
 
ASI Technical Reference Guide
ASI Technical Reference GuideASI Technical Reference Guide
ASI Technical Reference Guide
 
BW Fittings Brochure
BW Fittings BrochureBW Fittings Brochure
BW Fittings Brochure
 
Lintech 250series specsheet
Lintech 250series specsheetLintech 250series specsheet
Lintech 250series specsheet
 
Junction table
Junction tableJunction table
Junction table
 
Budynas sm ch20
Budynas sm ch20Budynas sm ch20
Budynas sm ch20
 
New solar pv introduction & solar panel data sheets of new tuv
New  solar pv  introduction & solar panel data sheets of new tuvNew  solar pv  introduction & solar panel data sheets of new tuv
New solar pv introduction & solar panel data sheets of new tuv
 
H.w. #7
H.w. #7H.w. #7
H.w. #7
 
Capítulo 11 mancais de contato rolante
Capítulo 11   mancais de contato rolanteCapítulo 11   mancais de contato rolante
Capítulo 11 mancais de contato rolante
 
Capstone Experience
Capstone ExperienceCapstone Experience
Capstone Experience
 
Mc cormick (2011 ) - rs43 - 6450 isr-ism-vrm tractor service repair manual
Mc cormick (2011  ) - rs43 - 6450 isr-ism-vrm tractor service repair manualMc cormick (2011  ) - rs43 - 6450 isr-ism-vrm tractor service repair manual
Mc cormick (2011 ) - rs43 - 6450 isr-ism-vrm tractor service repair manual
 

Similar to An optimistic approach to blend recycled slag with flux during SAW

Shi20396 ch03
Shi20396 ch03Shi20396 ch03
Shi20396 ch03
Paralafakyou Mens
 
Mojtaba Hasanlu's Portfolios in Rotor
Mojtaba Hasanlu's Portfolios in RotorMojtaba Hasanlu's Portfolios in Rotor
Mojtaba Hasanlu's Portfolios in Rotor
Shanghai Jiao Tong University
 
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfSolucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
DannyCoronel5
 
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdfSolucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
franciscoantoniomonr1
 
Ch02
Ch02Ch02
Ass 1 12-46 report engineering dynamics problem
Ass 1  12-46 report engineering dynamics problemAss 1  12-46 report engineering dynamics problem
Ass 1 12-46 report engineering dynamics problem
Hammad ur Rehman
 
Assignment
AssignmentAssignment
Worm Gearbox Suppliers in india |Sumit Engineers
Worm Gearbox Suppliers in india |Sumit EngineersWorm Gearbox Suppliers in india |Sumit Engineers
Worm Gearbox Suppliers in india |Sumit Engineers
SUMITCHUGH8
 
2322-595-2006 Datasheet
2322-595-2006 Datasheet2322-595-2006 Datasheet
2322-595-2006 Datasheet
Datasheet Bank
 
JVL Intergrated Servo Motor in Stainless Steel
JVL Intergrated Servo Motor in Stainless Steel JVL Intergrated Servo Motor in Stainless Steel
JVL Intergrated Servo Motor in Stainless Steel
Electromate
 
Material Control Apr
Material Control AprMaterial Control Apr
Material Control Apr
SuhariEte2
 
SPICE MODEL of SCS210KE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS210KE2HR (Professional Model) in SPICE PARKSPICE MODEL of SCS210KE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS210KE2HR (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of TRS12A65C (Professional Model) in SPICE PARK
SPICE MODEL of TRS12A65C (Professional Model) in SPICE PARKSPICE MODEL of TRS12A65C (Professional Model) in SPICE PARK
SPICE MODEL of TRS12A65C (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
Perhitunngan
PerhitunnganPerhitunngan
Perhitunngan
Nadya Herida
 
Kirkcaldy moment frame Analysis
Kirkcaldy moment frame AnalysisKirkcaldy moment frame Analysis
Kirkcaldy moment frame Analysis
Kingsley Aboagye
 
M-ANM-3E4DS0-CBPC-SDR-12_IT_301-Model
M-ANM-3E4DS0-CBPC-SDR-12_IT_301-ModelM-ANM-3E4DS0-CBPC-SDR-12_IT_301-Model
M-ANM-3E4DS0-CBPC-SDR-12_IT_301-Model
Stefano Zambelli
 
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSOSPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SUMARDIONO .
 
SPICE MODEL of SCS208AGHR (Professional Model) in SPICE PARK
SPICE MODEL of SCS208AGHR (Professional Model) in SPICE PARKSPICE MODEL of SCS208AGHR (Professional Model) in SPICE PARK
SPICE MODEL of SCS208AGHR (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of SCS215KG (Professional Model) in SPICE PARK
SPICE MODEL of SCS215KG (Professional Model) in SPICE PARKSPICE MODEL of SCS215KG (Professional Model) in SPICE PARK
SPICE MODEL of SCS215KG (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
Thomson 400 Series Profile Rail Linear Guides
Thomson 400 Series Profile Rail Linear GuidesThomson 400 Series Profile Rail Linear Guides
Thomson 400 Series Profile Rail Linear Guides
Electromate
 

Similar to An optimistic approach to blend recycled slag with flux during SAW (20)

Shi20396 ch03
Shi20396 ch03Shi20396 ch03
Shi20396 ch03
 
Mojtaba Hasanlu's Portfolios in Rotor
Mojtaba Hasanlu's Portfolios in RotorMojtaba Hasanlu's Portfolios in Rotor
Mojtaba Hasanlu's Portfolios in Rotor
 
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfSolucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
 
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdfSolucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
 
Ch02
Ch02Ch02
Ch02
 
Ass 1 12-46 report engineering dynamics problem
Ass 1  12-46 report engineering dynamics problemAss 1  12-46 report engineering dynamics problem
Ass 1 12-46 report engineering dynamics problem
 
Assignment
AssignmentAssignment
Assignment
 
Worm Gearbox Suppliers in india |Sumit Engineers
Worm Gearbox Suppliers in india |Sumit EngineersWorm Gearbox Suppliers in india |Sumit Engineers
Worm Gearbox Suppliers in india |Sumit Engineers
 
2322-595-2006 Datasheet
2322-595-2006 Datasheet2322-595-2006 Datasheet
2322-595-2006 Datasheet
 
JVL Intergrated Servo Motor in Stainless Steel
JVL Intergrated Servo Motor in Stainless Steel JVL Intergrated Servo Motor in Stainless Steel
JVL Intergrated Servo Motor in Stainless Steel
 
Material Control Apr
Material Control AprMaterial Control Apr
Material Control Apr
 
SPICE MODEL of SCS210KE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS210KE2HR (Professional Model) in SPICE PARKSPICE MODEL of SCS210KE2HR (Professional Model) in SPICE PARK
SPICE MODEL of SCS210KE2HR (Professional Model) in SPICE PARK
 
SPICE MODEL of TRS12A65C (Professional Model) in SPICE PARK
SPICE MODEL of TRS12A65C (Professional Model) in SPICE PARKSPICE MODEL of TRS12A65C (Professional Model) in SPICE PARK
SPICE MODEL of TRS12A65C (Professional Model) in SPICE PARK
 
Perhitunngan
PerhitunnganPerhitunngan
Perhitunngan
 
Kirkcaldy moment frame Analysis
Kirkcaldy moment frame AnalysisKirkcaldy moment frame Analysis
Kirkcaldy moment frame Analysis
 
M-ANM-3E4DS0-CBPC-SDR-12_IT_301-Model
M-ANM-3E4DS0-CBPC-SDR-12_IT_301-ModelM-ANM-3E4DS0-CBPC-SDR-12_IT_301-Model
M-ANM-3E4DS0-CBPC-SDR-12_IT_301-Model
 
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSOSPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
 
SPICE MODEL of SCS208AGHR (Professional Model) in SPICE PARK
SPICE MODEL of SCS208AGHR (Professional Model) in SPICE PARKSPICE MODEL of SCS208AGHR (Professional Model) in SPICE PARK
SPICE MODEL of SCS208AGHR (Professional Model) in SPICE PARK
 
SPICE MODEL of SCS215KG (Professional Model) in SPICE PARK
SPICE MODEL of SCS215KG (Professional Model) in SPICE PARKSPICE MODEL of SCS215KG (Professional Model) in SPICE PARK
SPICE MODEL of SCS215KG (Professional Model) in SPICE PARK
 
Thomson 400 Series Profile Rail Linear Guides
Thomson 400 Series Profile Rail Linear GuidesThomson 400 Series Profile Rail Linear Guides
Thomson 400 Series Profile Rail Linear Guides
 

More from Dr. Bikram Jit Singh

P22 & P91n Steels
P22 & P91n SteelsP22 & P91n Steels
P22 & P91n Steels
Dr. Bikram Jit Singh
 
Swot
SwotSwot
Friction Stir Welding
Friction Stir WeldingFriction Stir Welding
Friction Stir Welding
Dr. Bikram Jit Singh
 
Mixture DoE
Mixture DoE Mixture DoE
Mixture DoE
Dr. Bikram Jit Singh
 
LSS in Textile Industry
LSS in Textile Industry LSS in Textile Industry
LSS in Textile Industry
Dr. Bikram Jit Singh
 
Scrap reduction in piston die casting foundry
Scrap reduction in piston die casting foundryScrap reduction in piston die casting foundry
Scrap reduction in piston die casting foundry
Dr. Bikram Jit Singh
 
Admissions in engineering
Admissions in engineeringAdmissions in engineering
Admissions in engineering
Dr. Bikram Jit Singh
 
0000. the blockchain-revolution-an-analysis-of-regulation-and-technolo
0000. the blockchain-revolution-an-analysis-of-regulation-and-technolo0000. the blockchain-revolution-an-analysis-of-regulation-and-technolo
0000. the blockchain-revolution-an-analysis-of-regulation-and-technolo
Dr. Bikram Jit Singh
 
Bjs green belt ppt
Bjs green belt pptBjs green belt ppt
Bjs green belt ppt
Dr. Bikram Jit Singh
 
Msa presentation
Msa presentationMsa presentation
Msa presentation
Dr. Bikram Jit Singh
 
Reliability
ReliabilityReliability
FSW of AL alloys
FSW of AL alloysFSW of AL alloys
FSW of AL alloys
Dr. Bikram Jit Singh
 
Measurement system analysis
Measurement system analysisMeasurement system analysis
Measurement system analysis
Dr. Bikram Jit Singh
 
Enigma of 'six sigma' for foundry sm es in india
Enigma of 'six sigma' for foundry sm es in indiaEnigma of 'six sigma' for foundry sm es in india
Enigma of 'six sigma' for foundry sm es in india
Dr. Bikram Jit Singh
 
Scope of six sigma in indian foundry operations
Scope of six sigma in indian foundry operationsScope of six sigma in indian foundry operations
Scope of six sigma in indian foundry operations
Dr. Bikram Jit Singh
 
Risk management in complex changeovers through cfmea
Risk management in complex changeovers through cfmeaRisk management in complex changeovers through cfmea
Risk management in complex changeovers through cfmea
Dr. Bikram Jit Singh
 
Ambience of six sigma in indian foundries
Ambience of six sigma in indian foundriesAmbience of six sigma in indian foundries
Ambience of six sigma in indian foundries
Dr. Bikram Jit Singh
 
Operational management of a centrifugal slurry pump
Operational management of a centrifugal slurry pumpOperational management of a centrifugal slurry pump
Operational management of a centrifugal slurry pump
Dr. Bikram Jit Singh
 
Six sigma case study (bjs)
Six sigma case study (bjs)Six sigma case study (bjs)
Six sigma case study (bjs)
Dr. Bikram Jit Singh
 
Parametric optimisation of cnc turning for al 7020 with rsm
Parametric optimisation of cnc turning for al 7020 with rsmParametric optimisation of cnc turning for al 7020 with rsm
Parametric optimisation of cnc turning for al 7020 with rsm
Dr. Bikram Jit Singh
 

More from Dr. Bikram Jit Singh (20)

P22 & P91n Steels
P22 & P91n SteelsP22 & P91n Steels
P22 & P91n Steels
 
Swot
SwotSwot
Swot
 
Friction Stir Welding
Friction Stir WeldingFriction Stir Welding
Friction Stir Welding
 
Mixture DoE
Mixture DoE Mixture DoE
Mixture DoE
 
LSS in Textile Industry
LSS in Textile Industry LSS in Textile Industry
LSS in Textile Industry
 
Scrap reduction in piston die casting foundry
Scrap reduction in piston die casting foundryScrap reduction in piston die casting foundry
Scrap reduction in piston die casting foundry
 
Admissions in engineering
Admissions in engineeringAdmissions in engineering
Admissions in engineering
 
0000. the blockchain-revolution-an-analysis-of-regulation-and-technolo
0000. the blockchain-revolution-an-analysis-of-regulation-and-technolo0000. the blockchain-revolution-an-analysis-of-regulation-and-technolo
0000. the blockchain-revolution-an-analysis-of-regulation-and-technolo
 
Bjs green belt ppt
Bjs green belt pptBjs green belt ppt
Bjs green belt ppt
 
Msa presentation
Msa presentationMsa presentation
Msa presentation
 
Reliability
ReliabilityReliability
Reliability
 
FSW of AL alloys
FSW of AL alloysFSW of AL alloys
FSW of AL alloys
 
Measurement system analysis
Measurement system analysisMeasurement system analysis
Measurement system analysis
 
Enigma of 'six sigma' for foundry sm es in india
Enigma of 'six sigma' for foundry sm es in indiaEnigma of 'six sigma' for foundry sm es in india
Enigma of 'six sigma' for foundry sm es in india
 
Scope of six sigma in indian foundry operations
Scope of six sigma in indian foundry operationsScope of six sigma in indian foundry operations
Scope of six sigma in indian foundry operations
 
Risk management in complex changeovers through cfmea
Risk management in complex changeovers through cfmeaRisk management in complex changeovers through cfmea
Risk management in complex changeovers through cfmea
 
Ambience of six sigma in indian foundries
Ambience of six sigma in indian foundriesAmbience of six sigma in indian foundries
Ambience of six sigma in indian foundries
 
Operational management of a centrifugal slurry pump
Operational management of a centrifugal slurry pumpOperational management of a centrifugal slurry pump
Operational management of a centrifugal slurry pump
 
Six sigma case study (bjs)
Six sigma case study (bjs)Six sigma case study (bjs)
Six sigma case study (bjs)
 
Parametric optimisation of cnc turning for al 7020 with rsm
Parametric optimisation of cnc turning for al 7020 with rsmParametric optimisation of cnc turning for al 7020 with rsm
Parametric optimisation of cnc turning for al 7020 with rsm
 

Recently uploaded

Seminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptxSeminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptx
Madan Karki
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
VICTOR MAESTRE RAMIREZ
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
co23btech11018
 
People as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimalaPeople as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimala
riddhimaagrawal986
 
An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...
IJECEIAES
 
Welding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdfWelding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdf
AjmalKhan50578
 
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
ydzowc
 
cnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classicationcnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classication
SakkaravarthiShanmug
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
KrishnaveniKrishnara1
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
IJECEIAES
 
Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...
bijceesjournal
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
Anant Corporation
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
abbyasa1014
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
VANDANAMOHANGOUDA
 
Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
Divyanshu
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
Madan Karki
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
Gino153088
 

Recently uploaded (20)

Seminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptxSeminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptx
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
 
People as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimalaPeople as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimala
 
An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...
 
Welding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdfWelding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdf
 
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
 
cnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classicationcnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classication
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
 
Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
 
Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
 

An optimistic approach to blend recycled slag with flux during SAW

  • 1. Phase-1 Submerged Arc Welding Experiments By Dr. Bikram Jit Singh Professor MMDU Mullana
  • 2. Runs Settings Slag % (in Flux) Tensile Strength (MPa) Impact Strength (J) Hardness (HRC) Elongation (%) 1 0 540 106 12.5 29 2 0 547 157 16.0 10 3 0 560 144 20.0 9 4 0 548 50 18.0 25 5 0 545 75 11.0 32 6 0 555 100 9.0 50 7 0 552 107 14.0 35 8 0 540 125 8.0 45 9 0 547 110 9.0 40 10 0 546 100 7.0 30 11 20 502 125 14.0 39 12 20 445 101 17.5 10 13 20 494 111 22.0 25 14 20 501 78 25.1 9 15 20 496 88 20.2 32 16 20 493 99 12.1 22 17 20 485 98 10.2 20 18 20 491 60 5.9 45 19 20 520 101 12.1 32 20 20 525 121 10.2 55 21 40 442 88 16.0 25 22 40 440 70 19.0 21 23 40 460 85 32.0 22 24 40 455 110 22.1 25 25 40 430 105 20.6 35 26 40 435 99 12.3 31 27 40 456 89 11.8 30 28 40 450 88 10.6 25 29 40 445 75 8.9 23 30 40 450 95 12.5 25 31 60 465 110 18.0 33 32 60 460 95 22.0 25 33 60 489 96 16.2 23 34 60 463 94 17.5 31 35 60 445 92 21.0 30 36 60 410 82 19.5 30 37 60 440 88 19.0 29 38 60 475 99 17.0 32 39 60 498 101 17.5 17 40 60 461 108 17.2 22 41 80 440 92 15.0 23 42 80 385 55 19.0 5 43 80 429 65 5.0 15 44 80 458 99 12.5 19 45 80 445 125 18.0 30 46 80 439 101 10.0 44 47 80 440 135 20.2 41 48 80 449 80 18.2 28 49 80 425 78 18.2 25 50 80 422 81 15.0 22 51 100 402 68 11.5 20 52 100 412 45 15.0 4 53 100 425 78 3.5 18 54 100 370 65 5.1 38 55 100 385 112 10.2 32 56 100 392 110 10.0 21 57 100 401 99 15.3 18 58 100 400 100 14.2 11 59 100 398 55 13.3 15 60 100 401 50 12.5 14 6 Experimental Runs of SAW 1 2 3 4 5
  • 4. Quantitative Tool: One Way-ANOVA Sr. No. Response Under Analysis Hypothification 1 Tensile Strength H0 = µ1 = µ2 = µ3 = µ4 = µ5 = µ6 Ha = µ1 ≠ µ2 ≠ µ3 ≠ µ4 ≠ µ5 ≠ µ6 2 Impact Strength H0 = µ1 = µ2 = µ3 = µ4 = µ5 = µ6 Ha = µ1 ≠ µ2 ≠ µ3 ≠ µ4 ≠ µ5 ≠ µ6 3 Hardness H0 = µ1 = µ2 = µ3 = µ4 = µ5 = µ6 Ha = µ1 ≠ µ2 ≠ µ3 ≠ µ4 ≠ µ5 ≠ µ6 4 Elongation H0 = µ1 = µ2 = µ3 = µ4 = µ5 = µ6 Ha = µ1 ≠ µ2 ≠ µ3 ≠ µ4 ≠ µ5 ≠ µ6
  • 5. One-way ANOVA: Tensile Strength (MPa) versus Slag % (in Flux) Source DF SS MS F P Slag % (in Flux) 5 135794 27159 87.82 0.000 Error 54 16700 309 Total 59 152494 S = 17.59 R-Sq = 89.05% R-Sq(adj) = 88.03% Individual 95% CIs For Mean Based on Pooled StDev Level N Mean StDev ---+---------+---------+---------+------ 0 10 548.00 6.25 (--*-) 20 10 495.20 21.68 (-*-) 40 10 446.30 9.65 (-*-) 60 10 460.60 25.09 (-*-) 80 10 433.20 20.18 (--*-) 100 10 398.60 14.71 (--*-) ---+---------+---------+---------+------ 400 450 500 550 Pooled StDev = 17.59 1. Inferences for Tensile Strength
  • 6. 100806040200 550 500 450 400 350 Slag % (in Flux) TensileStrength(MPa) 398.6 433.2 460.6 446.3 495.2 548 Individual Value Plot of Tensile Strength (MPa) vs Slag % (in Flux) 100806040200 550 500 450 400 350 Slag % (in Flux) TensileStrength(MPa) 400.5 439.5 462 447.5 495 547 398.6 433.2 460.6 446.3 495.2 548 Boxplot of Tensile Strength (MPa)
  • 7. at most a 60% chance of detecting a difference of 12.074. least a 90% chance of detecting a difference of 47.438, and Based on your samples and alpha level (0.05), you have at 100% 47.438 90% 12.074 60%< 40% 12.074 9.7 - 60.0 33.856 60.0 - 100.0 37.489 70.0 - 100.0 41.713 80.0 - 100.0 47.438 90.0 - 100.0 Difference Power with your sample sizes? What difference can you detect 0 10 548 6.2539 (543.53, 552.47) 20 10 495.2 21.684 (479.69, 510.71) 40 10 446.3 9.6500 (439.40, 453.20) 60 10 460.6 25.092 (442.65, 478.55) 80 10 433.2 20.176 (418.77, 447.63) 100 10 398.6 14.714 (388.07, 409.13) Slag % (in Flux) Size Sample Mean Deviation Standard 95% CI for Mean Individual Statistics 41.713, consider increasing the sample sizes. Power is a function of the sample sizes and the standard deviations. To detect differences smaller than One-Way ANOVA for Tensile Stre by Slag % (in F Power Report Power What is the chance of detecting a difference?
  • 8. One-way ANOVA: Impact Strength (J) versus Slag % (in Flux) Source DF SS MS F P Slag % (in Flux) 5 4737 947 2.01 0.091 Error 54 25397 470 Total 59 30134 S = 21.69 R-Sq = 15.72% R-Sq(adj) = 7.91% Individual 95% CIs For Mean Based on Pooled StDev Level N Mean StDev -------+---------+---------+---------+- - 0 10 107.40 30.86 (---------*--------) 20 10 98.20 19.41 (--------*---------) 40 10 90.40 12.42 (--------*--------) 60 10 96.50 8.51 (--------*--------) 80 10 91.10 24.99 (--------*--------) 100 10 78.20 25.33 (--------*--------) -------+---------+---------+---------+- - 75 90 105 120 Pooled St Dev = 21.69 2. Inferences for Impact Strength
  • 9. 100806040200 150 125 100 75 50 Slag % (in Flux) ImpactStrength(J) 78.2 91.1 96.5 90.4 98.2 107.4 Individual Value Plot of Impact Strength (J) vs Slag % (in Flux) 100806040200 150 125 100 75 50 Slag % (in Flux) ImpactStrength(J) 73 86.5 95.5 88.5 100 106.5 78.2 91.1 96.5 90.498.2 107.4 Boxplot of Impact Strength (J)
  • 10. at most a 60% chance of detecting a difference of 15.786. least a 90% chance of detecting a difference of 57.112, and Based on your samples and alpha level (0.05), you have at 100% 57.112 90% 15.786 60%< 40% 15.786 10.9 - 60.0 40.768 60.0 - 100.0 45.146 70.0 - 100.0 50.233 80.0 - 100.0 57.112 90.0 - 100.0 Difference Power with your sample sizes? What difference can you detect 0 10 107.4 30.862 (85.322, 129.48) 20 10 98.2 19.407 (84.317, 112.08) 40 10 90.4 12.420 (81.515, 99.285) 60 10 96.5 8.5147 (90.409, 102.59) 80 10 91.1 24.986 (73.226, 108.97) 100 10 78.2 25.332 (60.078, 96.322) Slag % (in Flux) Size Sample Mean Deviation Standard 95% CI for Mean Individual Statistics 50.233, consider increasing the sample sizes. Power is a function of the sample sizes and the standard deviations. To detect differences smaller than One-Way ANOVA for Impact Stren by Slag % (in F Power Report Power What is the chance of detecting a difference?
  • 11. One-way ANOVA: Hardness (HRC) versus Slag % (in Flux) Source DF SS MS F P Slag % (in Flux) 5 364.0 72.8 2.95 0.020 Error 54 1332.4 24.7 Total 59 1696.4 S = 4.967 R-Sq = 21.46% R-Sq(adj) = 14.19% Individual 95% CIs For Mean Based on Pooled StDev Level N Mean StDev -------+---------+---------+---------+-- 0 10 12.450 4.450 (--------*--------) 20 10 14.930 6.064 (--------*--------) 40 10 16.580 7.017 (--------*--------) 60 10 18.490 1.863 (--------*--------) 80 10 15.110 4.757 (--------*--------) 100 10 11.060 4.016 (--------*--------) -------+---------+---------+---------+-- 10.5 14.0 17.5 21.0 Pooled StDev = 4.967 3. Inferences for Hardness
  • 12. 100806040200 35 30 25 20 15 10 5 0 Slag % (in Flux) Hardness(HRC) 11.06 15.11 18.49 16.58 14.93 12.45 Individual Value Plot of Hardness (HRC) vs Slag % (in Flux) 100806040200 35 30 25 20 15 10 5 0 Slag % (in Flux) Hardness(HRC) 12 16.517.75 14.25 13.05 11.75 11.06 15.11 18.49 16.58 14.93 12.45 Boxplot of Hardness (HRC)
  • 13. at most a 60% chance of detecting a difference of 4.6358. least a 90% chance of detecting a difference of 13.279, and Based on your samples and alpha level (0.05), you have at 100% 13.279 90% 4.6358 60%< 40% 4.6358 15.7 - 60.0 9.4807 60.0 - 100.0 10.497 70.0 - 100.0 11.678 80.0 - 100.0 13.279 90.0 - 100.0 Difference Power with your sample sizes? What difference can you detect 0 10 12.45 4.4500 (9.2666, 15.633) 20 10 14.93 6.0641 (10.592, 19.268) 40 10 16.58 7.0171 (11.560, 21.600) 60 10 18.49 1.8628 (17.157, 19.823) 80 10 15.11 4.7569 (11.707, 18.513) 100 10 11.06 4.0164 (8.1868, 13.933) Slag % (in Flux) Size Sample Mean Deviation Standard 95% CI for Mean Individual Statistics 11.678, consider increasing the sample sizes. Power is a function of the sample sizes and the standard deviations. To detect differences smaller than One-Way ANOVA for Hardness (HR by Slag % (in F Power Report Power What is the chance of detecting a difference?
  • 14. One-way ANOVA: Elongation (%) versus Slag % (in Flux) Source DF SS MS F P Slag % (in Flux) 5 782 156 1.39 0.241 Error 54 6061 112 Total 59 6843 S = 10.59 R-Sq = 11.43% R-Sq(adj) = 3.22% Individual 95% CIs For Mean Based on Pooled StDev Level N Mean StDev --+---------+---------+---------+------- 0 10 30.50 13.41 (---------*--------) 20 10 28.90 14.75 (--------*---------) 40 10 26.20 4.42 (--------*---------) 60 10 27.20 5.20 (---------*--------) 80 10 25.20 11.55 (---------*---------) 100 10 19.10 9.81 (--------*---------) --+---------+---------+---------+------- 14.0 21.0 28.0 35.0 Pooled StDev = 10.59 4. Inferences for Elongation
  • 15. 100806040200 60 50 40 30 20 10 0 Slag % (in Flux) Elongation(%) 19.1 25.2 27.226.2 28.9 30.5 Individual Value Plot of Elongation (%) vs Slag % (in Flux) 100806040200 60 50 40 30 20 10 0 Slag % (in Flux) Elongation(%) 18 24 29.5 25 28.5 31 19.1 25.227.226.2 28.9 30.5 Boxplot of Elongation (%)
  • 16. at most a 60% chance of detecting a difference of 7.1553. least a 90% chance of detecting a difference of 28.477, and Based on your samples and alpha level (0.05), you have at 100% 28.477 90% 7.1553 60%< 40% 7.1553 9.6 - 60.0 20.317 60.0 - 100.0 22.498 70.0 - 100.0 25.035 80.0 - 100.0 28.477 90.0 - 100.0 Difference Power with your sample sizes? What difference can you detect 0 10 30.5 13.410 (20.907, 40.093) 20 10 28.9 14.746 (18.352, 39.448) 40 10 26.2 4.4171 (23.040, 29.360) 60 10 27.2 5.2026 (23.478, 30.922) 80 10 25.2 11.545 (16.941, 33.459) 100 10 19.1 9.8144 (12.079, 26.121) Slag % (in Flux) Size Sample Mean Deviation Standard 95% CI for Mean Individual Statistics 25.035, consider increasing the sample sizes. Power is a function of the sample sizes and the standard deviations. To detect differences smaller than One-Way ANOVA for Elongation ( by Slag % (in F Power Report Power What is the chance of detecting a difference?
  • 18. General Regression Analysis: Tensile Strength (MPa) versus Slag % (in Flux) Regression Equation Tensile Strength (MPa) = 550.09 - 4.45063 Slag % (in Flux) + 0.0721726 Slag % (in Flux)*Slag % (in Flux) - 0.000428472 Slag % (in Flux)*Slag % (in Flux)*Slag % (in Flux) Coefficients Term Coef SE Coef T Constant 550.090 5.94031 92.6031 Slag % (in Flux) -4.451 0.57693 -7.7144 Slag % (in Flux)*Slag % (in Flux) 0.072 0.01434 5.0345 Slag % (in Flux)*Slag % (in Flux)*Slag % (in Flux) -0.000 0.00009 -4.5520 Term P Constant 0.000 Slag % (in Flux) 0.000 Slag % (in Flux)*Slag % (in Flux) 0.000 Slag % (in Flux)*Slag % (in Flux)*Slag % (in Flux) 0.000 Summary of Model S = 19.1691 R-Sq = 86.51% R-Sq(adj) = 85.78% PRESS = 23149.0 R-Sq(pred) = 84.82%
  • 19. Statistics R-squared (adjusted) P-value, model P-value, linear term P-value, quadratic term P-value, cubic term Residual standard deviation 85.78% 0.000* 0.000* 0.000* 0.000* 19.169 Cubic Selected Model 78.71% 80.86% 0.000* 0.000* 0.000* 0.000* - 0.008* - - 23.460 22.239 Linear Quadratic Alternative Models 100806040200 550 500 450 400 350 Slag % (in Flux) TensileStrength(MPa) Large residual Y: Tensile Strength (MPa) X: Slag % (in Flux) * Statistically significant (p < 0.05) Regression for Tensile Strength (MPa) vs Slag % (in Flux) Model Selection Report Fitted Line Plot for Cubic Model Y = 550.1 - 4.451 X + 0.07217 X**2 - 0.000428 X**3
  • 20. Slag % (in Flux) is statistically significant (p < 0.05). The relationship between Tensile Strength (MPa) and > 0.50.10.050 NoYes P = 0.000 be accounted for by the regression model. 85.78% of the variation in Tensile Strength (MPa) can 100%0% R-sq (adj) = 85.78% 1007550250 550 500 450 400 Slag % (in Flux) TensileStrength(MPa) causes Y. A statistically significant relationship does not imply that X Tensile Strength (MPa). correspond to a desired value or range of values for Flux), or find the settings for Slag % (in Flux) that to predict Tensile Strength (MPa) for a value of Slag % (in If the model fits the data well, this equation can be used Y = 550.1 - 4.451 X + 0.07217 X**2 - 0.000428 X**3 relationship between Y and X is: The fitted equation for the cubic model that describes the Y: Tensile Strength (MPa) X: Slag % (in Flux) Is there a relationship between Y and X? Fitted Line Plot for Cubic Model Y = 550.1 - 4.451 X + 0.07217 X**2 - 0.000428 X**3 Comments Regression for Tensile Strength (MPa) vs Slag % (in Flux) Summary Report % of variation accounted for by model
  • 21. General Regression Analysis: Hardness (HRC) versus Slag % (in Flux) Regression Equation Hardness (HRC) = 11.9504 + 0.229152 Slag % (in Flux) - 0.0023558 Slag % (in Flux)*Slag % (in Flux) Coefficients Term Coef SE Coef T P Constant 11.9504 1.40101 8.52984 0.000 Slag % (in Flux) 0.2292 0.06589 3.47772 0.001 Slag % (in Flux)*Slag % (in Flux) -0.0024 0.00063 -3.72471 0.000 Summary of Model S = 4.88827 R-Sq = 19.71% R-Sq(adj) = 16.90% PRESS = 1496.83 R-Sq(pred) = 11.77%
  • 22. Statistics R-squared (adjusted) P-value, model P-value, linear term P-value, quadratic term P-value, cubic term Residual standard deviation 16.90% 0.002* 0.001* 0.000* - 4.888 Quadratic Selected Model 0.00% 16.28% 0.754 0.005* 0.754 0.387 - 0.914 - 0.450 5.404 4.906 Linear Cubic Alternative Models 100806040200 30 25 20 15 10 5 Slag % (in Flux) Hardness(HRC) Large residual Y: Hardness (HRC) X: Slag % (in Flux) * Statistically significant (p < 0.05) Regression for Hardness (HRC) vs Slag % (in Flux) Model Selection Report Fitted Line Plot for Quadratic Model Y = 11.95 + 0.2292 X - 0.002356 X**2
  • 23. (in Flux) is statistically significant (p < 0.05). The relationship between Hardness (HRC) and Slag % > 0.50.10.050 NoYes P = 0.002 accounted for by the regression model. 16.90% of the variation in Hardness (HRC) can be 100%0% R-sq (adj) = 16.90% 1007550250 30 20 10 0 Slag % (in Flux) Hardness(HRC) causes Y. A statistically significant relationship does not imply that X a desired value or range of values for Hardness (HRC). or find the settings for Slag % (in Flux) that correspond to to predict Hardness (HRC) for a value of Slag % (in Flux), If the model fits the data well, this equation can be used Y = 11.95 + 0.2292 X - 0.002356 X**2 the relationship between Y and X is: The fitted equation for the quadratic model that describes Y: Hardness (HRC) X: Slag % (in Flux) Is there a relationship between Y and X? Fitted Line Plot for Quadratic Model Y = 11.95 + 0.2292 X - 0.002356 X**2 Comments Regression for Hardness (HRC) vs Slag % (in Flux) Summary Report % of variation accounted for by model
  • 25. Mean Table (showing validation of structure) Slag % (in Flux) Tensile Strength (MPa) Impact Strength (J) Hardness (HRC) Elongation (%) 0 548 107.4 12.5 30.5 20 495.2 98.2 14.9 28.9 40 446.7 90.4 16.6 26.2 60 460.6 96.5 18.5 27.2 80 433.2 91.1 15.1 25.2 100 398.6 78.2 11.1 19.1 Micro structure for each settings
  • 27. 0.500.250.00-0.25-0.50 560 540 520 500 480 460 440 420 400 deviation from reference blend in proportion FittedTensileStrength Flux % 0.5000 Slag % 0.5000 Comp:RefBlend Cox Response Trace Plot
  • 28. 0.500.250.00-0.25-0.50 18 17 16 15 14 13 12 11 deviation from reference blend in proportion FittedHardness Flux % 0.5000 Slag % 0.5000 Comp:RefBlend Cox Response Trace Plot
  • 29. Response Optimization Parameters Goal Lower Target Upper Weight Import Tensile Stre Target 420 425 430 1 1 Hardness Target 12 14 16 1 1 Starting Point Components Flux % = 1 Slag % = 0 Local Solution Components Flux % = 0.236307 Slag % = 0.763693 Predicted Responses Tensile Stre = 424.743 , desirability = 0.948502 Hardness = 15.431 , desirability = 0.284495 Composite Desirability = 0.519465
  • 30. Cur High Low0.51946 D Optimal d = 0.94850 Targ: 425.0 Tensile y = 424.7425 d = 0.28449 Targ: 14.0 Hardness y = 15.4310 0.51946 Desirability Composite 0.0 1.0 0.0 1.0 [ ]:Slag %[ ]:Flux % [0.2363] [0.7637]
  • 31. Phase-6 Actual Trend Achieved at Optimized Settings
  • 32. Runs Tensile Strength (At 76% Slag) Hardness (At 76% Slag) 1 423.4 15 2 424.3 14 3 425 12.8 4 422.5 15.8 5 422 13 6 425 13.4 7 422 13.5 8 425 14 9 421 15.2 10 422.5 12.9 11 425.9 15.1 12 422.8 15.2 13 422 15 14 426.7 14 15 421.3 14.2 16 422.9 14 17 424.1 14.2 18 424.3 13.5 19 425.8 12.9 20 425.3 14.2 21 421.5 13.2 22 425.8 14.2 23 425 14 24 422.5 14.2 25 423.54 14.1 26 421.5 13.5 27 424 13.8 28 422.9 15.1 29 426.1 15.2 30 425.3 13.3
  • 33. Total N 30 Subgroup size 1 Mean 423.73 StDev (overall) 1.6522 StDev (within) 1.9436 Process Characterization Cp 0.86 Cpk 0.64 Z.Bench 1.91 % Out of spec (expected) 2.81 PPM (DPMO) (expected) 28072 Actual (overall) Pp 1.01 Ppk 0.75 Z.Bench 2.26 % Out of spec (observed) 0.00 % Out of spec (expected) 1.20 PPM (DPMO) (observed) 0 PPM (DPMO) (expected) 12036 Potential (within) Capability Statistics 429.0427.5426.0424.5423.0421.5420.0 LSL Target USL Capability Histogram Are the data inside the limits and close to the target? Actual (overall) capability is what the customer experiences. shifts and drifts were eliminated. Potential (within) capability is what could be achieved if process Capability Analysis for Tensile Stre Process Performance Report
  • 34. Total N 30 Subgroup size 1 Mean 14.083 StDev (overall) 0.81201 StDev (within) 0.79176 Process Characterization Cp 0.84 Cpk 0.81 Z.Bench 2.26 % Out of spec (expected) 1.20 PPM (DPMO) (expected) 11997 Actual (overall) Pp 0.82 Ppk 0.79 Z.Bench 2.19 % Out of spec (observed) 0.00 % Out of spec (expected) 1.43 PPM (DPMO) (observed) 0 PPM (DPMO) (expected) 14277 Potential (within) Capability Statistics 1615141312 LSL Target USL Capability Histogram Are the data inside the limits and close to the target? Actual (overall) capability is what the customer experiences. shifts and drifts were eliminated. Potential (within) capability is what could be achieved if process Capability Analysis for Hardness (At Process Performance Report