SlideShare a Scribd company logo
1 of 24
Download to read offline
Analysis of the Blade Boundary-Layer Flow
of a Marine Propeller With RANSE
J. Baltazar1
, D. Melo1
, D. Rijpkema2
1Instituto Superior Técnico, Universidade de Lisboa, Portugal
2Maritime Research Institute Netherlands, Wageningen, the Netherlands
MARINE 2019 Göteborg, Sweden May 13-15 1
Objectives
Comparison between RANS simulations and experimental data
from LDV measurements in the DTRC water tunnel for marine
propeller P4119 (Jessup, 1989):
D [m] 0.3048
c0.7R [m] 0.1409
Z 3
P/D0.7R 1.0839
AE /A0 0.5
Contribute to the understanding of the blade boundary-layer flow
modelling.
MARINE 2019 Göteborg, Sweden May 13-15 2
Performance Prediction at Model-Scale
RANSE solver ReFRESCO
Finite-volume discretisation
Flow variables defined in cell-centres
Turbulence model:
– k − ω SST (Menter et al., 2003)
– Not developed for transition
Transition model:
– γ − R̃eθt (Langtry and Menter, 2009)
– Strong dependency to turbulence intensity Tu
and eddy-viscosity ratio µt/µ
MARINE 2019 Göteborg, Sweden May 13-15 3
Numerical Set-Up
Cylindrical domain (5D)
6 multi-block structured grids: 1M to 38M cells
No wall functions are used (y+
∼ 1)
Uniform inflow (open-water)
Discretisation of convective flux:
– Momentum: QUICK
– Turbulence/Transition: Upwind
MARINE 2019 Göteborg, Sweden May 13-15 4
Grid Generation
Grid Volume Blade y+
max
G1 37.6M 73.9k 0.20
G2 21.0M 42.3k 0.24
G3 9.9M 25.6k 0.31
G4 6.1M 18.6k 0.39
G5 1.9M 8.6k 0.51
G6 0.9M 4.9k 0.66
MARINE 2019 Göteborg, Sweden May 13-15 5
Results Summary
RANS simulations at model-scale (Re ' 9.5 × 105
)
Comparison with experimental data (Jdesign = 0.833)
Evaluation of numerical errors:
– Iterative errors
– Numerical uncertainty estimation
Influence of turbulence quantities:
– Blade flow (limiting streamlines and skin friction)
– Propeller forces
Chordwise and spanwise velocity profiles
Boundary-layer parameters
MARINE 2019 Göteborg, Sweden May 13-15 6
Evaluation of Iterative Error
k − ω SST turbulence model (Tu =1.0% and µt/µ = 1)
Iteration
L
∞
0 20000 40000 60000 80000 100000
10
-8
10
-7
10-6
10
-5
10
-4
10
-3
10
-2
10
-1
UX
UY
UZ
P
k
ω
L∞
Norm
Iteration
L
2
0 20000 40000 60000 80000 100000
10
-10
10
-9
10-8
10
-7
10
-6
10
-5
10
-4
10
-3
UX
UY
UZ
P
k
ω
L2
Norm
Iteration
0 20000 40000 60000 80000 100000
0.10
0.15
0.20
0.25
0.30
Iteration
0 20000 40000 60000 80000 100000
0.10
0.15
0.20
0.25
0.30
KT
10KQ
Propeller Force Coefficients
MARINE 2019 Göteborg, Sweden May 13-15 7
Evaluation of Iterative Error
γ − R̃eθt
transition model (Tu =1.5% and µt/µ = 500)
Iteration
L
∞
0 5000 10000 15000 20000 25000
10
-7
10
-6
10-5
10
-4
10
-3
10
-2
10
-1
100
10
1
UX
UY
UZ
P
k
ω
γ
Reθ
L∞
Norm
Iteration
L
2
0 5000 10000 15000 20000 25000
10
-9
10-8
10
-7
10
-6
10
-5
10
-4
10-3
10
-2
10
-1
10
0
UX
UY
UZ
P
k
ω
γ
Reθ
L2
Norm
Iteration
0 5000 10000 15000 20000 25000
0.10
0.15
0.20
0.25
0.30
Iteration
0 5000 10000 15000 20000 25000
0.10
0.15
0.20
0.25
0.30
KT
10KQ
Propeller Force Coefficients
MARINE 2019 Göteborg, Sweden May 13-15 8
Numerical Uncertainty Estimation
Eça and Hoekstra (2014) procedure
hi
/h1
K
T
0 1 2 3 4
0.140
0.142
0.144
0.146
0.148 k-ω SST : p=0.96 , Unum
=0.55 %
γ-Reθ
: p=1.16 , Unum
=1.03 %
hi
/h1
10K
Q
0 1 2 3 4
0.270
0.273
0.276
0.279
0.282
0.285 k-ω SST : p=1.84 , Unum
=0.20 %
γ-Reθ
: p=1.64 , Unum
=0.51 %
MARINE 2019 Göteborg, Sweden May 13-15 9
Limiting Streamlines and Skin Friction Coefficient
γ − R̃eθt
transition model (Tu =1.2% and µt/µ = 500)
Pressure Side Suction Side
MARINE 2019 Göteborg, Sweden May 13-15 10
Limiting Streamlines and Skin Friction Coefficient
γ − R̃eθt
transition model (Tu =1.5% and µt/µ = 500)
Pressure Side Suction Side
MARINE 2019 Göteborg, Sweden May 13-15 11
Limiting Streamlines and Skin Friction Coefficient
k − ω SST turbulence model (Tu =1.0% and µt/µ = 1)
Pressure Side Suction Side
MARINE 2019 Göteborg, Sweden May 13-15 12
Influence of Turbulence Quantities
Thrust and torque coefficients (pressure p and friction f contributions)
Model Tu µt/µ KTp KTf
KT
γ − R̃eθt 1.2% 500 0.1498 -0.002470 0.1473
γ − R̃eθt 1.5% 500 0.1476 -0.003373 0.1442
k − ω SST 1.0% 1 0.1463 -0.004460 0.1419
Exp. – – – – 0.146
Model Tu µt/µ 10KQp 10KQf
10KQ
γ − R̃eθt 1.2% 500 0.2529 0.01771 0.2706
γ − R̃eθt 1.5% 500 0.2489 0.02422 0.2731
k − ω SST 1.0% 1 0.2472 0.03117 0.2784
Exp. – – – – 0.280
MARINE 2019 Göteborg, Sweden May 13-15 13
Blade Boundary-Layer Flow
Chordwise velocity profiles: r/R = 0.7 (suction side)
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.29
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.34
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.63
Experimental (Tripped Blade)
Experimental (Smooth Blade)
s/c=0.3
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.49
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.78
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.01
Experimental (Tripped Blade)
Experimental (Smooth Blade)
s/c=0.5
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.3
0.6
0.9
1.2
1.5
1.8
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.92
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=1.24
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.48
Experimental (Tripped Blade)
Experimental (Smooth Blade)
s/c=0.7
MARINE 2019 Göteborg, Sweden May 13-15 14
Blade Boundary-Layer Flow
Chordwise velocity profiles: r/R = 0.7 (pressure side)
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.31
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.32
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.75
Experimental (Tripped Blade)
Experimental (Smooth Blade)
s/c=0.39
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.3
0.6
0.9
1.2
1.5
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.39
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.51
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.09
Experimental (Tripped Blade)
Experimental (Smooth Blade)
s/c=0.608
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.4
0.8
1.2
1.6
2.0
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.50
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.99
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.53
Experimental (Tripped Blade)
Experimental (Smooth Blade)
s/c=0.859
MARINE 2019 Göteborg, Sweden May 13-15 15
Blade Boundary-Layer Flow
Spanwise velocity profiles: r/R = 0.7 (suction side)
Vt /Vref
100
y/c
-0.05 0.00 0.05 0.10 0.15
0.0
0.2
0.4
0.6
0.8
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.29
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.55
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.64
Experimental (Smooth Blade)
s/c=0.31
Vt /Vref
100
y/c
-0.05 0.00 0.05 0.10 0.15
0.0
0.2
0.4
0.6
0.8
1.0
1.2
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.49
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.78
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.01
Experimental (Smooth Blade)
s/c=0.5
Vt /Vref
100
y/c
-0.05 0.00 0.05 0.10 0.15
0.0
0.4
0.8
1.2
1.6
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=1.07
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=1.39
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.60
Experimental (Smooth Blade)
s/c=0.77
MARINE 2019 Göteborg, Sweden May 13-15 16
Boundary-Layer Characteristics
(Streamwise)
Boundary-layer thickness δ estimation:
– total pressure-loss:
∆pt = P + 1/2ρV 2
t − Pinlet − 1/2ρ

V 2
inlet + (Ω0.7R)2

– C∆pt = ∆pt/(1/2ρV 2
ref ) = −0.01 (Vδ = 0.995Ve)
with V 2
e = Vs(δ)2 + Vt(δ)2
Displacement thickness δ∗
= 1
Ve
δ
R
0
(Vs(δ) − Vs(y))dy
Momentum thickness θ = 1
V 2
e
δ
R
0
(Vs(δ) − Vs(y))Vs(y)dy
Shape factor H = δ∗
θ
MARINE 2019 Göteborg, Sweden May 13-15 17
Boundary-Layer Characteristics
r/R = 0.7 (suction side)
s/c
100δ/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.5
1.0
1.5
2.0
2.5
γ-Reθt , Tu=1.2%, µt /µ=500
γ-Reθt , Tu=1.5%, µt /µ=500
k-ω SST, Tu=1.0%, µt/µ=1
Boundary-Layer Thickness
s/c
100δ
*
/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
γ-Reθt , Tu=1.2%, µt /µ=500
γ-Reθt , Tu=1.5%, µt /µ=500
k-ω SST, Tu=1.0%, µt/µ=1
Experimental (Tripped Blade)
Experimental (Smooth Blade)
Displacement Thickness
s/c
H
0.0 0.2 0.4 0.6 0.8 1.0
0.5
1.0
1.5
2.0
2.5
3.0
γ-Reθt , Tu=1.2%, µt /µ=500
γ-Reθt
, Tu=1.5%, µt
/µ=500
k-ω SST, Tu=1.0%, µt
/µ=1
Experimental (Tripped Blade)
Experimental (Smooth Blade)
Shape Factor
MARINE 2019 Göteborg, Sweden May 13-15 18
Boundary-Layer Characteristics
r/R = 0.7 (pressure side)
s/c
100δ/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.5
1.0
1.5
2.0
γ-Reθt , Tu=1.2%, µt /µ=500
γ-Reθt , Tu=1.5%, µt /µ=500
k-ω SST, Tu=1.0%, µt
/µ=1
Boundary-Layer Thickness
s/c
100δ
*
/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
γ-Reθt , Tu=1.2%, µt /µ=500
γ-Reθt , Tu=1.5%, µt /µ=500
k-ω SST, Tu=1.0%, µt
/µ=1
Experimental (Tripped Blade)
Experimental (Smooth Blade)
Displacement Thickness
s/c
H
0.0 0.2 0.4 0.6 0.8 1.0
1.0
1.5
2.0
2.5
3.0
γ-Reθt , Tu=1.2%, µt /µ=500
γ-Reθt
, Tu=1.5%, µt
/µ=500
k-ω SST, Tu=1.0%, µt
/µ=1
Experimental (Tripped Blade)
Experimental (Smooth Blade)
Shape Factor
MARINE 2019 Göteborg, Sweden May 13-15 19
Conclusions
Evaluation of numerical errors:
– γ − R̃eθt model does not satisfy iterative convergence criterion.
Expected small influence on propeller forces
– Low numerical uncertainties ( 2%) for force coefficients
k − ω SST model correctly predicts the velocity profiles in fully
turbulent region (tripped blade)
γ − R̃eθt model predicts laminar-turbulent transition:
– Strong sensitivity to inlet turbulence quantities
– Selection based on experimental velocity profiles (smooth blade)
– However, may limit the predictive capabilities of the model!
Evolution of the streamwise boundary-layer quantities show
typical laminar and turbulent flow behaviours
MARINE 2019 Göteborg, Sweden May 13-15 20
Influence of Grid Refinement
Variation of propeller force coefficients
Model k − ω SST γ − R̃eθt
Grid ∆KT ∆KQ ∆η0 ∆KT ∆KQ ∆η0
0.9M 1.0% 1.4% -0.4% -0.6% 2.4% -2.8%
1.9M 0.6% 0.8% -0.3% -0.7% 1.4% -2.1%
6.1M 0.4% 0.3% 0.0% -0.6% 0.6% -1.1%
9.9M 0.2% 0.2% 0.0% -0.6% 0.3% -0.8%
21.0M 0.1% 0.1% 0.0% -0.2% 0.1% -0.3%
37.6M 0.1416 0.2779 0.676 0.1450 0.2722 0.706
MARINE 2019 Göteborg, Sweden May 13-15 21
Influence of Grid Refinement
Suction side, s/c = 0.2, r/R = 0.7
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
0.5
Grid with 9.9M cells
Grid with 37.6M cells
k-ω SST Turbulence Model
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
Grid with 9.9M cells
Grid with 37.6M cells
γ-Reθt
Transition Model
MARINE 2019 Göteborg, Sweden May 13-15 22
Blade Boundary-Layer Flow
Chordwise velocity profiles: r/R = 0.7 (suction side)
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.23
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.22
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.42
Experimental (Tripped Blade)
Experimental (Smooth Blade)
s/c=0.2
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.3
0.6
0.9
1.2
1.5
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.69
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.98
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.23
Experimental (Tripped Blade)
Experimental (Smooth Blade)
s/c=0.6
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.5
1.0
1.5
2.0
2.5
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=1.47
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=1.83
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=2.09
Experimental (Tripped Blade)
Experimental (Smooth Blade)
s/c=0.9
MARINE 2019 Göteborg, Sweden May 13-15 23
Blade Boundary-Layer Flow
Spanwise velocity profiles: r/R = 0.7 (suction side)
Vt /Vref
100
y/c
-0.05 0.00 0.05 0.10 0.15
0.0
0.2
0.4
0.6
0.8
1.0
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.36
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.55
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.82
Experimental (Smooth Blade)
s/c=0.4
Vt /Vref
100
y/c
-0.05 0.00 0.05 0.10 0.15
0.0
0.4
0.8
1.2
1.6
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.69
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.98
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.21
Experimental (Smooth Blade)
s/c=0.6
MARINE 2019 Göteborg, Sweden May 13-15 24

More Related Content

What's hot (7)

Bifilar trifilar suspension apparatus
Bifilar trifilar suspension apparatusBifilar trifilar suspension apparatus
Bifilar trifilar suspension apparatus
 
French standard for deep foundations roger frank
French standard for deep foundations   roger frankFrench standard for deep foundations   roger frank
French standard for deep foundations roger frank
 
Spt energy calibration frank rausche
Spt energy calibration  frank rauscheSpt energy calibration  frank rausche
Spt energy calibration frank rausche
 
Mechanical vibration lab_manual
Mechanical vibration lab_manualMechanical vibration lab_manual
Mechanical vibration lab_manual
 
All experiments 1
All experiments 1All experiments 1
All experiments 1
 
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSOSPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
 
SPICE MODEL of SSM3K36FS (Professional+BDP Model) in SPICE PARK
SPICE MODEL of SSM3K36FS (Professional+BDP Model) in SPICE PARKSPICE MODEL of SSM3K36FS (Professional+BDP Model) in SPICE PARK
SPICE MODEL of SSM3K36FS (Professional+BDP Model) in SPICE PARK
 

Similar to Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSE

Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1
Nir Morgulis
 
Yutong Liu - Poster - ACF-PEDOT Supercap
Yutong Liu - Poster - ACF-PEDOT SupercapYutong Liu - Poster - ACF-PEDOT Supercap
Yutong Liu - Poster - ACF-PEDOT Supercap
Yutong Liu
 

Similar to Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSE (20)

Aircraft propulsion non ideal turbomachine 2 d
Aircraft propulsion   non ideal turbomachine 2 dAircraft propulsion   non ideal turbomachine 2 d
Aircraft propulsion non ideal turbomachine 2 d
 
データセンター省エネ化技術トレンド2018
データセンター省エネ化技術トレンド2018データセンター省エネ化技術トレンド2018
データセンター省エネ化技術トレンド2018
 
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...
 
Aircraft propulsion turbomachine 2 d
Aircraft propulsion   turbomachine 2 dAircraft propulsion   turbomachine 2 d
Aircraft propulsion turbomachine 2 d
 
Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1
 
Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...
Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...
Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...
 
Advantage of HRAM
Advantage of HRAMAdvantage of HRAM
Advantage of HRAM
 
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
 
Original MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New Fairchild
Original MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New FairchildOriginal MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New Fairchild
Original MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New Fairchild
 
Solutions Manual for Water-Resources Engineering 3rd Edition by Chin
Solutions Manual for Water-Resources Engineering 3rd Edition by ChinSolutions Manual for Water-Resources Engineering 3rd Edition by Chin
Solutions Manual for Water-Resources Engineering 3rd Edition by Chin
 
SPICE MODEL of SSM3K36FS (Standard+BDS Model) in SPICE PARK
SPICE MODEL of SSM3K36FS (Standard+BDS Model) in SPICE PARKSPICE MODEL of SSM3K36FS (Standard+BDS Model) in SPICE PARK
SPICE MODEL of SSM3K36FS (Standard+BDS Model) in SPICE PARK
 
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
 
Presentation1.pptx
Presentation1.pptxPresentation1.pptx
Presentation1.pptx
 
SPICE MODEL of TPCP8405 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPCP8405 (Standard+BDS Model) in SPICE PARKSPICE MODEL of TPCP8405 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPCP8405 (Standard+BDS Model) in SPICE PARK
 
Axial fan design
Axial fan designAxial fan design
Axial fan design
 
Water Resources Engineering 3rd Edition Chin Solutions Manual
Water Resources Engineering 3rd Edition Chin Solutions ManualWater Resources Engineering 3rd Edition Chin Solutions Manual
Water Resources Engineering 3rd Edition Chin Solutions Manual
 
Aofd farid
Aofd faridAofd farid
Aofd farid
 
Original Mosfet N 8N80C 8N80 FQPF8N80C FQPF8N80 8A 800V TO-220 New Fairchild
Original Mosfet N 8N80C 8N80 FQPF8N80C FQPF8N80 8A 800V TO-220 New FairchildOriginal Mosfet N 8N80C 8N80 FQPF8N80C FQPF8N80 8A 800V TO-220 New Fairchild
Original Mosfet N 8N80C 8N80 FQPF8N80C FQPF8N80 8A 800V TO-220 New Fairchild
 
Yutong Liu - Poster - ACF-PEDOT Supercap
Yutong Liu - Poster - ACF-PEDOT SupercapYutong Liu - Poster - ACF-PEDOT Supercap
Yutong Liu - Poster - ACF-PEDOT Supercap
 
Jardim bot2010 jc
Jardim bot2010 jcJardim bot2010 jc
Jardim bot2010 jc
 

More from João Baltazar

Design of a Horizontal Axis Marine Current Turbine with Dedicated Hydrofoil S...
Design of a Horizontal Axis Marine Current Turbine with Dedicated Hydrofoil S...Design of a Horizontal Axis Marine Current Turbine with Dedicated Hydrofoil S...
Design of a Horizontal Axis Marine Current Turbine with Dedicated Hydrofoil S...
João Baltazar
 
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
João Baltazar
 

More from João Baltazar (20)

PROPAN - Propeller Panel Code
PROPAN - Propeller Panel CodePROPAN - Propeller Panel Code
PROPAN - Propeller Panel Code
 
Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...
Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...
Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...
 
Recent Developments in Computational Methods for the Analysis of Ducted Prope...
Recent Developments in Computational Methods for the Analysis of Ducted Prope...Recent Developments in Computational Methods for the Analysis of Ducted Prope...
Recent Developments in Computational Methods for the Analysis of Ducted Prope...
 
Potential Flow Modelling of Ducted Propellers with Blunt Trailing Edge Duct U...
Potential Flow Modelling of Ducted Propellers with Blunt Trailing Edge Duct U...Potential Flow Modelling of Ducted Propellers with Blunt Trailing Edge Duct U...
Potential Flow Modelling of Ducted Propellers with Blunt Trailing Edge Duct U...
 
Prediction of the Propeller Performance at Different Reynolds Number Regimes ...
Prediction of the Propeller Performance at Different Reynolds Number Regimes ...Prediction of the Propeller Performance at Different Reynolds Number Regimes ...
Prediction of the Propeller Performance at Different Reynolds Number Regimes ...
 
Design of a Horizontal Axis Marine Current Turbine with Dedicated Hydrofoil S...
Design of a Horizontal Axis Marine Current Turbine with Dedicated Hydrofoil S...Design of a Horizontal Axis Marine Current Turbine with Dedicated Hydrofoil S...
Design of a Horizontal Axis Marine Current Turbine with Dedicated Hydrofoil S...
 
Prediction of Sheet Cavitation on Marine Current Turbines With a Boundary Ele...
Prediction of Sheet Cavitation on Marine Current Turbines With a Boundary Ele...Prediction of Sheet Cavitation on Marine Current Turbines With a Boundary Ele...
Prediction of Sheet Cavitation on Marine Current Turbines With a Boundary Ele...
 
Hydrodynamic Design and Analysis of Horizontal Axis Marine Current Turbines W...
Hydrodynamic Design and Analysis of Horizontal Axis Marine Current Turbines W...Hydrodynamic Design and Analysis of Horizontal Axis Marine Current Turbines W...
Hydrodynamic Design and Analysis of Horizontal Axis Marine Current Turbines W...
 
Numerical Studies for Verification and Validation of Open-Water Propeller RAN...
Numerical Studies for Verification and Validation of Open-Water Propeller RAN...Numerical Studies for Verification and Validation of Open-Water Propeller RAN...
Numerical Studies for Verification and Validation of Open-Water Propeller RAN...
 
Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...
Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...
Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...
 
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
 
A Comparison of Panel Method and RANS Calculations for a Horizontal Axis Mari...
A Comparison of Panel Method and RANS Calculations for a Horizontal Axis Mari...A Comparison of Panel Method and RANS Calculations for a Horizontal Axis Mari...
A Comparison of Panel Method and RANS Calculations for a Horizontal Axis Mari...
 
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
 
Leading-Edge Vortex Flow Modelling Around Delta Wings Using a Boundary Elemen...
Leading-Edge Vortex Flow Modelling Around Delta Wings Using a Boundary Elemen...Leading-Edge Vortex Flow Modelling Around Delta Wings Using a Boundary Elemen...
Leading-Edge Vortex Flow Modelling Around Delta Wings Using a Boundary Elemen...
 
A Numerical Study on the Iterative Techniques to Solve Partial Cavitation on ...
A Numerical Study on the Iterative Techniques to Solve Partial Cavitation on ...A Numerical Study on the Iterative Techniques to Solve Partial Cavitation on ...
A Numerical Study on the Iterative Techniques to Solve Partial Cavitation on ...
 
A Boundary Element Method for the Unsteady Hydrodynamic Analysis of Marine Cu...
A Boundary Element Method for the Unsteady Hydrodynamic Analysis of Marine Cu...A Boundary Element Method for the Unsteady Hydrodynamic Analysis of Marine Cu...
A Boundary Element Method for the Unsteady Hydrodynamic Analysis of Marine Cu...
 
Hydrodynamic Analysis of a Horizontal Axis Marine Current Turbine with a Boun...
Hydrodynamic Analysis of a Horizontal Axis Marine Current Turbine with a Boun...Hydrodynamic Analysis of a Horizontal Axis Marine Current Turbine with a Boun...
Hydrodynamic Analysis of a Horizontal Axis Marine Current Turbine with a Boun...
 
Numerical Modelling of the Potential Flow Around Ducted Propellers
Numerical Modelling of the Potential Flow Around Ducted PropellersNumerical Modelling of the Potential Flow Around Ducted Propellers
Numerical Modelling of the Potential Flow Around Ducted Propellers
 
Estudo Experimental do Balanço Transversal
Estudo Experimental do Balanço TransversalEstudo Experimental do Balanço Transversal
Estudo Experimental do Balanço Transversal
 
A Surface Grid Generation Technique for Practical Applications of Boundary El...
A Surface Grid Generation Technique for Practical Applications of Boundary El...A Surface Grid Generation Technique for Practical Applications of Boundary El...
A Surface Grid Generation Technique for Practical Applications of Boundary El...
 

Recently uploaded

VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Christo Ananth
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 

Recently uploaded (20)

Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 

Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSE

  • 1. Analysis of the Blade Boundary-Layer Flow of a Marine Propeller With RANSE J. Baltazar1 , D. Melo1 , D. Rijpkema2 1Instituto Superior Técnico, Universidade de Lisboa, Portugal 2Maritime Research Institute Netherlands, Wageningen, the Netherlands MARINE 2019 Göteborg, Sweden May 13-15 1
  • 2. Objectives Comparison between RANS simulations and experimental data from LDV measurements in the DTRC water tunnel for marine propeller P4119 (Jessup, 1989): D [m] 0.3048 c0.7R [m] 0.1409 Z 3 P/D0.7R 1.0839 AE /A0 0.5 Contribute to the understanding of the blade boundary-layer flow modelling. MARINE 2019 Göteborg, Sweden May 13-15 2
  • 3. Performance Prediction at Model-Scale RANSE solver ReFRESCO Finite-volume discretisation Flow variables defined in cell-centres Turbulence model: – k − ω SST (Menter et al., 2003) – Not developed for transition Transition model: – γ − R̃eθt (Langtry and Menter, 2009) – Strong dependency to turbulence intensity Tu and eddy-viscosity ratio µt/µ MARINE 2019 Göteborg, Sweden May 13-15 3
  • 4. Numerical Set-Up Cylindrical domain (5D) 6 multi-block structured grids: 1M to 38M cells No wall functions are used (y+ ∼ 1) Uniform inflow (open-water) Discretisation of convective flux: – Momentum: QUICK – Turbulence/Transition: Upwind MARINE 2019 Göteborg, Sweden May 13-15 4
  • 5. Grid Generation Grid Volume Blade y+ max G1 37.6M 73.9k 0.20 G2 21.0M 42.3k 0.24 G3 9.9M 25.6k 0.31 G4 6.1M 18.6k 0.39 G5 1.9M 8.6k 0.51 G6 0.9M 4.9k 0.66 MARINE 2019 Göteborg, Sweden May 13-15 5
  • 6. Results Summary RANS simulations at model-scale (Re ' 9.5 × 105 ) Comparison with experimental data (Jdesign = 0.833) Evaluation of numerical errors: – Iterative errors – Numerical uncertainty estimation Influence of turbulence quantities: – Blade flow (limiting streamlines and skin friction) – Propeller forces Chordwise and spanwise velocity profiles Boundary-layer parameters MARINE 2019 Göteborg, Sweden May 13-15 6
  • 7. Evaluation of Iterative Error k − ω SST turbulence model (Tu =1.0% and µt/µ = 1) Iteration L ∞ 0 20000 40000 60000 80000 100000 10 -8 10 -7 10-6 10 -5 10 -4 10 -3 10 -2 10 -1 UX UY UZ P k ω L∞ Norm Iteration L 2 0 20000 40000 60000 80000 100000 10 -10 10 -9 10-8 10 -7 10 -6 10 -5 10 -4 10 -3 UX UY UZ P k ω L2 Norm Iteration 0 20000 40000 60000 80000 100000 0.10 0.15 0.20 0.25 0.30 Iteration 0 20000 40000 60000 80000 100000 0.10 0.15 0.20 0.25 0.30 KT 10KQ Propeller Force Coefficients MARINE 2019 Göteborg, Sweden May 13-15 7
  • 8. Evaluation of Iterative Error γ − R̃eθt transition model (Tu =1.5% and µt/µ = 500) Iteration L ∞ 0 5000 10000 15000 20000 25000 10 -7 10 -6 10-5 10 -4 10 -3 10 -2 10 -1 100 10 1 UX UY UZ P k ω γ Reθ L∞ Norm Iteration L 2 0 5000 10000 15000 20000 25000 10 -9 10-8 10 -7 10 -6 10 -5 10 -4 10-3 10 -2 10 -1 10 0 UX UY UZ P k ω γ Reθ L2 Norm Iteration 0 5000 10000 15000 20000 25000 0.10 0.15 0.20 0.25 0.30 Iteration 0 5000 10000 15000 20000 25000 0.10 0.15 0.20 0.25 0.30 KT 10KQ Propeller Force Coefficients MARINE 2019 Göteborg, Sweden May 13-15 8
  • 9. Numerical Uncertainty Estimation Eça and Hoekstra (2014) procedure hi /h1 K T 0 1 2 3 4 0.140 0.142 0.144 0.146 0.148 k-ω SST : p=0.96 , Unum =0.55 % γ-Reθ : p=1.16 , Unum =1.03 % hi /h1 10K Q 0 1 2 3 4 0.270 0.273 0.276 0.279 0.282 0.285 k-ω SST : p=1.84 , Unum =0.20 % γ-Reθ : p=1.64 , Unum =0.51 % MARINE 2019 Göteborg, Sweden May 13-15 9
  • 10. Limiting Streamlines and Skin Friction Coefficient γ − R̃eθt transition model (Tu =1.2% and µt/µ = 500) Pressure Side Suction Side MARINE 2019 Göteborg, Sweden May 13-15 10
  • 11. Limiting Streamlines and Skin Friction Coefficient γ − R̃eθt transition model (Tu =1.5% and µt/µ = 500) Pressure Side Suction Side MARINE 2019 Göteborg, Sweden May 13-15 11
  • 12. Limiting Streamlines and Skin Friction Coefficient k − ω SST turbulence model (Tu =1.0% and µt/µ = 1) Pressure Side Suction Side MARINE 2019 Göteborg, Sweden May 13-15 12
  • 13. Influence of Turbulence Quantities Thrust and torque coefficients (pressure p and friction f contributions) Model Tu µt/µ KTp KTf KT γ − R̃eθt 1.2% 500 0.1498 -0.002470 0.1473 γ − R̃eθt 1.5% 500 0.1476 -0.003373 0.1442 k − ω SST 1.0% 1 0.1463 -0.004460 0.1419 Exp. – – – – 0.146 Model Tu µt/µ 10KQp 10KQf 10KQ γ − R̃eθt 1.2% 500 0.2529 0.01771 0.2706 γ − R̃eθt 1.5% 500 0.2489 0.02422 0.2731 k − ω SST 1.0% 1 0.2472 0.03117 0.2784 Exp. – – – – 0.280 MARINE 2019 Göteborg, Sweden May 13-15 13
  • 14. Blade Boundary-Layer Flow Chordwise velocity profiles: r/R = 0.7 (suction side) Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.29 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.34 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.63 Experimental (Tripped Blade) Experimental (Smooth Blade) s/c=0.3 Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.49 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.78 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.01 Experimental (Tripped Blade) Experimental (Smooth Blade) s/c=0.5 Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.3 0.6 0.9 1.2 1.5 1.8 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.92 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=1.24 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.48 Experimental (Tripped Blade) Experimental (Smooth Blade) s/c=0.7 MARINE 2019 Göteborg, Sweden May 13-15 14
  • 15. Blade Boundary-Layer Flow Chordwise velocity profiles: r/R = 0.7 (pressure side) Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.31 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.32 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.75 Experimental (Tripped Blade) Experimental (Smooth Blade) s/c=0.39 Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.3 0.6 0.9 1.2 1.5 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.39 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.51 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.09 Experimental (Tripped Blade) Experimental (Smooth Blade) s/c=0.608 Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.4 0.8 1.2 1.6 2.0 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.50 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.99 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.53 Experimental (Tripped Blade) Experimental (Smooth Blade) s/c=0.859 MARINE 2019 Göteborg, Sweden May 13-15 15
  • 16. Blade Boundary-Layer Flow Spanwise velocity profiles: r/R = 0.7 (suction side) Vt /Vref 100 y/c -0.05 0.00 0.05 0.10 0.15 0.0 0.2 0.4 0.6 0.8 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.29 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.55 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.64 Experimental (Smooth Blade) s/c=0.31 Vt /Vref 100 y/c -0.05 0.00 0.05 0.10 0.15 0.0 0.2 0.4 0.6 0.8 1.0 1.2 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.49 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.78 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.01 Experimental (Smooth Blade) s/c=0.5 Vt /Vref 100 y/c -0.05 0.00 0.05 0.10 0.15 0.0 0.4 0.8 1.2 1.6 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=1.07 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=1.39 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.60 Experimental (Smooth Blade) s/c=0.77 MARINE 2019 Göteborg, Sweden May 13-15 16
  • 17. Boundary-Layer Characteristics (Streamwise) Boundary-layer thickness δ estimation: – total pressure-loss: ∆pt = P + 1/2ρV 2 t − Pinlet − 1/2ρ V 2 inlet + (Ω0.7R)2 – C∆pt = ∆pt/(1/2ρV 2 ref ) = −0.01 (Vδ = 0.995Ve) with V 2 e = Vs(δ)2 + Vt(δ)2 Displacement thickness δ∗ = 1 Ve δ R 0 (Vs(δ) − Vs(y))dy Momentum thickness θ = 1 V 2 e δ R 0 (Vs(δ) − Vs(y))Vs(y)dy Shape factor H = δ∗ θ MARINE 2019 Göteborg, Sweden May 13-15 17
  • 18. Boundary-Layer Characteristics r/R = 0.7 (suction side) s/c 100δ/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 2.5 γ-Reθt , Tu=1.2%, µt /µ=500 γ-Reθt , Tu=1.5%, µt /µ=500 k-ω SST, Tu=1.0%, µt/µ=1 Boundary-Layer Thickness s/c 100δ * /c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 γ-Reθt , Tu=1.2%, µt /µ=500 γ-Reθt , Tu=1.5%, µt /µ=500 k-ω SST, Tu=1.0%, µt/µ=1 Experimental (Tripped Blade) Experimental (Smooth Blade) Displacement Thickness s/c H 0.0 0.2 0.4 0.6 0.8 1.0 0.5 1.0 1.5 2.0 2.5 3.0 γ-Reθt , Tu=1.2%, µt /µ=500 γ-Reθt , Tu=1.5%, µt /µ=500 k-ω SST, Tu=1.0%, µt /µ=1 Experimental (Tripped Blade) Experimental (Smooth Blade) Shape Factor MARINE 2019 Göteborg, Sweden May 13-15 18
  • 19. Boundary-Layer Characteristics r/R = 0.7 (pressure side) s/c 100δ/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 γ-Reθt , Tu=1.2%, µt /µ=500 γ-Reθt , Tu=1.5%, µt /µ=500 k-ω SST, Tu=1.0%, µt /µ=1 Boundary-Layer Thickness s/c 100δ * /c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 γ-Reθt , Tu=1.2%, µt /µ=500 γ-Reθt , Tu=1.5%, µt /µ=500 k-ω SST, Tu=1.0%, µt /µ=1 Experimental (Tripped Blade) Experimental (Smooth Blade) Displacement Thickness s/c H 0.0 0.2 0.4 0.6 0.8 1.0 1.0 1.5 2.0 2.5 3.0 γ-Reθt , Tu=1.2%, µt /µ=500 γ-Reθt , Tu=1.5%, µt /µ=500 k-ω SST, Tu=1.0%, µt /µ=1 Experimental (Tripped Blade) Experimental (Smooth Blade) Shape Factor MARINE 2019 Göteborg, Sweden May 13-15 19
  • 20. Conclusions Evaluation of numerical errors: – γ − R̃eθt model does not satisfy iterative convergence criterion. Expected small influence on propeller forces – Low numerical uncertainties ( 2%) for force coefficients k − ω SST model correctly predicts the velocity profiles in fully turbulent region (tripped blade) γ − R̃eθt model predicts laminar-turbulent transition: – Strong sensitivity to inlet turbulence quantities – Selection based on experimental velocity profiles (smooth blade) – However, may limit the predictive capabilities of the model! Evolution of the streamwise boundary-layer quantities show typical laminar and turbulent flow behaviours MARINE 2019 Göteborg, Sweden May 13-15 20
  • 21. Influence of Grid Refinement Variation of propeller force coefficients Model k − ω SST γ − R̃eθt Grid ∆KT ∆KQ ∆η0 ∆KT ∆KQ ∆η0 0.9M 1.0% 1.4% -0.4% -0.6% 2.4% -2.8% 1.9M 0.6% 0.8% -0.3% -0.7% 1.4% -2.1% 6.1M 0.4% 0.3% 0.0% -0.6% 0.6% -1.1% 9.9M 0.2% 0.2% 0.0% -0.6% 0.3% -0.8% 21.0M 0.1% 0.1% 0.0% -0.2% 0.1% -0.3% 37.6M 0.1416 0.2779 0.676 0.1450 0.2722 0.706 MARINE 2019 Göteborg, Sweden May 13-15 21
  • 22. Influence of Grid Refinement Suction side, s/c = 0.2, r/R = 0.7 Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5 Grid with 9.9M cells Grid with 37.6M cells k-ω SST Turbulence Model Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 Grid with 9.9M cells Grid with 37.6M cells γ-Reθt Transition Model MARINE 2019 Göteborg, Sweden May 13-15 22
  • 23. Blade Boundary-Layer Flow Chordwise velocity profiles: r/R = 0.7 (suction side) Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.23 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.22 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.42 Experimental (Tripped Blade) Experimental (Smooth Blade) s/c=0.2 Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.3 0.6 0.9 1.2 1.5 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.69 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.98 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.23 Experimental (Tripped Blade) Experimental (Smooth Blade) s/c=0.6 Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 2.5 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=1.47 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=1.83 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=2.09 Experimental (Tripped Blade) Experimental (Smooth Blade) s/c=0.9 MARINE 2019 Göteborg, Sweden May 13-15 23
  • 24. Blade Boundary-Layer Flow Spanwise velocity profiles: r/R = 0.7 (suction side) Vt /Vref 100 y/c -0.05 0.00 0.05 0.10 0.15 0.0 0.2 0.4 0.6 0.8 1.0 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.36 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.55 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.82 Experimental (Smooth Blade) s/c=0.4 Vt /Vref 100 y/c -0.05 0.00 0.05 0.10 0.15 0.0 0.4 0.8 1.2 1.6 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.69 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.98 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.21 Experimental (Smooth Blade) s/c=0.6 MARINE 2019 Göteborg, Sweden May 13-15 24