SlideShare a Scribd company logo
APPENDIX E
CALCULATIONS
E1
Introduction:
The following are all calculations, mechanical, computer and electrical for the MARTHA
device. The calculations are organized by what system they correspond to. All common
assumptions are to be made, unless otherwise stated (i.e. g=9.81 m/s2).
E2
PVC Analysis
PVC Material Specifications:
𝑆 𝑢𝑡 = 10500 𝑝𝑠𝑖
𝑆 𝑦 = 8500 𝑝𝑠𝑖
E = 490 ksi
Chain Material Specifications: 4130 Normalized alloy steel
𝑆 𝑢𝑡= 97200 psi
𝑆 𝑦 = 63100 𝑝𝑠𝑖
E = 29700 ksi
Screw Specifications: #6-32 ¾” Machine Screw
d = 0.138”
𝑑 𝑟 = 0.0974”
N = 32
𝐴𝑡 = 0.0119 𝑖𝑛2
𝑆 𝑢𝑡 = 25000 psi
𝑆 𝑝 = 22479 psi
𝑆 𝑦 = 22000 psi
E = 1490 ksi
𝐴 𝐵 = 0.138(0.5) = 0.069 𝑖𝑛2
l = 0.5”
P = 15 lb
𝐹𝑖 = .9𝑆 𝑝 𝐴𝑡 = (.9)(0.0119)(22479) = 241 lb
𝐾𝑏 = 𝐸
𝐴𝑡
𝑙
+ 𝐸
𝐴 𝑏
𝑙
=
0.0119(490000)
0.5
+
0.069(490000)
0.5
= 135000
𝐾 𝑚 = 𝐴 𝑚
𝐸 𝑚
𝑙
=
0.069(490000)
0.5
= 67600
𝐶 =
𝐾𝑏
𝐾 𝑚 𝐾𝑏
=
135000
(135000)(67600)
= 0.67
𝑃 𝑏 = 𝐶𝑃 = (. 67)(15) = 10.05 𝑙𝑏
𝑃𝑚 = (1 − 𝐶) 𝑃 = (1 − .67)15 = 4.95 𝑙𝑏
𝐹𝑏 = 𝐹𝑖 + 𝑃 𝑏 = 241 + 10.05 = 251.05 𝑙𝑏
𝐹𝑚 = 𝐹𝑖 − 𝑃𝑚 = 241 − 4.95 = 236.05 𝑙𝑏
𝜎𝑏 =
𝐹𝑏
𝐴𝑡
=
251.05
0.0119
= 21100 𝑝𝑠𝑖
𝜎 𝑚 =
𝐹𝑚
𝐴 𝑏
=
236.05
0.069
= 3421 𝑝𝑠𝑖
𝑁 𝑦 =
𝑆 𝑦
𝜎𝑏
=
22000
21100
= 1.04
E3
𝑃0 =
𝐹𝑖
(1 − 𝐶)
=
241
(1 − .67)
= 730.3 𝑙𝑏
𝑁𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑃0
𝑃
=
730.3
15
= 49
Front wheel: (6/15) 13 = 5.2 lb
Back wheel: (11/15) 13 = 7.8 lb
Front:
5.2lb/2 wheels = 2.6 lb
σ = F/A = 2.6/0.036 = 72.2 psi
Back:
7.8lb/2 wheels = 3.9 lb
σ = F/A = 3.9/0.036 = 108.3 psi
E4
Chassis Analysis
Chassis material: 6061-Aluminum
Ρ = 0.0975 lb/𝑖𝑛2
𝑆 𝑢𝑡 = 45000 𝑝𝑠𝑖
𝑆 𝑦 = 40000 𝑝𝑠𝑖
E = 10000 ksi
Screw: #8-32 1” machine screw
d = 0.164”
N = 32
𝑑 𝑟 = 0.1234"
𝐴𝑡 = 0.0140 𝑖𝑛2
𝑆 𝑢𝑡 = 25000 𝑝𝑠𝑖
𝑆 𝑦 = 22000 𝑝𝑠𝑖
E = 1490 ksi
𝑆 𝑝 = 22500 𝑝𝑠𝑖
l = 0.8”
𝐴 𝑏 = (0.164)(0.8) = 0.1312𝑖𝑛2
Chassis-Screw Connection:
P = 12 lb
𝐹𝑖 = .9𝑆 𝑝 𝐴𝑡 = 283.5 𝑙𝑏
𝐾𝑏 = 𝐸
𝐴𝑡
𝑙
+ 𝐸
𝐴 𝑏
𝑙
= 88935
𝑙𝑏
𝑖𝑛
𝐾 𝑚 =
𝐴 𝑚 𝐸 𝑚
𝑙
=
(0.044)(100000000)
0.8
= 440000
𝑙𝑏
𝑖𝑛
𝐴 𝑚 = (
𝜋
4
) ( 𝐷 − 𝑑)2
= (
𝜋
4
) (0.4 − 0.164)2
= 0.044𝑖𝑛2
𝑃 𝑏 = 𝐶𝑃 = (12)(0.17) = 2.04 𝑙𝑏
𝑃𝑚 = (1 − 𝐶) 𝑃 = 9.96 𝑙𝑏
𝑃0 =
𝐹𝑖
(1 − 𝐶)
=
283.5
(1 − 0.17)
= 341.57 𝑙𝑏
𝑁𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑃0
𝑃
= 28.5
𝐹𝑏 = 𝐹𝑖 + 𝑃 𝑏 = 285.55 𝑙𝑏
𝐹𝑚 = 𝐹𝑖 − 𝑃𝑚 = 273.54 𝑙𝑏
𝐶 =
𝐾𝑏
𝐾 𝑚 + 𝐾𝑏
= 0.17
𝜎𝑏 =
𝐹𝑏
𝐴𝑡
=
285.55
0.014
= 20396 𝑝𝑠𝑖 𝑥28 𝑠𝑐𝑟𝑒𝑤𝑠 = 728.43 𝑝𝑠𝑖 𝑝𝑒𝑟 𝑠𝑐𝑟𝑒𝑤
𝜎 𝑚 =
𝐹𝑚
𝐴 𝑏
= 2084.9 𝑝𝑠𝑖
E5
𝑁 𝑦 =
𝑆 𝑦
𝜎𝑏
=
22000
728.43
= 30.2
Shear on side screws:
𝐹 = 𝑚𝑔 = (12𝑙𝑏)(
9.81𝑚
𝑠2
) = 117.72 𝑁
𝐴 = 0.014 𝑖𝑛2
𝜎𝑠ℎ𝑒𝑎𝑟 =
117.72
0.014
= 8408.6 𝑝𝑠𝑖 𝑥 8 𝑠𝑐𝑟𝑒𝑤𝑠 = 1051.075 𝑝𝑠𝑖 𝑝𝑒𝑟 𝑠𝑐𝑟𝑒𝑤
E6
MotorMount Analysis (Screw Connections)
Material Specifications: 6061-Aluminum
𝜌 = 0.0975
𝑙𝑏
𝑖𝑛3
𝑆 𝑢𝑡 = 45000 𝑝𝑠𝑖
𝑆 𝑦 = 40000 𝑝𝑠𝑖
𝐸 = 10000 𝑘𝑠𝑖
Bolt Material: ¼” x 1” 307 Grade A Steel – SAE Grade 5, medium carbon, cold drawn
Head width: 3/8”
𝑙 𝑡 = 0.75"
𝑆 𝑦 = 92 𝑘𝑠𝑖
𝑆 𝑢𝑡 = 120 𝑘𝑠𝑖
𝑆 𝑝 = 85 𝑘𝑠𝑖
𝐸 = 30000 𝑘𝑠𝑖
𝐴𝑡 = 0.032 𝑖𝑛2
𝐴 𝑏 = 𝜋(0.25)2
= 0.2
Connections Relating to Drawing:
1. L-Bar to Chassis
2. L-Bar to Motor Face Plate
3. L-Bar to Bearing
4. Top L-bar to Plate with ABS Plastic
5. Motor Face Plate to Motor
L-Bar to Motor Al face connection:
Same Preload Specs as #8-32 x 1” screw listed above
C = 0.17
P = 1.8 lb
𝐹𝑖 = 283.5 𝑙𝑏
𝐴𝑡 = 0.014 𝑖𝑛2
𝐴 𝑏 = 0.1312 𝑖𝑛2
𝑃 𝑏 = 𝐶𝑃 = 0.306 𝑙𝑏
𝑃𝑚 = (1 − 𝐶) 𝑃 = 1.494 𝑙𝑏
𝐹𝑏 = 𝐹𝑖 + 𝑃 𝑏 = 283.806 𝑙𝑏
𝐹𝑚 = 𝐹𝑖 − 𝑃𝑚 = 282.006 𝑙𝑏
𝜎𝑏 =
𝐹𝑏
𝐴𝑡
= 20271.9 𝑝𝑠𝑖 𝑥 2 𝑠𝑐𝑟𝑒𝑤𝑠 = 10135.95 𝑝𝑠𝑖 𝑝𝑒𝑟 𝑠𝑐𝑟𝑒𝑤
𝜎 𝑚 =
𝐹𝑚
𝐴 𝑏
= 2149.44 𝑝𝑠𝑖
𝑁 𝑦 =
𝑆 𝑦
𝜎𝑏
= 1.08
E7
𝑃0 =
𝐹𝑖
(1 − 𝐶)
= 341.57
𝑁𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑃0
𝑃
= 190
Shear on screw head:
F = 1.8 lb x 9.8m/𝑠2
= 17.66 𝑁
A = 0.014 𝑖𝑛2
𝜎𝑠ℎ𝑒𝑎𝑟 =
17.60
0.014
= 1261.4 𝑝𝑠𝑖 𝑥2 𝑠𝑐𝑟𝑒𝑤𝑠 = 630.7 𝑝𝑠𝑖 𝑝𝑒𝑟 𝑠𝑐𝑟𝑒𝑤
L-Bar to bearing connection:
Material: SAE 1840 Bronze
Bearing housing: 6061-Aluminum
Same Preload Specs as #8-32 x 1” screw listed above
P = 1 lb
C = 0.95
𝑃 𝑏 = 𝐶𝑃 = 0.95 𝑙𝑏
𝑃𝑚 = (1 − 𝐶) 𝑃 = 0.05 𝑙𝑏
𝐹𝑏 = 𝐹𝑖 + 𝑃 𝑏 = 2448.95 𝑙𝑏
𝐹𝑚 = 𝐹𝑖 − 𝑃𝑚 = 2447.95 𝑙𝑏
𝜎𝑏 =
𝐹𝑏
𝐴𝑡
= 76530 𝑝𝑠𝑖 𝑥 2 𝑠𝑐𝑟𝑒𝑤𝑠 = 38265 𝑝𝑠𝑖 𝑝𝑒𝑟 𝑠𝑐𝑟𝑒𝑤
𝜎 𝑚 =
𝐹𝑚
𝐴 𝑏
= 12239.75 𝑝𝑠𝑖
𝑁 𝑦 =
𝑆 𝑦
𝜎𝑏
= 1.2
𝑃0 =
𝐹𝑖
(1 − 𝐶)
= 37210 𝑙𝑏
𝑁𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑃0
𝑃
= 48960
L-Bar to Chassis bolt connection:
Specifications for bolt preload listed above
𝐹𝑖 = 0.9𝑆 𝑝 𝐴𝑡 = 2448 𝑙𝑏
𝑙 𝑡ℎ𝑟𝑒𝑎𝑑 = 2𝑑 + 0.25 = 0.75"
𝑙 𝑠 = 𝑙 𝑏𝑜𝑙𝑡 − 𝑙 𝑡ℎ𝑟𝑒𝑎𝑑 = 1 − 0.75 = 0.25"
𝑙 𝑡 = 𝑙 − 𝑙 𝑠 = 0.75"
𝐾𝑏 = 𝐸
𝐴𝑡
𝑙
+ 𝐸
𝐴 𝑏
𝑙
= 2.53𝑥107
𝑙𝑏
𝑖𝑛
𝐾 𝑚 =
𝐴 𝑚 𝐸 𝑚
𝑙
= 1.25𝑥106
𝑙𝑏
𝑖𝑛
𝐴 𝑚 =
1
8
𝑥 0.25 = 0.09375 𝑖𝑛2
𝐶 =
𝐾 𝑏
𝐾 𝑚+𝑘 𝑏
= 0.95
P = 2 lb
E8
𝑃 𝑏 = 𝐶𝑃 = 1.9 𝑙𝑏
𝑃𝑚 = (1 − 𝐶) 𝑃 = 0.1 𝑙𝑏
𝐹𝑏 = 𝐹𝑖 + 𝑃 𝑏 = 2449.5 𝑙𝑏
𝐹𝑚 = 𝐹𝑖 − 𝑃𝑚 = 2447.5 𝑙𝑏
𝜎𝑏 =
𝐹𝑏
𝐴𝑡
= 76547 𝑝𝑠𝑖 𝑥 2 𝑠𝑐𝑟𝑒𝑤𝑠 = 38273.5 𝑝𝑠𝑖 𝑝𝑒𝑟 𝑠𝑐𝑟𝑒𝑤
𝜎 𝑚 =
𝐹𝑚
𝐴 𝑏
= 26107 𝑝𝑠𝑖
𝑁 𝑦 =
𝑆 𝑦
𝜎𝑏
= 1.2
𝑃0 =
𝐹𝑖
(1 − 𝐶)
= 48960 𝑙𝑏
𝑁𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑃0
𝑃
= 24480
L-Bar to Aluminum Motor face connection with ABS Plastic Spacer:
ABS Specifications:
𝑆 𝑢𝑡 = 5500 𝑝𝑠𝑖
𝑆 𝑦 = 3000 𝑝𝑠𝑖
E = 270 ksi
𝜎𝑎𝑏𝑠 =
𝐹 𝑚
𝐴
= 6216.8 𝑝𝑠𝑖 ∶ 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒
#8-32 Screws
P = 1 lb
𝐹𝑖 = .9𝑆 𝑝 𝐴𝑡 = 283.5 𝑙𝑏
𝐾𝑏 = 𝐸
𝐴𝑡
𝑙
+ 𝐸
𝐴 𝑏
𝑙
= 88935
𝑙𝑏
𝑖𝑛
𝐾 𝑚 =
𝐴 𝑚 𝐸 𝑚
𝑙
=
(0.044)(100000000)
0.8
= 23760
𝑙𝑏
𝑖𝑛
𝐴 𝑚 = (
𝜋
4
) ( 𝐷 − 𝑑)2
= 0.044𝑖𝑛2
𝑃 𝑏 = 𝐶𝑃 = 0.79 𝑙𝑏
𝑃𝑚 = (1 − 𝐶) 𝑃 = 0.21 𝑙𝑏
𝑃0 =
𝐹𝑖
(1 − 𝐶)
=
283.5
(1 − 0.17)
= 1350 𝑙𝑏
𝐹𝑏 = 𝐹𝑖 + 𝑃 𝑏 = 284.29 𝑙𝑏
𝐹𝑚 = 𝐹𝑖 − 𝑃𝑚 = 283.29 𝑙𝑏
𝜎𝑏 =
𝐹𝑏
𝐴𝑡
= 6401.1 𝑝𝑠𝑖 𝑥 2 𝑠𝑐𝑟𝑒𝑤𝑠 = 3230.55 𝑝𝑠𝑖 𝑝𝑒𝑟 𝑠𝑐𝑟𝑒𝑤
𝑁 𝑦 =
𝑆 𝑦
𝜎𝑏
= 4.65
𝑁𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑃0
𝑃
= 1350
Aluminum face to Motor connection:
E9
#10-24 1.5” screws:
d = 0.19”
𝑑 𝑟 = 0.1359"
N = 24
𝐴𝑡 = 0.0175 𝑖𝑛2
𝑆 𝑦 = 22000 𝑝𝑠𝑖
𝑆 𝑢𝑡 = 25000 𝑝𝑠𝑖
E = 490 ksi
𝐴 𝑏 = 𝛱( 𝑑2) = 0.028 𝑖𝑛2
𝐴 𝑚 =
𝜋 𝐷𝑒𝑓𝑓
2
4
= 0.042 𝑖𝑛2
𝐷 𝑒𝑓𝑓 = 0.23"
𝐹𝑖 = .9𝑆 𝑝 𝐴𝑡 = 354.375 𝑙𝑏
𝐾𝑏 = 𝐸
𝐴𝑡
𝑙
+ 𝐸
𝐴 𝑏
𝑙
= 17150
𝑙𝑏
𝑖𝑛
𝐾 𝑚 =
𝐴 𝑚 𝐸 𝑚
𝑙
=
(0.042)(100000000)
1.3
= 319567
𝑙𝑏
𝑖𝑛
𝐶 =
𝐾 𝑏
𝐾 𝑚+𝑘 𝑏
= 0.05
𝑃 𝑏 = 𝐶𝑃 = 0.09 𝑙𝑏
𝑃𝑚 = (1 − 𝐶) 𝑃 = 1.71 𝑙𝑏
𝑃0 =
𝐹𝑖
(1 − 𝐶)
= 373 𝑙𝑏
𝐹𝑏 = 𝐹𝑖 + 𝑃 𝑏 = 354.465 𝑙𝑏
𝐹𝑚 = 𝐹𝑖 − 𝑃𝑚 = 352.665 𝑙𝑏
𝜎𝑏 =
𝐹𝑏
𝐴𝑡
= 20250 𝑝𝑠𝑖 𝑥 2 𝑠𝑐𝑟𝑒𝑤𝑠 = 10125 𝑝𝑠𝑖 𝑝𝑒𝑟 𝑠𝑐𝑟𝑒𝑤
𝑁 𝑦 =
𝑆 𝑦
𝜎𝑏
= 1.1
𝑁𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑃0
𝑃
= 207.2
E10
MotorMount Analysis (Bearing & Motor)
Motor Specs: 48:1 ratio
Load speed = 33 rpm
Load torque = 280 oz-in = 17.5 lb-in.
0.5” diameter, 1.75” long motor shaft, 𝐷 𝑜 = 0.5", 𝐷𝑖 = 0.25"
𝜏 =
𝑇𝜌
𝐽
=
17.5(0.25)
3.8 𝑥 10−4
= 11513.2 𝑙𝑏𝑓 = 𝜏 𝑚𝑎𝑥
𝐽 =
𝜋( 𝐷𝑜 − 𝐷𝑖)4
32
= 3.8𝑥10−4
Set Screws: 10-32 set screws ½”
𝑑 𝑠𝑒𝑡 𝑠𝑐𝑟𝑒𝑤 = 0.165"
𝐴𝑡 = 0.0175𝑖𝑛.2
𝑑 𝑝 = 𝑑 − (
0.64519
2
) = 0.163"
𝑆 𝑦 = 22000 𝑝𝑠𝑖
Alloy steel: F = 311.376 N
𝜎𝑡 =
𝐹
𝐴𝑡
= 1.78𝑥104
𝑝𝑠𝑖
𝑁 𝑦 =
𝑆 𝑦
𝜎𝑡
= 1.24
𝐽 =
𝜋(0.165)4
32
= 7.3𝑥10−5
𝑆𝑒𝑡 𝑆𝑐𝑟𝑒𝑤 #1: 𝜏 =
17.5 (
0.165
2
)
7.3𝑥10−5
= 19777.4 𝑝𝑠𝑖 − 𝑖𝑛
𝑆𝑒𝑡 𝑆𝑐𝑟𝑒𝑤 #2: 𝜏 =
17.5(1)
7.3𝑥10−5
= 2.4𝑥105
𝑝𝑠𝑖 − 𝑖𝑛
Hydrodynamic Bearing Analysis:
𝑙
𝑑
= 0.75
Lube thickness: h = 0.0017”
Abs. viscosity = η = Uρ = 3.5E-6
n = 33 rpm = 1980 rps
A = π (0.25)(0.25) = 0.19𝑖𝑛2
U = πdn = 1555 in/sec
𝐶 𝑑 = 𝑑𝑛 = 0.000425
𝐶𝑟 =
𝐶 𝑑
2
= 0.0004 = 𝑒
𝑂 𝑛 = 20
𝜀 =
𝑒
𝐶𝑟
= 0.747
𝜀 𝑥 = 0.21394+ 0.385170(𝑂𝑛 − 0.0008( 𝑂𝑛 − 60) = 0.747
𝐾𝜀 =
𝑂 𝑛
4𝜋
= 1.592
E11
𝜏 𝑥 = 𝜂
𝑈
ℎ
= 3.2 𝑝𝑠𝑖 𝐹 = 𝐴𝜏 𝑥 = 6.08 𝑙𝑏
Average oil pressure: 𝑃𝑎𝑣𝑔 =
𝑃
𝑙𝑑
= 17 𝑝𝑠𝑖
𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦: 𝜏𝑠 =
𝜂𝑑3
𝑙𝑛𝜋2
𝐶 𝑑(1 − 𝜀2)0.5
= 0.45 𝑙𝑏 − 𝑖𝑛
𝜃 𝑚𝑎𝑥 = cos−1
1 − √(1 + 24𝜀^2)
4𝜀
= 159 𝑑𝑒𝑔𝑟𝑒𝑒𝑠
𝑃 =
𝜂𝑈
𝑟𝐶𝑟
2
𝑙2
4
3𝜀𝑠𝑖𝑛𝜃
(1 + 3𝑐𝑜𝑠𝜃)3
= 1670.3 𝑝𝑠𝑖
𝜙 = tan−1
(
𝜋√1 − 𝜀2
4𝜀
) = 35 𝑑𝑒𝑔𝑟𝑒𝑒𝑠
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑔: 𝜏 𝑟 = 𝜏𝑠 + 𝑃𝑒 𝑠𝑖𝑛𝜙 = 0.8332 𝑙𝑏 − 𝑖𝑛
𝑃𝑜𝑤𝑒𝑟 𝑙𝑜𝑠𝑡 𝑖𝑛 𝑏𝑒𝑎𝑟𝑖𝑛𝑔: 𝛷 = 2𝜋𝜏 𝑟(925) = 0.006 𝐻𝑃
𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛: 𝜇 =
2𝜏 𝑟
𝑃 𝑑
= 0.004
𝑁 =
0.8
0.25
= 3.2
E12
Gear Assembly
Bending Stress on Drive Gear:
𝜎𝑏 =
𝑊𝑡 𝑃 𝑑
𝐹𝐽
𝐾𝑎 𝐾 𝑚
𝐾𝑣
𝑥 𝐾𝑠 𝐾𝑏 𝐾𝑙
For series 116-4 DC Motor: w = 33 rpm, T = 280 in-oz = 17.5 lb-in
F = 0.25”
𝑁 𝑝 = 8
a = 0.3”
𝑑 =
𝑁 𝑝
𝑃 𝑑
𝐷 𝑜 =
𝑁 + 2
𝑃
= 𝑃 𝑑 + 2𝑎
3.5 = 𝑃 𝑑 = 2(.3) 𝑃𝑑 = 2.9"
𝑑 =
8
2.4
= 2.76
𝑉𝑡 =
𝑑𝑤
2
=
(2.76)(33𝑟𝑝𝑚)
2
2𝜋
12
= 23.85
𝑓𝑡
𝑚𝑖𝑛
𝑄𝑣 = 6 𝑡𝑜 8 = 7
𝐾𝑣 = 0.96 𝐽 = 0.2 𝐾 𝑚 = 1.6 𝐾𝑎 = 1.25( 𝑎𝑠𝑠𝑢𝑚𝑒 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑠ℎ𝑜𝑐𝑘 𝑡𝑒𝑟𝑟𝑎𝑖𝑛)
𝐾𝑠 = 𝐾𝑙 = 1( 𝑛𝑜𝑛 − 𝑖𝑑𝑙𝑒𝑟)
𝑊𝑡 =
2𝑇𝑝
𝑑 𝑝
=
2(17.5)
2.76
= 12.68 𝑙𝑏𝑓
𝜎𝑏 =
(12.68)(2.9)
(. 25)(.2)
(1.25)(1.6)
(0.96)
= 1532.16 𝑝𝑠𝑖
Al-6061: 𝑆𝑓𝑏′ = 14𝑥103
𝑝𝑠𝑖
𝑆𝑓𝑏 =
𝐾𝐿
𝐾 𝑇 𝐾 𝑅
𝑆𝑓 𝑏′
𝐾𝑟 = 1.25 𝐾𝐿 = 1.6831( 𝑁)−0.0323
= 1.073 𝐾𝑡 = 1(𝑟𝑜𝑜𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)
𝑁 = 30𝑟𝑝𝑚 (
60𝑚𝑖𝑛
ℎ𝑟
)(3
ℎ𝑟𝑠
𝑑𝑎𝑦
) (
4𝑑𝑎𝑦𝑠
𝑤𝑒𝑒𝑘
)(
52𝑤𝑒𝑒𝑘𝑠
𝑦𝑒𝑎𝑟
)(1𝑦𝑒𝑎𝑟) = 1.123𝑥106
𝑐𝑦𝑐𝑙𝑒𝑠
𝑆𝑓𝑏 =
1.073
(1)(1.25)
(14𝑥103) = 12017.6 𝑝𝑠𝑖
𝑁𝑓𝑏 =
𝑆𝑓𝑏
𝜎𝑏
= 7.84
E13
Gear Shaft Analysis
Steel 1050: 𝑆 𝑢𝑡 = 90 𝑘𝑠𝑖 𝑆 𝑦 = 50 𝑘𝑠𝑖
𝑇 𝑚 = 17.5 𝑙𝑏 − 𝑖𝑛 𝑇𝑎 = 0
𝑀 𝑎 = 𝑀 𝑚𝑎𝑥
𝐹 =
𝑇
𝑟
=
17.5
2.76
2
= 12.68 𝑙𝑏𝑓
𝛴𝐹𝑦: 𝑅1 − 𝐹 − 𝐹 = 0, 𝑅1 = 2𝐹 = 25.36 𝑙𝑏𝑓
𝑉 = −𝑅1 < 𝑥 − 0 >0
+ 𝐹 < 𝑥 − 1 >0
+ 𝐹 < 𝑥 − 1.5 >0
𝑀 = ∫ 𝑉 = −𝑅1 < 𝑥 − 0 >1
+ 𝐹 < 𝑥 − 1 >1
+ 𝐹 < 𝑥 − 1.5 >1
= 31.7 𝑙𝑏𝑓
𝑆 𝑒′ = .5𝑆 𝑢𝑡 = 45 𝑘𝑠𝑖
𝐶𝑙𝑜𝑎𝑑 = 1( 𝑏𝑒𝑛𝑑𝑖𝑛𝑔) 𝐶𝑠𝑖𝑧𝑒 = 0.869( 𝑑)−0.097
= 0.994 𝐶𝑠𝑢𝑟𝑓 = 𝐴( 𝑆 𝑢𝑡) 𝑏
= 0.569
𝐶𝑡𝑒𝑚𝑝 = 1 𝐶𝑟𝑒𝑙𝑖𝑎𝑏 = 0.814 ( 𝑎𝑠𝑠𝑢𝑚𝑒 99% 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑦)
𝑆 𝑒 = (45)(0.994)(0.569)(0.814)(1)(1) = 20.7188 𝑘𝑠𝑖
𝑑 =
(
(
32𝑁𝑠𝑓
𝜋
)
(
√(𝐾𝑓 𝑀 𝑎)
2
+
3
4
(𝐾𝑓𝑠 𝑇𝑎)
2
20.7188𝑘
+
√(𝐾𝑓𝑚 𝑀 𝑎)
2
+
3
4
(𝐾𝑓𝑠𝑚 𝑇𝑎)
2
𝑆 𝑢𝑡
)
1
3
)
𝑑 = 0.25" 𝑆 𝑢𝑡 = 90𝑘 𝑁𝑠𝑓 = 9.199
𝜎 𝑚𝑎𝑥 =
𝑀 𝑚𝑎𝑥 𝐶
𝐼
𝐼 =
1
12
𝑏ℎ2
= 3.255𝑥10−4
𝑖𝑛4
𝜎 𝑚𝑎𝑥 = 12.2 𝑘𝑠𝑖 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑆 𝑢𝑡 𝑠𝑜 𝑖𝑡′
𝑠 𝑠𝑎𝑓𝑒
𝜏 𝑚𝑎𝑥 =
𝑇𝑝
𝐽
𝐽 = 𝑏ℎ
1
12
( 𝑏2
+ ℎ2) = 6.51𝑥10−4
𝜏 𝑚𝑎𝑥 = 3.5 𝑘𝑠𝑖
E14
Surface Fatigue Internal Square
𝜎𝑐 = 𝐶 𝑝√
𝑤 𝑏
𝐹𝐼𝑑
𝐶 𝑎 𝐶 𝑚
𝐶 𝑣
𝐶𝑠 𝐶𝑓
𝐹 = 0.25" 𝑊𝑡 = 12.68 𝑙𝑏𝑓
𝐼 = (
𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙
2
) (𝑁 𝑝)
1
𝑁𝑔 𝑁 𝑝
= 0.08
𝐶 𝑝 = 1950 𝑝𝑠𝑖( 𝑠𝑡𝑒𝑒𝑙 𝑜𝑛 𝑎𝑙𝑢𝑚𝑖𝑛𝑢𝑚) 𝐶 𝑚 = 𝐾 𝑚 = 1.6 𝐶 𝑎 = 1
𝐶 𝑣 = (𝐴/(𝐴 + √𝑉𝑡 )
𝐵
𝐴 = 50 + 56(1 − 𝐵) 𝐵 = .25(12− 𝑄𝑣).667
= 0.7314
𝐴 = 65.04 …. 𝐶 𝑣 = 1.27
𝐶𝑠 = 𝐾𝑠 = 𝐶𝑓 = 1 ( 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑒𝑡ℎ𝑜𝑑𝑠)
𝜎𝑐 = 33727 𝑝𝑠𝑖
𝑁𝑓𝑠 = (
𝑆𝑓𝑐
𝜎𝑐
)
2
𝑆𝑓𝑐 =
𝐶 𝐿 𝐶 𝐻
𝐶 𝑇 𝐶𝑅
𝑆𝑓𝑐′
𝐶 𝐿 = 2.466( 𝑁)−.056
= 1.13 𝐶𝑅 = 𝐾 𝑅 = 1.25(99% 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)
𝐶 𝐻 = 𝐶 𝑇 = 1 ( 𝑅𝑜𝑜𝑚 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)
𝑆𝑓 𝑐′ = 60 𝑡𝑜 70 𝑘𝑠𝑖 = 65 𝑘𝑠𝑖
𝑆𝑓𝑐 = 58760 𝑝𝑠𝑖
𝑁𝑓𝑠 = 3.035
𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ: 𝑔𝑎𝑝 = 0.001"
% 𝑇 𝑖𝑛𝑐𝑟𝑒𝑠𝑒 𝑜𝑛 𝑠ℎ𝑎𝑓𝑡:
0.001
0.25
= .005 = 4%
𝜏 =
𝑇𝑝
𝐽
𝑝 𝑛𝑒𝑤 =
. 251
2
= .1255 𝐽 𝑛𝑒𝑤 = (
. 2512
12
) (. 2512
+. 2512) = 0.003969
𝜏 = 33200𝑝𝑠𝑖, 𝜏 𝑜𝑙𝑑 = 3360 𝑝𝑠𝑖
3360
3320
= 101.2%
E15
Spring Analysis
Spring Constant:
19.11 lb = limit
Robot max weight = 20 lb
𝐹 = −𝑘𝑥 𝑥 = 3.5𝑚𝑚 𝐹 = 50𝑁 𝑘 =
50𝑁
3.5𝑚𝑚
=
14.28𝑁
𝑚𝑚
𝑇𝑦𝑝𝑒: 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑠𝑝𝑟𝑖𝑛𝑔𝑠
Shear on Axle:
𝑀𝑎𝑥 𝑇 𝑖𝑛 𝑠𝑝𝑟𝑖𝑛𝑔 = 19.11 𝑙𝑏𝑓
𝜎 =
𝑀𝑦
𝐼
𝛴𝑀 = 19.1(7)+ 19.1(11)− 𝐹2(18) 𝐹2 = 19.47 𝑙𝑏𝑓
𝛴𝐹𝑦 = −𝐹1 + 19.1 + 19.1 − 19.47 𝐹1 = 18.73 𝑙𝑏𝑓
𝑀 𝑚𝑎𝑥 = 131.11
Figure 1
Figure 2
-30
-20
-10
0
10
20
30
0 5 10 15 20
V(shear)
Length (inches)
Shear Diagram
-140
-120
-100
-80
-60
-40
-20
0
0 5 10 15 20
Moment
Length (inches)
Moment Diagram
E16
𝜎 =
(131.11)(
. 25
2
)
𝐼
𝐼 = 1.917𝑥10−4
𝑖𝑛4
𝜎 𝑚𝑎𝑥 = 85.47 𝑘𝑠𝑖
E17
Wheels & Axles Analysis
𝐴𝐵𝑆 𝑃𝑙𝑎𝑠𝑡𝑖𝑐: 𝑆 𝑢𝑡 = 4000 𝑝𝑠𝑖 𝑆 𝑦 = 1400 𝑝𝑠𝑖
20𝑙𝑏𝑓
4
= 5𝑙𝑏𝑓 𝑝𝑒𝑟 𝑤ℎ𝑒𝑒𝑙
𝜎 =
𝐹
𝐴
𝜋(5)2
4
= 𝐴 = 19.63𝑖𝑛2
𝜎 = 2546𝑝𝑠𝑖 𝑝𝑒𝑟 𝑤ℎ𝑒𝑒𝑙
E18
Wire Cutting Device Analysis
Motor Specs:
𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑠 2300 𝑟𝑝𝑚/𝑣𝑜𝑙𝑡
𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑔𝑖𝑣𝑒𝑛: 12 𝑉
𝐴𝑚𝑝𝑠 𝐷𝑟𝑎𝑤𝑛: 5 𝐴
2300 𝑟𝑝𝑚/𝑉 𝑥 12 𝑉 = 27,600 𝑟𝑝𝑚
𝑃𝑜𝑤𝑒𝑟 = 𝑉𝑥𝐼 = 12𝑥5 = 60 𝑤𝑎𝑡𝑡𝑠 = 0.0805 𝐻𝑃
𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝐶𝑢𝑡𝑡𝑖𝑛𝑔 𝐵𝑙𝑎𝑑𝑒 = 1.5𝑖𝑛
𝑇𝑜𝑟𝑞𝑢𝑒 = 𝑟𝑥𝐹 =
33000( 𝐻𝑃)
2𝜋( 𝑟𝑝𝑚)
= 0.1535 𝑓𝑡 − 𝑙𝑏 = 1.838 𝑙𝑏 − 𝑖𝑛.
𝐹 =
𝑇
𝑟
=
1.838
1.5
= 1.225 𝑙𝑏𝑓
Wire Specs:
𝐴 𝑤𝑖𝑟𝑒 = 0.0075𝑖𝑛2
𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ =
18𝑙𝑏
𝑖𝑛2
𝐹𝑜𝑟𝑐𝑒 𝑡𝑜 𝑐𝑢𝑡 𝑤𝑖𝑟𝑒 = 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑥 𝐴 𝑤𝑖𝑟𝑒 = 0.135 𝑙𝑏𝑓
E19
Soil/Air CollectorAnalysis
Servo Specs:
Torque = 38 oz.-in
Force required closing lid of air collector:
Lid = 2.1 oz.
𝐴𝑙𝑖𝑑 = 𝜋( 𝑟)2
= 𝜋(. 5)2
= 0.785 𝑖𝑛2
Servo Arm = 4” long
𝑇𝑜𝑟𝑞𝑢𝑒 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒 𝑙𝑖𝑑 = 𝜏 = 38𝑜𝑧.
𝑖𝑛2
4𝑖𝑛
= 9.5𝑜𝑧. −𝑖𝑛.
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝜏 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒 𝑙𝑖𝑑 = 1.05 𝑜𝑧.−𝑖𝑛.
E20
MATLAB Code Calculations
%%
%Tyler Maydew - LAW OF COSINES
clc
close all
%%
%This section calculates the angle. This does not change regardless of
%position.
a=sqrt((n1-n2)^2+(w1-w2)^2);
b=sqrt((n2-n3)^2+(w2-w3)^2);
c=sqrt((n3-n1)^2+(w3-w1)^2);
A=acos((b^2+c^2-a^2)/(2*b*c));
theta=180-(A*180/pi);
%%
%This set of code is to determine whether we need to spin clockwise or
%counterclockwise.
dn32=n3-n2;
dn12=n1-n2;
dw32=w3-w2;
dw12=w1-w2;
alpha=atan(dn32/dw32)*180/pi;
beta=atan(dn12/dw12)*180/pi;
%This will find theta for line 3 off horizontal of 2
if dn32>=0
if dw32<=0
theta2=abs(alpha);
else
theta2=180-alpha;
end
else
if dw32>=0
theta2=180+abs(alpha);
else
theta2=360-alpha;
end
end
%this will find theta1 for line 1 off horizontal of 2
if dn12>=0
if dw12<=0
theta1=abs(beta);
else
theta1=180-beta;
end
else
if dw12>=0
theta1=180+abs(beta);
else
theta1=360-beta;
end
end
if theta1>=theta2
E21
direc=true;
else
direc=false;
end
%%
%Distance Calc
n=n1-n3;
nd=n*0.000277777778;
nm=111028.2811574018*nd;
w=w1-w3;
wd=w*0.000277777778;
wm=wd*85803.10402713598;
d=sqrt(nm.^2+w.^2);

More Related Content

What's hot

Solutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th editionSolutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th edition
fercrotti
 
solucionario del capitulo 12
solucionario del capitulo 12 solucionario del capitulo 12
solucionario del capitulo 12
jasson silva
 
Pile Eccentricity Analysis for 2 Columns Combined Pilecap
Pile Eccentricity Analysis for 2 Columns Combined PilecapPile Eccentricity Analysis for 2 Columns Combined Pilecap
Pile Eccentricity Analysis for 2 Columns Combined Pilecap
azhar ahmad
 
Capítulo 15 engrenagens cônicas e sem-fim
Capítulo 15   engrenagens cônicas e sem-fimCapítulo 15   engrenagens cônicas e sem-fim
Capítulo 15 engrenagens cônicas e sem-fim
Jhayson Carvalho
 
Tarea 2 hidraulica iii-cabrera arias roberto alejandro
Tarea 2 hidraulica iii-cabrera arias roberto alejandroTarea 2 hidraulica iii-cabrera arias roberto alejandro
Tarea 2 hidraulica iii-cabrera arias roberto alejandro
Alejandro Cabrera
 
Capítulo 11 mancais de contato rolante
Capítulo 11   mancais de contato rolanteCapítulo 11   mancais de contato rolante
Capítulo 11 mancais de contato rolante
Jhayson Carvalho
 
Tarea 5 hidraulica iii-cabrera arias roberto alejandro
Tarea 5 hidraulica iii-cabrera arias roberto alejandroTarea 5 hidraulica iii-cabrera arias roberto alejandro
Tarea 5 hidraulica iii-cabrera arias roberto alejandro
Alejandro Cabrera
 
PROJECT 8th SEM - DEVELOPMENT OF SOME INTEGRATED DECISION-MAKING FRAMEWORK FO...
PROJECT 8th SEM - DEVELOPMENT OF SOME INTEGRATED DECISION-MAKING FRAMEWORK FO...PROJECT 8th SEM - DEVELOPMENT OF SOME INTEGRATED DECISION-MAKING FRAMEWORK FO...
PROJECT 8th SEM - DEVELOPMENT OF SOME INTEGRATED DECISION-MAKING FRAMEWORK FO...
Swagatam Mitra
 
Hibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioHibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionario
Caleb Rangel
 
Compressible Flow Tables and Plots
Compressible Flow Tables and PlotsCompressible Flow Tables and Plots
Compressible Flow Tables and Plots
Engineering Software
 
vibration of machines and structures
vibration of machines and structuresvibration of machines and structures
vibration of machines and structures
Aniruddhsinh Barad
 
09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raices09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raices
Hipólito Aguilar
 
Examen final
Examen finalExamen final
Examen final
Jcabreraes
 
CIRCLE DIAGRAM ON 1-PHASE INDUCTION MOTOR
CIRCLE DIAGRAM ON 1-PHASE INDUCTION MOTORCIRCLE DIAGRAM ON 1-PHASE INDUCTION MOTOR
CIRCLE DIAGRAM ON 1-PHASE INDUCTION MOTOR
suresh shindhe
 
Capítulo 14 engrenagens cilíndricas
Capítulo 14   engrenagens cilíndricasCapítulo 14   engrenagens cilíndricas
Capítulo 14 engrenagens cilíndricas
Jhayson Carvalho
 
Capítulo 16 embreagens
Capítulo 16   embreagensCapítulo 16   embreagens
Capítulo 16 embreagens
Jhayson Carvalho
 
Capítulo 10 mola
Capítulo 10   molaCapítulo 10   mola
Capítulo 10 mola
Jhayson Carvalho
 
Capítulo 13 engrenagens
Capítulo 13   engrenagensCapítulo 13   engrenagens
Capítulo 13 engrenagens
Jhayson Carvalho
 

What's hot (18)

Solutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th editionSolutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th edition
 
solucionario del capitulo 12
solucionario del capitulo 12 solucionario del capitulo 12
solucionario del capitulo 12
 
Pile Eccentricity Analysis for 2 Columns Combined Pilecap
Pile Eccentricity Analysis for 2 Columns Combined PilecapPile Eccentricity Analysis for 2 Columns Combined Pilecap
Pile Eccentricity Analysis for 2 Columns Combined Pilecap
 
Capítulo 15 engrenagens cônicas e sem-fim
Capítulo 15   engrenagens cônicas e sem-fimCapítulo 15   engrenagens cônicas e sem-fim
Capítulo 15 engrenagens cônicas e sem-fim
 
Tarea 2 hidraulica iii-cabrera arias roberto alejandro
Tarea 2 hidraulica iii-cabrera arias roberto alejandroTarea 2 hidraulica iii-cabrera arias roberto alejandro
Tarea 2 hidraulica iii-cabrera arias roberto alejandro
 
Capítulo 11 mancais de contato rolante
Capítulo 11   mancais de contato rolanteCapítulo 11   mancais de contato rolante
Capítulo 11 mancais de contato rolante
 
Tarea 5 hidraulica iii-cabrera arias roberto alejandro
Tarea 5 hidraulica iii-cabrera arias roberto alejandroTarea 5 hidraulica iii-cabrera arias roberto alejandro
Tarea 5 hidraulica iii-cabrera arias roberto alejandro
 
PROJECT 8th SEM - DEVELOPMENT OF SOME INTEGRATED DECISION-MAKING FRAMEWORK FO...
PROJECT 8th SEM - DEVELOPMENT OF SOME INTEGRATED DECISION-MAKING FRAMEWORK FO...PROJECT 8th SEM - DEVELOPMENT OF SOME INTEGRATED DECISION-MAKING FRAMEWORK FO...
PROJECT 8th SEM - DEVELOPMENT OF SOME INTEGRATED DECISION-MAKING FRAMEWORK FO...
 
Hibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioHibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionario
 
Compressible Flow Tables and Plots
Compressible Flow Tables and PlotsCompressible Flow Tables and Plots
Compressible Flow Tables and Plots
 
vibration of machines and structures
vibration of machines and structuresvibration of machines and structures
vibration of machines and structures
 
09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raices09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raices
 
Examen final
Examen finalExamen final
Examen final
 
CIRCLE DIAGRAM ON 1-PHASE INDUCTION MOTOR
CIRCLE DIAGRAM ON 1-PHASE INDUCTION MOTORCIRCLE DIAGRAM ON 1-PHASE INDUCTION MOTOR
CIRCLE DIAGRAM ON 1-PHASE INDUCTION MOTOR
 
Capítulo 14 engrenagens cilíndricas
Capítulo 14   engrenagens cilíndricasCapítulo 14   engrenagens cilíndricas
Capítulo 14 engrenagens cilíndricas
 
Capítulo 16 embreagens
Capítulo 16   embreagensCapítulo 16   embreagens
Capítulo 16 embreagens
 
Capítulo 10 mola
Capítulo 10   molaCapítulo 10   mola
Capítulo 10 mola
 
Capítulo 13 engrenagens
Capítulo 13   engrenagensCapítulo 13   engrenagens
Capítulo 13 engrenagens
 

Viewers also liked

Refuerzan facultades para eliminar barreras burocráticas
Refuerzan facultades para eliminar barreras burocráticas Refuerzan facultades para eliminar barreras burocráticas
Refuerzan facultades para eliminar barreras burocráticas
Yanira Becerra
 
Fuente financiera
Fuente financieraFuente financiera
Fuente financiera
Alejandra Sanchez
 
Coyuntura laboral octubre
Coyuntura laboral octubreCoyuntura laboral octubre
Coyuntura laboral octubre
portalestadistico Potes
 
Como+buscar+y+usar+la+informacion+cientifica
Como+buscar+y+usar+la+informacion+cientificaComo+buscar+y+usar+la+informacion+cientifica
Como+buscar+y+usar+la+informacion+cientifica
Tatiana Moreno
 
Práctica 1
Práctica 1 Práctica 1
Práctica 1
katydayanara
 
El arte contemporaneo frente a la crisis ecologica lilia ramírez
El arte contemporaneo frente a la crisis ecologica lilia ramírezEl arte contemporaneo frente a la crisis ecologica lilia ramírez
El arte contemporaneo frente a la crisis ecologica lilia ramírez
Lilitt1948
 
8 3-15-aspe-medioambiente
8 3-15-aspe-medioambiente8 3-15-aspe-medioambiente
8 3-15-aspe-medioambiente
angiherrera01
 
Las generaciones de las computadoras
Las generaciones de  las computadorasLas generaciones de  las computadoras
Las generaciones de las computadoras
sasagon
 
11 Filmina sobre consolidación
11 Filmina sobre consolidación11 Filmina sobre consolidación
11 Filmina sobre consolidación
auditoria1uvq
 
Los animales
Los animalesLos animales
Los animales
sandrauptc
 
Compuertas logicas
Compuertas logicasCompuertas logicas
Compuertas logicas
IsraelPerezVazquez
 
Presentación1 vivian
Presentación1 vivianPresentación1 vivian
Presentación1 vivian
VIDARIBE
 
Introducción a dropbox
Introducción a dropboxIntroducción a dropbox
Introducción a dropbox
Dalila88Bayas88
 
Presentación dulce corazon del canto
Presentación dulce corazon del cantoPresentación dulce corazon del canto
Presentación dulce corazon del canto
geovanna03
 
Herramientas informáticas que nos permiten
Herramientas informáticas que nos permitenHerramientas informáticas que nos permiten
Herramientas informáticas que nos permiten
aimeleon
 
Tìm hiểu về mỡ trắng - thủ phạm gây thừa cân, béo phì, mỡ nội tạng
Tìm hiểu về mỡ trắng -  thủ phạm gây thừa cân, béo phì, mỡ nội tạngTìm hiểu về mỡ trắng -  thủ phạm gây thừa cân, béo phì, mỡ nội tạng
Tìm hiểu về mỡ trắng - thủ phạm gây thừa cân, béo phì, mỡ nội tạnggarland773
 
Bullying
BullyingBullying
Bullying
nataly97
 
TP Nº2: HARDWARE Y SOFTWARE
TP Nº2: HARDWARE Y SOFTWARETP Nº2: HARDWARE Y SOFTWARE
TP Nº2: HARDWARE Y SOFTWARE
whaldy11
 
Ppt compost (2)
Ppt compost (2)Ppt compost (2)
Ppt compost (2)
Fabricio Vargas Sanchez
 
Los animales
Los animalesLos animales
Los animales
vero1504
 

Viewers also liked (20)

Refuerzan facultades para eliminar barreras burocráticas
Refuerzan facultades para eliminar barreras burocráticas Refuerzan facultades para eliminar barreras burocráticas
Refuerzan facultades para eliminar barreras burocráticas
 
Fuente financiera
Fuente financieraFuente financiera
Fuente financiera
 
Coyuntura laboral octubre
Coyuntura laboral octubreCoyuntura laboral octubre
Coyuntura laboral octubre
 
Como+buscar+y+usar+la+informacion+cientifica
Como+buscar+y+usar+la+informacion+cientificaComo+buscar+y+usar+la+informacion+cientifica
Como+buscar+y+usar+la+informacion+cientifica
 
Práctica 1
Práctica 1 Práctica 1
Práctica 1
 
El arte contemporaneo frente a la crisis ecologica lilia ramírez
El arte contemporaneo frente a la crisis ecologica lilia ramírezEl arte contemporaneo frente a la crisis ecologica lilia ramírez
El arte contemporaneo frente a la crisis ecologica lilia ramírez
 
8 3-15-aspe-medioambiente
8 3-15-aspe-medioambiente8 3-15-aspe-medioambiente
8 3-15-aspe-medioambiente
 
Las generaciones de las computadoras
Las generaciones de  las computadorasLas generaciones de  las computadoras
Las generaciones de las computadoras
 
11 Filmina sobre consolidación
11 Filmina sobre consolidación11 Filmina sobre consolidación
11 Filmina sobre consolidación
 
Los animales
Los animalesLos animales
Los animales
 
Compuertas logicas
Compuertas logicasCompuertas logicas
Compuertas logicas
 
Presentación1 vivian
Presentación1 vivianPresentación1 vivian
Presentación1 vivian
 
Introducción a dropbox
Introducción a dropboxIntroducción a dropbox
Introducción a dropbox
 
Presentación dulce corazon del canto
Presentación dulce corazon del cantoPresentación dulce corazon del canto
Presentación dulce corazon del canto
 
Herramientas informáticas que nos permiten
Herramientas informáticas que nos permitenHerramientas informáticas que nos permiten
Herramientas informáticas que nos permiten
 
Tìm hiểu về mỡ trắng - thủ phạm gây thừa cân, béo phì, mỡ nội tạng
Tìm hiểu về mỡ trắng -  thủ phạm gây thừa cân, béo phì, mỡ nội tạngTìm hiểu về mỡ trắng -  thủ phạm gây thừa cân, béo phì, mỡ nội tạng
Tìm hiểu về mỡ trắng - thủ phạm gây thừa cân, béo phì, mỡ nội tạng
 
Bullying
BullyingBullying
Bullying
 
TP Nº2: HARDWARE Y SOFTWARE
TP Nº2: HARDWARE Y SOFTWARETP Nº2: HARDWARE Y SOFTWARE
TP Nº2: HARDWARE Y SOFTWARE
 
Ppt compost (2)
Ppt compost (2)Ppt compost (2)
Ppt compost (2)
 
Los animales
Los animalesLos animales
Los animales
 

Similar to Appendix E

2-3n.docx
2-3n.docx2-3n.docx
2-3n.docx
Mahamad Jawhar
 
project designa.docx
project designa.docxproject designa.docx
project designa.docx
Mahamad Jawhar
 
Shi20396 ch08
Shi20396 ch08Shi20396 ch08
Shi20396 ch08
Paralafakyou Mens
 
4 Shaft Design.pdf
4 Shaft Design.pdf4 Shaft Design.pdf
4 Shaft Design.pdf
Mahamad Jawhar
 
Shi20396 ch03
Shi20396 ch03Shi20396 ch03
Shi20396 ch03
Paralafakyou Mens
 
Lec 8 dynamics
Lec 8 dynamicsLec 8 dynamics
Lec 8 dynamics
YousafAnwarKhan
 
Project work boost converter
Project work boost converter Project work boost converter
Project work boost converter
MohammadAgungDirmawa
 
machine design ,gear box design mahamad jawhar.pdf
machine design ,gear box design mahamad jawhar.pdfmachine design ,gear box design mahamad jawhar.pdf
machine design ,gear box design mahamad jawhar.pdf
Mahamad Jawhar
 
Engineering Mechanics
Engineering MechanicsEngineering Mechanics
Soluções dos exercícios de cinética química digitados
Soluções dos exercícios de cinética química digitadosSoluções dos exercícios de cinética química digitados
Soluções dos exercícios de cinética química digitados
Márcio Martins
 
Shi20396 ch15
Shi20396 ch15Shi20396 ch15
Shi20396 ch15
Paralafakyou Mens
 
MF 10 Tuberías en paralelo y ramificadas
MF 10 Tuberías en paralelo y ramificadasMF 10 Tuberías en paralelo y ramificadas
MF 10 Tuberías en paralelo y ramificadas
www.youtube.com/cinthiareyes
 
Report
ReportReport
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptx
AYMENGOODKid
 
Chapter 15 solutions
Chapter 15 solutionsChapter 15 solutions
Chapter 15 solutions
LK Education
 
Puentes
PuentesPuentes
Chain Drives Selection - Solved Problem
Chain Drives Selection - Solved ProblemChain Drives Selection - Solved Problem
Chain Drives Selection - Solved Problem
VARUN BABUNELSON
 
Pedal reciprocating piston_pump[1]
Pedal reciprocating piston_pump[1]Pedal reciprocating piston_pump[1]
Pedal reciprocating piston_pump[1]
wondie chanie
 
STRAIN MEASURING TECHNIQUES & APPLICATIONS
STRAIN MEASURING TECHNIQUES & APPLICATIONS  STRAIN MEASURING TECHNIQUES & APPLICATIONS
STRAIN MEASURING TECHNIQUES & APPLICATIONS
ASHIKA DILSHAN
 
steel question.pdf.pdf
steel question.pdf.pdfsteel question.pdf.pdf
steel question.pdf.pdf
nabal_iitb
 

Similar to Appendix E (20)

2-3n.docx
2-3n.docx2-3n.docx
2-3n.docx
 
project designa.docx
project designa.docxproject designa.docx
project designa.docx
 
Shi20396 ch08
Shi20396 ch08Shi20396 ch08
Shi20396 ch08
 
4 Shaft Design.pdf
4 Shaft Design.pdf4 Shaft Design.pdf
4 Shaft Design.pdf
 
Shi20396 ch03
Shi20396 ch03Shi20396 ch03
Shi20396 ch03
 
Lec 8 dynamics
Lec 8 dynamicsLec 8 dynamics
Lec 8 dynamics
 
Project work boost converter
Project work boost converter Project work boost converter
Project work boost converter
 
machine design ,gear box design mahamad jawhar.pdf
machine design ,gear box design mahamad jawhar.pdfmachine design ,gear box design mahamad jawhar.pdf
machine design ,gear box design mahamad jawhar.pdf
 
Engineering Mechanics
Engineering MechanicsEngineering Mechanics
Engineering Mechanics
 
Soluções dos exercícios de cinética química digitados
Soluções dos exercícios de cinética química digitadosSoluções dos exercícios de cinética química digitados
Soluções dos exercícios de cinética química digitados
 
Shi20396 ch15
Shi20396 ch15Shi20396 ch15
Shi20396 ch15
 
MF 10 Tuberías en paralelo y ramificadas
MF 10 Tuberías en paralelo y ramificadasMF 10 Tuberías en paralelo y ramificadas
MF 10 Tuberías en paralelo y ramificadas
 
Report
ReportReport
Report
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptx
 
Chapter 15 solutions
Chapter 15 solutionsChapter 15 solutions
Chapter 15 solutions
 
Puentes
PuentesPuentes
Puentes
 
Chain Drives Selection - Solved Problem
Chain Drives Selection - Solved ProblemChain Drives Selection - Solved Problem
Chain Drives Selection - Solved Problem
 
Pedal reciprocating piston_pump[1]
Pedal reciprocating piston_pump[1]Pedal reciprocating piston_pump[1]
Pedal reciprocating piston_pump[1]
 
STRAIN MEASURING TECHNIQUES & APPLICATIONS
STRAIN MEASURING TECHNIQUES & APPLICATIONS  STRAIN MEASURING TECHNIQUES & APPLICATIONS
STRAIN MEASURING TECHNIQUES & APPLICATIONS
 
steel question.pdf.pdf
steel question.pdf.pdfsteel question.pdf.pdf
steel question.pdf.pdf
 

More from Robert Lewis

Tensioned Building Construction - Testing and Validation
Tensioned Building Construction - Testing and ValidationTensioned Building Construction - Testing and Validation
Tensioned Building Construction - Testing and Validation
Robert Lewis
 
Design Document - Tensioned Building Construction
Design Document - Tensioned Building ConstructionDesign Document - Tensioned Building Construction
Design Document - Tensioned Building Construction
Robert Lewis
 
Tensioned Building Construction - Requirements Document
Tensioned Building Construction - Requirements DocumentTensioned Building Construction - Requirements Document
Tensioned Building Construction - Requirements Document
Robert Lewis
 
APPENDIX G
APPENDIX GAPPENDIX G
APPENDIX G
Robert Lewis
 
APPENDIX F
APPENDIX FAPPENDIX F
APPENDIX F
Robert Lewis
 
Final Design Proposal Body Section
Final Design Proposal Body SectionFinal Design Proposal Body Section
Final Design Proposal Body Section
Robert Lewis
 
Final Design Proposal Beginning
Final Design Proposal BeginningFinal Design Proposal Beginning
Final Design Proposal Beginning
Robert Lewis
 

More from Robert Lewis (7)

Tensioned Building Construction - Testing and Validation
Tensioned Building Construction - Testing and ValidationTensioned Building Construction - Testing and Validation
Tensioned Building Construction - Testing and Validation
 
Design Document - Tensioned Building Construction
Design Document - Tensioned Building ConstructionDesign Document - Tensioned Building Construction
Design Document - Tensioned Building Construction
 
Tensioned Building Construction - Requirements Document
Tensioned Building Construction - Requirements DocumentTensioned Building Construction - Requirements Document
Tensioned Building Construction - Requirements Document
 
APPENDIX G
APPENDIX GAPPENDIX G
APPENDIX G
 
APPENDIX F
APPENDIX FAPPENDIX F
APPENDIX F
 
Final Design Proposal Body Section
Final Design Proposal Body SectionFinal Design Proposal Body Section
Final Design Proposal Body Section
 
Final Design Proposal Beginning
Final Design Proposal BeginningFinal Design Proposal Beginning
Final Design Proposal Beginning
 

Appendix E

  • 2. E1 Introduction: The following are all calculations, mechanical, computer and electrical for the MARTHA device. The calculations are organized by what system they correspond to. All common assumptions are to be made, unless otherwise stated (i.e. g=9.81 m/s2).
  • 3. E2 PVC Analysis PVC Material Specifications: 𝑆 𝑢𝑡 = 10500 𝑝𝑠𝑖 𝑆 𝑦 = 8500 𝑝𝑠𝑖 E = 490 ksi Chain Material Specifications: 4130 Normalized alloy steel 𝑆 𝑢𝑡= 97200 psi 𝑆 𝑦 = 63100 𝑝𝑠𝑖 E = 29700 ksi Screw Specifications: #6-32 ¾” Machine Screw d = 0.138” 𝑑 𝑟 = 0.0974” N = 32 𝐴𝑡 = 0.0119 𝑖𝑛2 𝑆 𝑢𝑡 = 25000 psi 𝑆 𝑝 = 22479 psi 𝑆 𝑦 = 22000 psi E = 1490 ksi 𝐴 𝐵 = 0.138(0.5) = 0.069 𝑖𝑛2 l = 0.5” P = 15 lb 𝐹𝑖 = .9𝑆 𝑝 𝐴𝑡 = (.9)(0.0119)(22479) = 241 lb 𝐾𝑏 = 𝐸 𝐴𝑡 𝑙 + 𝐸 𝐴 𝑏 𝑙 = 0.0119(490000) 0.5 + 0.069(490000) 0.5 = 135000 𝐾 𝑚 = 𝐴 𝑚 𝐸 𝑚 𝑙 = 0.069(490000) 0.5 = 67600 𝐶 = 𝐾𝑏 𝐾 𝑚 𝐾𝑏 = 135000 (135000)(67600) = 0.67 𝑃 𝑏 = 𝐶𝑃 = (. 67)(15) = 10.05 𝑙𝑏 𝑃𝑚 = (1 − 𝐶) 𝑃 = (1 − .67)15 = 4.95 𝑙𝑏 𝐹𝑏 = 𝐹𝑖 + 𝑃 𝑏 = 241 + 10.05 = 251.05 𝑙𝑏 𝐹𝑚 = 𝐹𝑖 − 𝑃𝑚 = 241 − 4.95 = 236.05 𝑙𝑏 𝜎𝑏 = 𝐹𝑏 𝐴𝑡 = 251.05 0.0119 = 21100 𝑝𝑠𝑖 𝜎 𝑚 = 𝐹𝑚 𝐴 𝑏 = 236.05 0.069 = 3421 𝑝𝑠𝑖 𝑁 𝑦 = 𝑆 𝑦 𝜎𝑏 = 22000 21100 = 1.04
  • 4. E3 𝑃0 = 𝐹𝑖 (1 − 𝐶) = 241 (1 − .67) = 730.3 𝑙𝑏 𝑁𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑃0 𝑃 = 730.3 15 = 49 Front wheel: (6/15) 13 = 5.2 lb Back wheel: (11/15) 13 = 7.8 lb Front: 5.2lb/2 wheels = 2.6 lb σ = F/A = 2.6/0.036 = 72.2 psi Back: 7.8lb/2 wheels = 3.9 lb σ = F/A = 3.9/0.036 = 108.3 psi
  • 5. E4 Chassis Analysis Chassis material: 6061-Aluminum Ρ = 0.0975 lb/𝑖𝑛2 𝑆 𝑢𝑡 = 45000 𝑝𝑠𝑖 𝑆 𝑦 = 40000 𝑝𝑠𝑖 E = 10000 ksi Screw: #8-32 1” machine screw d = 0.164” N = 32 𝑑 𝑟 = 0.1234" 𝐴𝑡 = 0.0140 𝑖𝑛2 𝑆 𝑢𝑡 = 25000 𝑝𝑠𝑖 𝑆 𝑦 = 22000 𝑝𝑠𝑖 E = 1490 ksi 𝑆 𝑝 = 22500 𝑝𝑠𝑖 l = 0.8” 𝐴 𝑏 = (0.164)(0.8) = 0.1312𝑖𝑛2 Chassis-Screw Connection: P = 12 lb 𝐹𝑖 = .9𝑆 𝑝 𝐴𝑡 = 283.5 𝑙𝑏 𝐾𝑏 = 𝐸 𝐴𝑡 𝑙 + 𝐸 𝐴 𝑏 𝑙 = 88935 𝑙𝑏 𝑖𝑛 𝐾 𝑚 = 𝐴 𝑚 𝐸 𝑚 𝑙 = (0.044)(100000000) 0.8 = 440000 𝑙𝑏 𝑖𝑛 𝐴 𝑚 = ( 𝜋 4 ) ( 𝐷 − 𝑑)2 = ( 𝜋 4 ) (0.4 − 0.164)2 = 0.044𝑖𝑛2 𝑃 𝑏 = 𝐶𝑃 = (12)(0.17) = 2.04 𝑙𝑏 𝑃𝑚 = (1 − 𝐶) 𝑃 = 9.96 𝑙𝑏 𝑃0 = 𝐹𝑖 (1 − 𝐶) = 283.5 (1 − 0.17) = 341.57 𝑙𝑏 𝑁𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑃0 𝑃 = 28.5 𝐹𝑏 = 𝐹𝑖 + 𝑃 𝑏 = 285.55 𝑙𝑏 𝐹𝑚 = 𝐹𝑖 − 𝑃𝑚 = 273.54 𝑙𝑏 𝐶 = 𝐾𝑏 𝐾 𝑚 + 𝐾𝑏 = 0.17 𝜎𝑏 = 𝐹𝑏 𝐴𝑡 = 285.55 0.014 = 20396 𝑝𝑠𝑖 𝑥28 𝑠𝑐𝑟𝑒𝑤𝑠 = 728.43 𝑝𝑠𝑖 𝑝𝑒𝑟 𝑠𝑐𝑟𝑒𝑤 𝜎 𝑚 = 𝐹𝑚 𝐴 𝑏 = 2084.9 𝑝𝑠𝑖
  • 6. E5 𝑁 𝑦 = 𝑆 𝑦 𝜎𝑏 = 22000 728.43 = 30.2 Shear on side screws: 𝐹 = 𝑚𝑔 = (12𝑙𝑏)( 9.81𝑚 𝑠2 ) = 117.72 𝑁 𝐴 = 0.014 𝑖𝑛2 𝜎𝑠ℎ𝑒𝑎𝑟 = 117.72 0.014 = 8408.6 𝑝𝑠𝑖 𝑥 8 𝑠𝑐𝑟𝑒𝑤𝑠 = 1051.075 𝑝𝑠𝑖 𝑝𝑒𝑟 𝑠𝑐𝑟𝑒𝑤
  • 7. E6 MotorMount Analysis (Screw Connections) Material Specifications: 6061-Aluminum 𝜌 = 0.0975 𝑙𝑏 𝑖𝑛3 𝑆 𝑢𝑡 = 45000 𝑝𝑠𝑖 𝑆 𝑦 = 40000 𝑝𝑠𝑖 𝐸 = 10000 𝑘𝑠𝑖 Bolt Material: ¼” x 1” 307 Grade A Steel – SAE Grade 5, medium carbon, cold drawn Head width: 3/8” 𝑙 𝑡 = 0.75" 𝑆 𝑦 = 92 𝑘𝑠𝑖 𝑆 𝑢𝑡 = 120 𝑘𝑠𝑖 𝑆 𝑝 = 85 𝑘𝑠𝑖 𝐸 = 30000 𝑘𝑠𝑖 𝐴𝑡 = 0.032 𝑖𝑛2 𝐴 𝑏 = 𝜋(0.25)2 = 0.2 Connections Relating to Drawing: 1. L-Bar to Chassis 2. L-Bar to Motor Face Plate 3. L-Bar to Bearing 4. Top L-bar to Plate with ABS Plastic 5. Motor Face Plate to Motor L-Bar to Motor Al face connection: Same Preload Specs as #8-32 x 1” screw listed above C = 0.17 P = 1.8 lb 𝐹𝑖 = 283.5 𝑙𝑏 𝐴𝑡 = 0.014 𝑖𝑛2 𝐴 𝑏 = 0.1312 𝑖𝑛2 𝑃 𝑏 = 𝐶𝑃 = 0.306 𝑙𝑏 𝑃𝑚 = (1 − 𝐶) 𝑃 = 1.494 𝑙𝑏 𝐹𝑏 = 𝐹𝑖 + 𝑃 𝑏 = 283.806 𝑙𝑏 𝐹𝑚 = 𝐹𝑖 − 𝑃𝑚 = 282.006 𝑙𝑏 𝜎𝑏 = 𝐹𝑏 𝐴𝑡 = 20271.9 𝑝𝑠𝑖 𝑥 2 𝑠𝑐𝑟𝑒𝑤𝑠 = 10135.95 𝑝𝑠𝑖 𝑝𝑒𝑟 𝑠𝑐𝑟𝑒𝑤 𝜎 𝑚 = 𝐹𝑚 𝐴 𝑏 = 2149.44 𝑝𝑠𝑖 𝑁 𝑦 = 𝑆 𝑦 𝜎𝑏 = 1.08
  • 8. E7 𝑃0 = 𝐹𝑖 (1 − 𝐶) = 341.57 𝑁𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑃0 𝑃 = 190 Shear on screw head: F = 1.8 lb x 9.8m/𝑠2 = 17.66 𝑁 A = 0.014 𝑖𝑛2 𝜎𝑠ℎ𝑒𝑎𝑟 = 17.60 0.014 = 1261.4 𝑝𝑠𝑖 𝑥2 𝑠𝑐𝑟𝑒𝑤𝑠 = 630.7 𝑝𝑠𝑖 𝑝𝑒𝑟 𝑠𝑐𝑟𝑒𝑤 L-Bar to bearing connection: Material: SAE 1840 Bronze Bearing housing: 6061-Aluminum Same Preload Specs as #8-32 x 1” screw listed above P = 1 lb C = 0.95 𝑃 𝑏 = 𝐶𝑃 = 0.95 𝑙𝑏 𝑃𝑚 = (1 − 𝐶) 𝑃 = 0.05 𝑙𝑏 𝐹𝑏 = 𝐹𝑖 + 𝑃 𝑏 = 2448.95 𝑙𝑏 𝐹𝑚 = 𝐹𝑖 − 𝑃𝑚 = 2447.95 𝑙𝑏 𝜎𝑏 = 𝐹𝑏 𝐴𝑡 = 76530 𝑝𝑠𝑖 𝑥 2 𝑠𝑐𝑟𝑒𝑤𝑠 = 38265 𝑝𝑠𝑖 𝑝𝑒𝑟 𝑠𝑐𝑟𝑒𝑤 𝜎 𝑚 = 𝐹𝑚 𝐴 𝑏 = 12239.75 𝑝𝑠𝑖 𝑁 𝑦 = 𝑆 𝑦 𝜎𝑏 = 1.2 𝑃0 = 𝐹𝑖 (1 − 𝐶) = 37210 𝑙𝑏 𝑁𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑃0 𝑃 = 48960 L-Bar to Chassis bolt connection: Specifications for bolt preload listed above 𝐹𝑖 = 0.9𝑆 𝑝 𝐴𝑡 = 2448 𝑙𝑏 𝑙 𝑡ℎ𝑟𝑒𝑎𝑑 = 2𝑑 + 0.25 = 0.75" 𝑙 𝑠 = 𝑙 𝑏𝑜𝑙𝑡 − 𝑙 𝑡ℎ𝑟𝑒𝑎𝑑 = 1 − 0.75 = 0.25" 𝑙 𝑡 = 𝑙 − 𝑙 𝑠 = 0.75" 𝐾𝑏 = 𝐸 𝐴𝑡 𝑙 + 𝐸 𝐴 𝑏 𝑙 = 2.53𝑥107 𝑙𝑏 𝑖𝑛 𝐾 𝑚 = 𝐴 𝑚 𝐸 𝑚 𝑙 = 1.25𝑥106 𝑙𝑏 𝑖𝑛 𝐴 𝑚 = 1 8 𝑥 0.25 = 0.09375 𝑖𝑛2 𝐶 = 𝐾 𝑏 𝐾 𝑚+𝑘 𝑏 = 0.95 P = 2 lb
  • 9. E8 𝑃 𝑏 = 𝐶𝑃 = 1.9 𝑙𝑏 𝑃𝑚 = (1 − 𝐶) 𝑃 = 0.1 𝑙𝑏 𝐹𝑏 = 𝐹𝑖 + 𝑃 𝑏 = 2449.5 𝑙𝑏 𝐹𝑚 = 𝐹𝑖 − 𝑃𝑚 = 2447.5 𝑙𝑏 𝜎𝑏 = 𝐹𝑏 𝐴𝑡 = 76547 𝑝𝑠𝑖 𝑥 2 𝑠𝑐𝑟𝑒𝑤𝑠 = 38273.5 𝑝𝑠𝑖 𝑝𝑒𝑟 𝑠𝑐𝑟𝑒𝑤 𝜎 𝑚 = 𝐹𝑚 𝐴 𝑏 = 26107 𝑝𝑠𝑖 𝑁 𝑦 = 𝑆 𝑦 𝜎𝑏 = 1.2 𝑃0 = 𝐹𝑖 (1 − 𝐶) = 48960 𝑙𝑏 𝑁𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑃0 𝑃 = 24480 L-Bar to Aluminum Motor face connection with ABS Plastic Spacer: ABS Specifications: 𝑆 𝑢𝑡 = 5500 𝑝𝑠𝑖 𝑆 𝑦 = 3000 𝑝𝑠𝑖 E = 270 ksi 𝜎𝑎𝑏𝑠 = 𝐹 𝑚 𝐴 = 6216.8 𝑝𝑠𝑖 ∶ 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 #8-32 Screws P = 1 lb 𝐹𝑖 = .9𝑆 𝑝 𝐴𝑡 = 283.5 𝑙𝑏 𝐾𝑏 = 𝐸 𝐴𝑡 𝑙 + 𝐸 𝐴 𝑏 𝑙 = 88935 𝑙𝑏 𝑖𝑛 𝐾 𝑚 = 𝐴 𝑚 𝐸 𝑚 𝑙 = (0.044)(100000000) 0.8 = 23760 𝑙𝑏 𝑖𝑛 𝐴 𝑚 = ( 𝜋 4 ) ( 𝐷 − 𝑑)2 = 0.044𝑖𝑛2 𝑃 𝑏 = 𝐶𝑃 = 0.79 𝑙𝑏 𝑃𝑚 = (1 − 𝐶) 𝑃 = 0.21 𝑙𝑏 𝑃0 = 𝐹𝑖 (1 − 𝐶) = 283.5 (1 − 0.17) = 1350 𝑙𝑏 𝐹𝑏 = 𝐹𝑖 + 𝑃 𝑏 = 284.29 𝑙𝑏 𝐹𝑚 = 𝐹𝑖 − 𝑃𝑚 = 283.29 𝑙𝑏 𝜎𝑏 = 𝐹𝑏 𝐴𝑡 = 6401.1 𝑝𝑠𝑖 𝑥 2 𝑠𝑐𝑟𝑒𝑤𝑠 = 3230.55 𝑝𝑠𝑖 𝑝𝑒𝑟 𝑠𝑐𝑟𝑒𝑤 𝑁 𝑦 = 𝑆 𝑦 𝜎𝑏 = 4.65 𝑁𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑃0 𝑃 = 1350 Aluminum face to Motor connection:
  • 10. E9 #10-24 1.5” screws: d = 0.19” 𝑑 𝑟 = 0.1359" N = 24 𝐴𝑡 = 0.0175 𝑖𝑛2 𝑆 𝑦 = 22000 𝑝𝑠𝑖 𝑆 𝑢𝑡 = 25000 𝑝𝑠𝑖 E = 490 ksi 𝐴 𝑏 = 𝛱( 𝑑2) = 0.028 𝑖𝑛2 𝐴 𝑚 = 𝜋 𝐷𝑒𝑓𝑓 2 4 = 0.042 𝑖𝑛2 𝐷 𝑒𝑓𝑓 = 0.23" 𝐹𝑖 = .9𝑆 𝑝 𝐴𝑡 = 354.375 𝑙𝑏 𝐾𝑏 = 𝐸 𝐴𝑡 𝑙 + 𝐸 𝐴 𝑏 𝑙 = 17150 𝑙𝑏 𝑖𝑛 𝐾 𝑚 = 𝐴 𝑚 𝐸 𝑚 𝑙 = (0.042)(100000000) 1.3 = 319567 𝑙𝑏 𝑖𝑛 𝐶 = 𝐾 𝑏 𝐾 𝑚+𝑘 𝑏 = 0.05 𝑃 𝑏 = 𝐶𝑃 = 0.09 𝑙𝑏 𝑃𝑚 = (1 − 𝐶) 𝑃 = 1.71 𝑙𝑏 𝑃0 = 𝐹𝑖 (1 − 𝐶) = 373 𝑙𝑏 𝐹𝑏 = 𝐹𝑖 + 𝑃 𝑏 = 354.465 𝑙𝑏 𝐹𝑚 = 𝐹𝑖 − 𝑃𝑚 = 352.665 𝑙𝑏 𝜎𝑏 = 𝐹𝑏 𝐴𝑡 = 20250 𝑝𝑠𝑖 𝑥 2 𝑠𝑐𝑟𝑒𝑤𝑠 = 10125 𝑝𝑠𝑖 𝑝𝑒𝑟 𝑠𝑐𝑟𝑒𝑤 𝑁 𝑦 = 𝑆 𝑦 𝜎𝑏 = 1.1 𝑁𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑃0 𝑃 = 207.2
  • 11. E10 MotorMount Analysis (Bearing & Motor) Motor Specs: 48:1 ratio Load speed = 33 rpm Load torque = 280 oz-in = 17.5 lb-in. 0.5” diameter, 1.75” long motor shaft, 𝐷 𝑜 = 0.5", 𝐷𝑖 = 0.25" 𝜏 = 𝑇𝜌 𝐽 = 17.5(0.25) 3.8 𝑥 10−4 = 11513.2 𝑙𝑏𝑓 = 𝜏 𝑚𝑎𝑥 𝐽 = 𝜋( 𝐷𝑜 − 𝐷𝑖)4 32 = 3.8𝑥10−4 Set Screws: 10-32 set screws ½” 𝑑 𝑠𝑒𝑡 𝑠𝑐𝑟𝑒𝑤 = 0.165" 𝐴𝑡 = 0.0175𝑖𝑛.2 𝑑 𝑝 = 𝑑 − ( 0.64519 2 ) = 0.163" 𝑆 𝑦 = 22000 𝑝𝑠𝑖 Alloy steel: F = 311.376 N 𝜎𝑡 = 𝐹 𝐴𝑡 = 1.78𝑥104 𝑝𝑠𝑖 𝑁 𝑦 = 𝑆 𝑦 𝜎𝑡 = 1.24 𝐽 = 𝜋(0.165)4 32 = 7.3𝑥10−5 𝑆𝑒𝑡 𝑆𝑐𝑟𝑒𝑤 #1: 𝜏 = 17.5 ( 0.165 2 ) 7.3𝑥10−5 = 19777.4 𝑝𝑠𝑖 − 𝑖𝑛 𝑆𝑒𝑡 𝑆𝑐𝑟𝑒𝑤 #2: 𝜏 = 17.5(1) 7.3𝑥10−5 = 2.4𝑥105 𝑝𝑠𝑖 − 𝑖𝑛 Hydrodynamic Bearing Analysis: 𝑙 𝑑 = 0.75 Lube thickness: h = 0.0017” Abs. viscosity = η = Uρ = 3.5E-6 n = 33 rpm = 1980 rps A = π (0.25)(0.25) = 0.19𝑖𝑛2 U = πdn = 1555 in/sec 𝐶 𝑑 = 𝑑𝑛 = 0.000425 𝐶𝑟 = 𝐶 𝑑 2 = 0.0004 = 𝑒 𝑂 𝑛 = 20 𝜀 = 𝑒 𝐶𝑟 = 0.747 𝜀 𝑥 = 0.21394+ 0.385170(𝑂𝑛 − 0.0008( 𝑂𝑛 − 60) = 0.747 𝐾𝜀 = 𝑂 𝑛 4𝜋 = 1.592
  • 12. E11 𝜏 𝑥 = 𝜂 𝑈 ℎ = 3.2 𝑝𝑠𝑖 𝐹 = 𝐴𝜏 𝑥 = 6.08 𝑙𝑏 Average oil pressure: 𝑃𝑎𝑣𝑔 = 𝑃 𝑙𝑑 = 17 𝑝𝑠𝑖 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦: 𝜏𝑠 = 𝜂𝑑3 𝑙𝑛𝜋2 𝐶 𝑑(1 − 𝜀2)0.5 = 0.45 𝑙𝑏 − 𝑖𝑛 𝜃 𝑚𝑎𝑥 = cos−1 1 − √(1 + 24𝜀^2) 4𝜀 = 159 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑃 = 𝜂𝑈 𝑟𝐶𝑟 2 𝑙2 4 3𝜀𝑠𝑖𝑛𝜃 (1 + 3𝑐𝑜𝑠𝜃)3 = 1670.3 𝑝𝑠𝑖 𝜙 = tan−1 ( 𝜋√1 − 𝜀2 4𝜀 ) = 35 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑔: 𝜏 𝑟 = 𝜏𝑠 + 𝑃𝑒 𝑠𝑖𝑛𝜙 = 0.8332 𝑙𝑏 − 𝑖𝑛 𝑃𝑜𝑤𝑒𝑟 𝑙𝑜𝑠𝑡 𝑖𝑛 𝑏𝑒𝑎𝑟𝑖𝑛𝑔: 𝛷 = 2𝜋𝜏 𝑟(925) = 0.006 𝐻𝑃 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛: 𝜇 = 2𝜏 𝑟 𝑃 𝑑 = 0.004 𝑁 = 0.8 0.25 = 3.2
  • 13. E12 Gear Assembly Bending Stress on Drive Gear: 𝜎𝑏 = 𝑊𝑡 𝑃 𝑑 𝐹𝐽 𝐾𝑎 𝐾 𝑚 𝐾𝑣 𝑥 𝐾𝑠 𝐾𝑏 𝐾𝑙 For series 116-4 DC Motor: w = 33 rpm, T = 280 in-oz = 17.5 lb-in F = 0.25” 𝑁 𝑝 = 8 a = 0.3” 𝑑 = 𝑁 𝑝 𝑃 𝑑 𝐷 𝑜 = 𝑁 + 2 𝑃 = 𝑃 𝑑 + 2𝑎 3.5 = 𝑃 𝑑 = 2(.3) 𝑃𝑑 = 2.9" 𝑑 = 8 2.4 = 2.76 𝑉𝑡 = 𝑑𝑤 2 = (2.76)(33𝑟𝑝𝑚) 2 2𝜋 12 = 23.85 𝑓𝑡 𝑚𝑖𝑛 𝑄𝑣 = 6 𝑡𝑜 8 = 7 𝐾𝑣 = 0.96 𝐽 = 0.2 𝐾 𝑚 = 1.6 𝐾𝑎 = 1.25( 𝑎𝑠𝑠𝑢𝑚𝑒 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑠ℎ𝑜𝑐𝑘 𝑡𝑒𝑟𝑟𝑎𝑖𝑛) 𝐾𝑠 = 𝐾𝑙 = 1( 𝑛𝑜𝑛 − 𝑖𝑑𝑙𝑒𝑟) 𝑊𝑡 = 2𝑇𝑝 𝑑 𝑝 = 2(17.5) 2.76 = 12.68 𝑙𝑏𝑓 𝜎𝑏 = (12.68)(2.9) (. 25)(.2) (1.25)(1.6) (0.96) = 1532.16 𝑝𝑠𝑖 Al-6061: 𝑆𝑓𝑏′ = 14𝑥103 𝑝𝑠𝑖 𝑆𝑓𝑏 = 𝐾𝐿 𝐾 𝑇 𝐾 𝑅 𝑆𝑓 𝑏′ 𝐾𝑟 = 1.25 𝐾𝐿 = 1.6831( 𝑁)−0.0323 = 1.073 𝐾𝑡 = 1(𝑟𝑜𝑜𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) 𝑁 = 30𝑟𝑝𝑚 ( 60𝑚𝑖𝑛 ℎ𝑟 )(3 ℎ𝑟𝑠 𝑑𝑎𝑦 ) ( 4𝑑𝑎𝑦𝑠 𝑤𝑒𝑒𝑘 )( 52𝑤𝑒𝑒𝑘𝑠 𝑦𝑒𝑎𝑟 )(1𝑦𝑒𝑎𝑟) = 1.123𝑥106 𝑐𝑦𝑐𝑙𝑒𝑠 𝑆𝑓𝑏 = 1.073 (1)(1.25) (14𝑥103) = 12017.6 𝑝𝑠𝑖 𝑁𝑓𝑏 = 𝑆𝑓𝑏 𝜎𝑏 = 7.84
  • 14. E13 Gear Shaft Analysis Steel 1050: 𝑆 𝑢𝑡 = 90 𝑘𝑠𝑖 𝑆 𝑦 = 50 𝑘𝑠𝑖 𝑇 𝑚 = 17.5 𝑙𝑏 − 𝑖𝑛 𝑇𝑎 = 0 𝑀 𝑎 = 𝑀 𝑚𝑎𝑥 𝐹 = 𝑇 𝑟 = 17.5 2.76 2 = 12.68 𝑙𝑏𝑓 𝛴𝐹𝑦: 𝑅1 − 𝐹 − 𝐹 = 0, 𝑅1 = 2𝐹 = 25.36 𝑙𝑏𝑓 𝑉 = −𝑅1 < 𝑥 − 0 >0 + 𝐹 < 𝑥 − 1 >0 + 𝐹 < 𝑥 − 1.5 >0 𝑀 = ∫ 𝑉 = −𝑅1 < 𝑥 − 0 >1 + 𝐹 < 𝑥 − 1 >1 + 𝐹 < 𝑥 − 1.5 >1 = 31.7 𝑙𝑏𝑓 𝑆 𝑒′ = .5𝑆 𝑢𝑡 = 45 𝑘𝑠𝑖 𝐶𝑙𝑜𝑎𝑑 = 1( 𝑏𝑒𝑛𝑑𝑖𝑛𝑔) 𝐶𝑠𝑖𝑧𝑒 = 0.869( 𝑑)−0.097 = 0.994 𝐶𝑠𝑢𝑟𝑓 = 𝐴( 𝑆 𝑢𝑡) 𝑏 = 0.569 𝐶𝑡𝑒𝑚𝑝 = 1 𝐶𝑟𝑒𝑙𝑖𝑎𝑏 = 0.814 ( 𝑎𝑠𝑠𝑢𝑚𝑒 99% 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑦) 𝑆 𝑒 = (45)(0.994)(0.569)(0.814)(1)(1) = 20.7188 𝑘𝑠𝑖 𝑑 = ( ( 32𝑁𝑠𝑓 𝜋 ) ( √(𝐾𝑓 𝑀 𝑎) 2 + 3 4 (𝐾𝑓𝑠 𝑇𝑎) 2 20.7188𝑘 + √(𝐾𝑓𝑚 𝑀 𝑎) 2 + 3 4 (𝐾𝑓𝑠𝑚 𝑇𝑎) 2 𝑆 𝑢𝑡 ) 1 3 ) 𝑑 = 0.25" 𝑆 𝑢𝑡 = 90𝑘 𝑁𝑠𝑓 = 9.199 𝜎 𝑚𝑎𝑥 = 𝑀 𝑚𝑎𝑥 𝐶 𝐼 𝐼 = 1 12 𝑏ℎ2 = 3.255𝑥10−4 𝑖𝑛4 𝜎 𝑚𝑎𝑥 = 12.2 𝑘𝑠𝑖 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑆 𝑢𝑡 𝑠𝑜 𝑖𝑡′ 𝑠 𝑠𝑎𝑓𝑒 𝜏 𝑚𝑎𝑥 = 𝑇𝑝 𝐽 𝐽 = 𝑏ℎ 1 12 ( 𝑏2 + ℎ2) = 6.51𝑥10−4 𝜏 𝑚𝑎𝑥 = 3.5 𝑘𝑠𝑖
  • 15. E14 Surface Fatigue Internal Square 𝜎𝑐 = 𝐶 𝑝√ 𝑤 𝑏 𝐹𝐼𝑑 𝐶 𝑎 𝐶 𝑚 𝐶 𝑣 𝐶𝑠 𝐶𝑓 𝐹 = 0.25" 𝑊𝑡 = 12.68 𝑙𝑏𝑓 𝐼 = ( 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙 2 ) (𝑁 𝑝) 1 𝑁𝑔 𝑁 𝑝 = 0.08 𝐶 𝑝 = 1950 𝑝𝑠𝑖( 𝑠𝑡𝑒𝑒𝑙 𝑜𝑛 𝑎𝑙𝑢𝑚𝑖𝑛𝑢𝑚) 𝐶 𝑚 = 𝐾 𝑚 = 1.6 𝐶 𝑎 = 1 𝐶 𝑣 = (𝐴/(𝐴 + √𝑉𝑡 ) 𝐵 𝐴 = 50 + 56(1 − 𝐵) 𝐵 = .25(12− 𝑄𝑣).667 = 0.7314 𝐴 = 65.04 …. 𝐶 𝑣 = 1.27 𝐶𝑠 = 𝐾𝑠 = 𝐶𝑓 = 1 ( 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑒𝑡ℎ𝑜𝑑𝑠) 𝜎𝑐 = 33727 𝑝𝑠𝑖 𝑁𝑓𝑠 = ( 𝑆𝑓𝑐 𝜎𝑐 ) 2 𝑆𝑓𝑐 = 𝐶 𝐿 𝐶 𝐻 𝐶 𝑇 𝐶𝑅 𝑆𝑓𝑐′ 𝐶 𝐿 = 2.466( 𝑁)−.056 = 1.13 𝐶𝑅 = 𝐾 𝑅 = 1.25(99% 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦) 𝐶 𝐻 = 𝐶 𝑇 = 1 ( 𝑅𝑜𝑜𝑚 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) 𝑆𝑓 𝑐′ = 60 𝑡𝑜 70 𝑘𝑠𝑖 = 65 𝑘𝑠𝑖 𝑆𝑓𝑐 = 58760 𝑝𝑠𝑖 𝑁𝑓𝑠 = 3.035 𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ: 𝑔𝑎𝑝 = 0.001" % 𝑇 𝑖𝑛𝑐𝑟𝑒𝑠𝑒 𝑜𝑛 𝑠ℎ𝑎𝑓𝑡: 0.001 0.25 = .005 = 4% 𝜏 = 𝑇𝑝 𝐽 𝑝 𝑛𝑒𝑤 = . 251 2 = .1255 𝐽 𝑛𝑒𝑤 = ( . 2512 12 ) (. 2512 +. 2512) = 0.003969 𝜏 = 33200𝑝𝑠𝑖, 𝜏 𝑜𝑙𝑑 = 3360 𝑝𝑠𝑖 3360 3320 = 101.2%
  • 16. E15 Spring Analysis Spring Constant: 19.11 lb = limit Robot max weight = 20 lb 𝐹 = −𝑘𝑥 𝑥 = 3.5𝑚𝑚 𝐹 = 50𝑁 𝑘 = 50𝑁 3.5𝑚𝑚 = 14.28𝑁 𝑚𝑚 𝑇𝑦𝑝𝑒: 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑠𝑝𝑟𝑖𝑛𝑔𝑠 Shear on Axle: 𝑀𝑎𝑥 𝑇 𝑖𝑛 𝑠𝑝𝑟𝑖𝑛𝑔 = 19.11 𝑙𝑏𝑓 𝜎 = 𝑀𝑦 𝐼 𝛴𝑀 = 19.1(7)+ 19.1(11)− 𝐹2(18) 𝐹2 = 19.47 𝑙𝑏𝑓 𝛴𝐹𝑦 = −𝐹1 + 19.1 + 19.1 − 19.47 𝐹1 = 18.73 𝑙𝑏𝑓 𝑀 𝑚𝑎𝑥 = 131.11 Figure 1 Figure 2 -30 -20 -10 0 10 20 30 0 5 10 15 20 V(shear) Length (inches) Shear Diagram -140 -120 -100 -80 -60 -40 -20 0 0 5 10 15 20 Moment Length (inches) Moment Diagram
  • 17. E16 𝜎 = (131.11)( . 25 2 ) 𝐼 𝐼 = 1.917𝑥10−4 𝑖𝑛4 𝜎 𝑚𝑎𝑥 = 85.47 𝑘𝑠𝑖
  • 18. E17 Wheels & Axles Analysis 𝐴𝐵𝑆 𝑃𝑙𝑎𝑠𝑡𝑖𝑐: 𝑆 𝑢𝑡 = 4000 𝑝𝑠𝑖 𝑆 𝑦 = 1400 𝑝𝑠𝑖 20𝑙𝑏𝑓 4 = 5𝑙𝑏𝑓 𝑝𝑒𝑟 𝑤ℎ𝑒𝑒𝑙 𝜎 = 𝐹 𝐴 𝜋(5)2 4 = 𝐴 = 19.63𝑖𝑛2 𝜎 = 2546𝑝𝑠𝑖 𝑝𝑒𝑟 𝑤ℎ𝑒𝑒𝑙
  • 19. E18 Wire Cutting Device Analysis Motor Specs: 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑠 2300 𝑟𝑝𝑚/𝑣𝑜𝑙𝑡 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑔𝑖𝑣𝑒𝑛: 12 𝑉 𝐴𝑚𝑝𝑠 𝐷𝑟𝑎𝑤𝑛: 5 𝐴 2300 𝑟𝑝𝑚/𝑉 𝑥 12 𝑉 = 27,600 𝑟𝑝𝑚 𝑃𝑜𝑤𝑒𝑟 = 𝑉𝑥𝐼 = 12𝑥5 = 60 𝑤𝑎𝑡𝑡𝑠 = 0.0805 𝐻𝑃 𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝐶𝑢𝑡𝑡𝑖𝑛𝑔 𝐵𝑙𝑎𝑑𝑒 = 1.5𝑖𝑛 𝑇𝑜𝑟𝑞𝑢𝑒 = 𝑟𝑥𝐹 = 33000( 𝐻𝑃) 2𝜋( 𝑟𝑝𝑚) = 0.1535 𝑓𝑡 − 𝑙𝑏 = 1.838 𝑙𝑏 − 𝑖𝑛. 𝐹 = 𝑇 𝑟 = 1.838 1.5 = 1.225 𝑙𝑏𝑓 Wire Specs: 𝐴 𝑤𝑖𝑟𝑒 = 0.0075𝑖𝑛2 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 18𝑙𝑏 𝑖𝑛2 𝐹𝑜𝑟𝑐𝑒 𝑡𝑜 𝑐𝑢𝑡 𝑤𝑖𝑟𝑒 = 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑥 𝐴 𝑤𝑖𝑟𝑒 = 0.135 𝑙𝑏𝑓
  • 20. E19 Soil/Air CollectorAnalysis Servo Specs: Torque = 38 oz.-in Force required closing lid of air collector: Lid = 2.1 oz. 𝐴𝑙𝑖𝑑 = 𝜋( 𝑟)2 = 𝜋(. 5)2 = 0.785 𝑖𝑛2 Servo Arm = 4” long 𝑇𝑜𝑟𝑞𝑢𝑒 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒 𝑙𝑖𝑑 = 𝜏 = 38𝑜𝑧. 𝑖𝑛2 4𝑖𝑛 = 9.5𝑜𝑧. −𝑖𝑛. 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝜏 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒 𝑙𝑖𝑑 = 1.05 𝑜𝑧.−𝑖𝑛.
  • 21. E20 MATLAB Code Calculations %% %Tyler Maydew - LAW OF COSINES clc close all %% %This section calculates the angle. This does not change regardless of %position. a=sqrt((n1-n2)^2+(w1-w2)^2); b=sqrt((n2-n3)^2+(w2-w3)^2); c=sqrt((n3-n1)^2+(w3-w1)^2); A=acos((b^2+c^2-a^2)/(2*b*c)); theta=180-(A*180/pi); %% %This set of code is to determine whether we need to spin clockwise or %counterclockwise. dn32=n3-n2; dn12=n1-n2; dw32=w3-w2; dw12=w1-w2; alpha=atan(dn32/dw32)*180/pi; beta=atan(dn12/dw12)*180/pi; %This will find theta for line 3 off horizontal of 2 if dn32>=0 if dw32<=0 theta2=abs(alpha); else theta2=180-alpha; end else if dw32>=0 theta2=180+abs(alpha); else theta2=360-alpha; end end %this will find theta1 for line 1 off horizontal of 2 if dn12>=0 if dw12<=0 theta1=abs(beta); else theta1=180-beta; end else if dw12>=0 theta1=180+abs(beta); else theta1=360-beta; end end if theta1>=theta2